Problem 1. Prove there are no differentiable functions f and g satisfying $f(0)=g(0)=0$ and

$$
\begin{equation*}
x=f(x) g(x) \tag{1}
\end{equation*}
$$

Recall. A function f defined on an interval is convex if, for every a and b in the interval, the line segment connecting $(a, f \overline{(a))}$ and $(b, f(b))$ lies above the graph of f.

Problem 2 (Spivak 11A-3). Show that $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if for all $x, y \in[a, b]$, we have

$$
\begin{equation*}
f(t x+(1-t) y)<t f(x)+(1-t) f(y) \tag{2}
\end{equation*}
$$

Problem 3 (Spivak 11A-10).
a) Let $f:(a, b) \rightarrow \mathbb{R}$ be convex. Prove that f is continuous.
b) Find a function $g:[a, b] \rightarrow \mathbb{R}$ which is convex but not continuous. What fails in this case?

