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Localisation

In algebraic geometry , we study geometric spaces using methods and tools from algebra,
such as ring theory. It turns out that of the most fruitful way to study a geometric space
is by studying functions defined on this space. You have already seen examples of this
very powerful shift of perspective: for example, every ideal in a ring is the kernel of
some ring homomorphism; thus, given a ring A, studying the structure of all ideals in
A is equivalent to studying all ring homomorphisms out of A. One of these very powerful
algebraic techniques of studying functions on a space is called localisation, and it is used
all the time in algebraic geometry. We begin with a discussion of an important motivating
example, which will lead us to the right construction.

Suppose we are interested in studying the real line R at or near some specific point p ∈ R:

Rp

We consider all continuous real-valued functions defined near a point p ∈ R. (To be
precise, a function f is defined near p ∈ R if there exists some (no matter how small)
open set U ⊆ R containing p such that f is continuous on U.) Such functions form a
unital1 commutative ring:

A :=
{

ring of continuous R-valued functions defined near p ∈ R
}

.

Exercise 0.1: Check that A is a ring. What is the multiplicative identity in A?

Since we want to understand R in the vicinity of p, we only want to study the local be-
haviour of functions near p ∈ R. This means that if two functions behave differently far
from p, we should just ignore this difference. Another way of saying this is that if two
functions are the same near p, we want to make no distinction between them; i.e., we
want to identify them. Here, “the same” means we identify two functions if they agree
on some (possibly very small) open set around p. The mathematical way to say this is: if
f, g ∈ A, then

f ∼ g :⇔ there is an open set U around p such that f(x) = g(x) for all x ∈ U. (1)

Then ∼ is an equivalence relation2 on A.

Exercise 0.2: Check that ∼ is an equivalence relation.

1unital ring := ring with a multiplicative identity.
2A common notation for this equivalence relation ∼ is “f ∼p g”; we won’t use it in this note.
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Even if two functions f, g have completely different values outside of U, or even if either or
both of f, g are wildly discontinuous outside of U – we don’t care. The picture you should
have in mind is this:

R
f(x)

g(x)

U

 
f
∼
g

p

These equivalence classes are called germs of functions3. A common notation for germs
of functions is “[f ]p” — this the equivalence class represented by some function f defined
near p. Another common notation, which doesn’t reference a specific representative, is
“ϕp”. Any representative other g of [f ]p agrees with f on some open neighbourhood U of p,
and this neighbourhood U depends on the choice4 of g. Let’s denote the set of equivalence
classes by Ap:

Ap := A/∼ = {germs of functions in A} .

Let me highlight a few general points regarding germs; they are meant to indicate to you
that germs are weird (but cool!).

• A germ ϕp has a value at p. Of course, any two representatives f, g of the same
germ ϕp are defined near p and (crucially) agree on some open neighbourhood of p;
in particular, they agree at p. That is, all representatives of ϕp agree at p:

if ϕp ∈ Ap, then ϕp(p) = f(p) for any representative f of ϕp.

• But a germ ϕp has no “value” at any other point. In general, it doesn’t even make
sense5 to ask for a value of ϕp at some other point q 6= p. This is because A is the
ring of functions that are required to be defined only near p, so we can always find
a representative f of ϕp that is undefined at q; alternatively, we can always find two
representatives f, g of ϕp which have completely different values at q.

• Yet a germ [f ]p contains an enormous amount of information about f . For
example, let’s assume for the moment that we are considering with differentiable
functions. Since any two representatives f, g of a germ ϕp agree on some open
neighbourhood U of p, they have the same derivative at p:

if f, g ∈ ϕp, then f ′(p) = g′(p).

3The word germ is not in reference to the microorganisms; instead, it is derived from the French word
germe (meaning cereal germ ) which is the embryo of a seed out of which a plant grows. This metaphor is
not at all ludicrous.

4In other words, given a germ ϕp, it is not true that there exists an open neighbourhood U of p such that
all representatives of ϕp agree on U. Think about this until it makes total sense to you.

5In this argument, I’m using the fact that we chose to consider continuous functions. For more restricted
kinds of functions — such as analytic functions — there is a sense in which one can ask the question “what is
the value of the germ ϕp at q?” But, except in a special situation of a simply connected domain, this question
is ambiguous and depends on exactly which parth one takes to go from p to q. For more information, look
up analytic continuation .
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Thus, all representatives of ϕp have the same derivative at p! In fact, the exact same
argument holds for all higher derivatives; i.e., all representatives of ϕp have the same
Taylor polynomial! This means that the germ [f ]p knows the Taylor polynomial of f .

Germs Ap form a unital commutative ring under usual operations:

[f ]p + [g]p := [f + g]p and [f ]p · [g]p := [f · g]p .

Exercise 0.3: Check that Ap with these operations is a ring. What is the multiplicative
identity in Ap? Notice that the fact that ∼ is an equivalence relation, these operations are
well-defined; make sure you understand this point.

Before we continue, let me summarise the concept of a germ in a definition.

Definition 0.4 (Germ of Functions)
The equivalence classes ϕp on A under the equivalence relation (1),

f ∼ g :⇔ there is an open set U around p such that f(x) = g(x) for all x ∈ U,

are called germs of functions. The germ of a function f ∈ A is denoted by [f ]p. The set
of equivalence classes is denoted by Ap and called the ring of germs on A.

What are the invertible elements6 in the ring of germs Ap? Let [f ]p ∈ Ap be a germ.
Intuitively, the inverse of [f ]p should be the germ of the reciprocal, [1/f ]p. But 1/f(x)
only makes sense whenever f(x) 6= 0. If f(p) 6= 0, then by continuity f is non-zero in a
neighbourhood U of p, so the reciprocal 1/f is well-defined on U, and therefore the germ
[1/f ]p is well-defined too. This argument fails if and only if f(p) = 0. Thus, the invertible
elements in Ap are precisely the germs of functions from the subset

S :=
{
f ∈ A

∣∣∣ f(p) 6= 0
}
⊆ A .

Thus, in the ring Ap, we are allowed to divide only by germs of functions from the set S.
Therefore, we can generally present elements of Ap as fractions whose denominators are
germs of functions in S, like so:

Ap =

{
[f ]p
[g]p

∣∣∣∣ f, g ∈ A and g ∈ S

}
.

The set S is very important: it tells us precisely the germs of which functions can play
the role of denominators. What properties does it have? The constant function 1 ∈ A is
non-zero at p, so we have 1 ∈ S. Moreover, if two functions f, g are non-zero at p, their
product f · g is also non-zero at p; thus, S is closed under multiplication. However, S is not
an ideal or subring of A: indeed, it fails closedness under addition (why?). Such sets bear
a special name.

Definition 0.5 (Multiplicatively Closed Subset)
A subset S of a ring A is a multiplicatively closed subset if

• 1 ∈ S,

• f, g ∈ S =⇒ f · g ∈ S.

We are now ready to give the main definition of this note.
6invertible element := unit.
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Definition 0.6 (Localisation)
Let A be an integral domain, and S ⊆ A be a multiplicatively closed subset.
The localisation of A at S is the ring

S−1A :=
{ a

s

∣∣∣ a ∈ A and s ∈ S
}/
∼ ,

where the equivalence relation ∼ is given by

a1
s1
∼ a2

s2
:⇔ a1s2 − a2s1 = 0 ,

with operations given by usual fraction addition and multiplication:

a1
s1

+
a2
s2

:=
a1s2 + a2s1

s1s2
and

a1
s1
· a2
s2

:=
a1a2
s1s2

.

The element 1/1 is the multiplicative identity in S−1A.

A few remarks regarding the definition. Notice that in the rules for addition and multipli-
cation, the denominators are always multiplied; this is the reason we always localise at a
multiplicatively closed subset. A note on notation: “S−1A” should be read as a single item;
there is no such thing as the ring S−1. Lastly, the assumption that A be an integral domain
can be dropped, and localisation still makes sense, except the equivalence relation needs
a slight modification.

Example 0.7 (germs are localisation at non-zero elements)
The ring Ap of germs we described above is the localisation of A at the set S of functions
non-vanishing at p:

Ap = S−1A .

Actually, I claim that you have already seen localisation of rings. It’s not a coincidence
that the definition of the field of fractions of a ring looks very similar to the definition of
localisation: the construction of a field of fractions is a special case of localisation.

Example 0.8 (rationals are the localisation of integers)
Let A := Z, and S := Z× = Z \ {0}. Then S−1A = Q, the field of rational numbers.

Example 0.9
Let A := Z, and choose any nonzero integer m ∈ Z. Let S := {1,m,m2,m3, . . .} ={
mk
∣∣ k ∈ Z>0

}
. Then the localisation of A at S is

S−1A =
{ n

mk

∣∣∣ n ∈ Z
}

;

i.e., it is the subset of rationals whose denominators are powers of m.

Example 0.10
Let A := R[x]. Choose the element x ∈ A, and let S := 1, x, x2, x3, . . . =

{
xn
∣∣ n ∈ Zn>0

}
.

Then, intuitively, in the ring S−1A, we are allowed to divide by elements of S; i.e., by
powers of x. Thus, S−1A contains elements like 1

x
, 1
x2 , . . ., and their R-linear combinations.

In other words, S−1A is the ring of Laurent polynomials:

S−1A = R[x, x−1] .
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