Problem 1 (Spivak 11-6). Show if f is increasing on (a, b) and continuous on [a, b], then f is increasing on all of [a, b].

Problem 2 (Spivak 11-13). Show the sum of a positive number and its reciprocal is at least two.

Problem 3. Suppose that

$$\frac{a_0}{1} + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0 \tag{1}$$

Show that for some $x \in (0, 1)$,

$$a_0 + a_1 x + \dots + a_n x^n = 0 (2)$$

Problem 4. Let f and g be polynomials with deg f = m and deg g = n.

- 1. Find an upper bound for the number of points c which satisfy f(c) = g(c).
- 2. For each m and n, find an example where this upper bound is reached.

Problem 5. Suppose $f'(x) \ge M > 0$ for all $x \in [0, 1]$. Show there exists an interval $I = [a, b] \subseteq [0, 1]$ of length at least $\frac{1}{4}$ for which $|f| \ge \frac{M}{4}$.

Problem 6.

- 1. Prove that if f'(a) > 0 and f' is continuous at a, then f is increasing in some interval containing a.
- 2. Does the statement still hold if f' is not continuous? If not, can you find a counterexample?

Problem 7. Compute the following limits:

1.
$$\lim_{x \to 0} \frac{\sin x}{x}$$

2. $\lim_{x \to 0} \frac{\cos x - 1}{x}$
4. $\lim_{x \to 0} \frac{x^2 - 1}{1 - \cos x}$

Problem 8. Find all functions f such that:

1. $f'(x) = \sin x$.

- 2. $f''(x) = x^3$.
- 3. $f^{(3)}(x) = x + x^2$.

Do any functions satisfy more than one of these conditions?

Problem 9. If $n \ge 1$, then for x > -1,

$$(1+x)^n \ge 1 + nx \tag{3}$$

Where equality holds if and only if x = 0.

Problem 10. Prove there are no differentiable functions f and g satisfying f(0) = g(0) = 0 and

$$x = f(x)g(x) \tag{4}$$