MAT224H1F

Summer 2021

$\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$

Tutorial Problems

" \quad Week 2
 Defn. A set $S \subset V$ is lineary independent if [fill in the blank].

1. Determine whether each of the following sets of vectors are linearly dependent or independent:
(a) Any collection of three vectors in \mathbb{R}^{2}.
(b) $\left\{e^{x}, \sin x, \cos x\right\}$ in $C(\mathbb{R})$ (the space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$).
(c) $\left\{1, \sin ^{2} x, \cos ^{2} x\right\}$ in $C(\mathbb{R})$.
(d) $\{\pi, e, \sqrt{2}\}$ in \mathbb{R}.
(e) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\}$ in $M_{2}(\mathbb{R})$ (the space of 2×2 matrices with real coefficients).
2. Prove that two vectors \vec{x} and \vec{y} in a real vector space V are linearly dependent if and only if either \vec{y} is a scalar multiple of \vec{x} or \vec{x} is a scalar multiple of \vec{y}. However, find a linearly dependent set S of three vectors in some vector space V such that no element of S is a scalar multiple of a different element of S.
3. Let V be a real vector space.
(a) Prove that a subset $\{\vec{x}, \vec{y}\}$ of V is linearly independent if and only if the set $\{\vec{x}+\vec{y}, \vec{x}-\vec{y}\}$ is linearly independent.
(b) Prove that a subset $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ of V is linearly independent if and only if the set $\left\{\vec{x}_{1}, \vec{x}_{1}+\vec{x}_{2}, \ldots, \vec{x}_{1}+\cdots+\vec{x}_{n}\right\}$ is linearly independent.
4. Let S be a subset of an n-dimensional vector space V and assume that S has n elements. Prove that S is linearly independent if and only if $\operatorname{span}(S)=V$.
5. Find a basis and compute the dimension of each of the following spaces:
(a) $W:=\left\{f \in \operatorname{span}\left(e^{x}, e^{-x}, \sin x, \cos x, x, 1\right): f(0)=f^{\prime}(0)=0\right\}$.
(b) For each $0 \leq k \leq n, W_{n, k}:=\left\{f \in P_{n}(\mathbb{R}): f^{(k)}(0)=0\right\}$. (Hint: The dimension does not depend on k).
6. Let a_{1}, \ldots, a_{n} be distinct real numbers, and let m_{1}, \ldots, m_{n} be arbitrary positive integers. Prove that the set

$$
\begin{aligned}
S: & =\left\{\frac{1}{x-a_{1}}, \ldots, \frac{1}{\left(x-a_{1}\right)^{m_{1}}}, \ldots, \frac{1}{x-a_{n}}, \ldots, \frac{1}{\left(x-a_{n}\right)^{m_{n}}}\right\} \\
& =\left\{\frac{1}{\left(x-a_{i}\right)^{k_{i}}}: 1 \leq i \leq n \text { and } 1 \leq k_{i} \leq m_{i}\right\}
\end{aligned}
$$

is a basis for the subspace of rational functions

$$
W:=\left\{\frac{p(x)}{\left(x-a_{1}\right)^{m_{1}} \cdots\left(x-a_{n}\right)^{m_{n}}}: \operatorname{deg} p(x)<m_{1}+\cdots+m_{n}\right\}
$$

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}
$$

Defn. A set ${ }^{\prime \prime} \subset V$ is lineary independent if [fill in the blank].

$$
\text { there exist } \vec{v}_{1}, \quad, \vec{v}_{n} \text { such that: }
$$

The equation:

$$
x_{1} \vec{v}_{1}+\ldots+x_{n} \vec{v}_{n}=\overrightarrow{0}
$$

has only a trivial solution $\left(x_{i} \equiv 0\right)$.
(2) $a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n}=\overrightarrow{0} \Longleftrightarrow a_{1}=a_{2}=\ldots=a_{n}=0$
(Ia) A collection of 3 vectors in $\mathbb{R}^{2}, S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
If S were $L I$, then $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ would also be L.I. Then $\operatorname{span}\left\{\vec{U}_{1}, \vec{v}_{2}\right\}=\mathbb{R}^{2}$. so $\vec{v}_{3} \in \operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \quad{ }_{0}$
(1b) $\left\{e^{x}, \sin x, \cos x\right\} \in C(\mathbb{R})$ is linearly \qquad .

$$
\begin{array}{ll}
a_{1} e^{x}+a_{2} \sin x+a_{3} \cos x=0 & \text { for all } x \\
\Leftrightarrow a_{1}, a_{2}, a_{3}=0 & \text { zero function. }
\end{array}
$$

Q. Does the " x " have to be the same in all thee terms? A. Yes. $f+g \in C(\mathbb{R})$ must also be a function of a single variable.
(1c) $\left\{1, \cos ^{2} x, \sin ^{2} x\right\}$
Because of frigidentity $\sin ^{2} x+\cos ^{2} x=1$ for. all x, this set is L.D.

The vector space structure of $(C(\mathbb{R}),+, \cdot)$:
Given $f, g \in C(\mathbb{R})$ and a scalar $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
& \text { - }(f+g)(x)=f(x)+g(x) \\
& \text { - }(\lambda \cdot f)(x)=\lambda \cdot f(x)
\end{aligned}
$$

Strategy: Choose particular values of x to get relations b / w the $a_{i} s$.

$$
\begin{aligned}
& x=0 \Rightarrow a_{1} e^{0}+a_{2} \sin 0^{\circ}+a_{3} \cos 0=0 \\
& =a_{1}+a_{3}=0 \\
& x=\frac{\pi}{2} \Rightarrow a_{1} e^{\pi / 2}+a_{2}+a_{3} \cdot 0=0 \leadsto a_{1} \cdot e^{\pi / 2}+a_{2}=0 \\
& x=\pi \Rightarrow a_{1} e^{\pi}+a_{2} \cdot 0+a_{3} \cdot(-1) \leadsto a_{1} e^{\pi}=a_{3} \\
& a_{1} \underbrace{\left(1+e^{\pi}\right)}_{\approx 30}=0 \Rightarrow a_{1}=0 \quad a_{3}=0 \quad a_{2}=0 \\
& e^{\pi} \neq-1 \Leftarrow \underline{e}^{x}>0 \text { for all } x \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
e^{T / 2} & 1 & 0 & 0 \\
e^{\pi} & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

7. Let W_{1}, \ldots, W_{n} be subspaces of a vector space V. Prove that

$$
\operatorname{dim}\left(W_{1}+\cdots+W_{n}\right) \leq \operatorname{dim}\left(W_{1}\right)+\cdots+\operatorname{dim}\left(W_{n}\right)
$$

and that the equality is attained if and only if

$$
W_{i} \cap\left(W_{1}+\cdots+W_{i-1}\right)=\{\overrightarrow{0}\}
$$

for all $1<\mathfrak{i} \leq n$.
8. Determine which of the following maps $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ are linear:
(a) With $\mathrm{V}=\mathrm{W}=\mathbb{R}, \mathrm{T}(\mathrm{a})=\mathrm{a}+1$.
(b) With $V=C(\mathbb{R}) \times \mathbb{R}$ and $W=\mathbb{R}, T(f, a)=f^{\prime}(a)$.
(c) With $V=\mathbb{R}^{2}$ and $W=\mathbb{R}^{3}, T(a, b)=(a, b, a b)$.
9. On $(0, \infty)$ define the operations as in Problem 1. of last week's problem set, and in \mathbb{R}^{2} define the operations

$$
(a, b) \boxplus(c, d):=(b+d, a+c) \text { and } a \backsim(c, d):=(a c, a d):
$$

(a) Is the exponential function $\exp : \mathbb{R} \rightarrow(0, \infty)$ given by $\exp (x)=e^{x}$, with respect to the operations described above linear?
(b) Is the identity id: $\left(\mathbb{R}^{2},+, \cdot\right) \rightarrow\left(\mathbb{R}^{2}, \boxplus, \odot\right)$ linear?
10. If a is a real number, observe that the map $T_{a}: \mathbb{R} \rightarrow \mathbb{R}$ given by $T_{a}(b)=a b$ is linear.
(a) Prove that every linear transformation $T: \mathbb{R} \rightarrow \mathbb{R}$ is of the form T_{a} for some a. (Hint: Compute T(1)).
(b) Prove that the map $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(a)=a \cdot a$ is not linear. Why does this not contradict the statement above?

