Problem 1 (Spivak 11-6). Show if f is increasing on (a, b) and continuous on $[a, b]$, then f is increasing on all of $[a, b]$.

Problem 2 (Spivak 11-13). Show the sum of a positive number and its reciprocal is at least two.

Problem 3. Suppose that

$$
\begin{equation*}
\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0 \tag{1}
\end{equation*}
$$

Show that for some $x \in(0,1)$,

$$
\begin{equation*}
a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0 \tag{2}
\end{equation*}
$$

Problem 4. Let f and g be polynomials with $\operatorname{deg} f=m$ and $\operatorname{deg} g=n$.

1. Find an upper bound for the number of points c which satisfy $f(c)=$ $g(c)$.
2. For each m and n, find an example where this upper bound is reached.

Problem 5. Suppose $f^{\prime}(x) \geq M>0$ for all $x \in[0,1]$. Show there exists an interval $I=[a, b] \subseteq[0,1]$ of length at least $\frac{1}{4}$ for which $|f| \geq \frac{M}{4}$.

Problem 6.

1. Prove that if $f^{\prime}(a)>0$ and f^{\prime} is continuous at a, then f is increasing in some interval containing a.
2. Does the statement still hold if f^{\prime} is not continuous? If not, can you find a counterexample?

Problem 7. Compute the following limits:

1. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
2. $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$
3. $\lim _{x \rightarrow 0} \frac{\mathbf{e}^{x}-1}{x}$
4. $\lim _{x \rightarrow 0} \frac{x^{2}-1}{1-\cos x}$

Problem 8. Find all functions f such that:

1. $f^{\prime}(x)=\sin x$.
2. $f^{\prime \prime}(x)=x^{3}$.
3. $f^{(3)}(x)=x+x^{2}$.

Do any functions satisfy more than one of these conditions?
Problem 9. If $n \geq 1$, then for $x>-1$,

$$
\begin{equation*}
(1+x)^{n} \geq 1+n x \tag{3}
\end{equation*}
$$

Where equality holds if and only if $x=0$.
Problem 10. Prove there are no differentiable functions f and g satisfying $f(0)=g(0)=0$ and

$$
\begin{equation*}
x=f(x) g(x) \tag{4}
\end{equation*}
$$

