Problem 1. Find all the points where f is continuous, where

$$f(x) = \begin{cases} \frac{1}{q}, & \text{if } x = \frac{p}{q} \in \mathbb{Q} \text{ in lowest terms} \\ 0, & \text{if } x \notin \mathbb{Q} \end{cases}$$
(1)

Problem 2 (Spivak 6-7). Suppose that f satisfies f(x + y) = f(x) + f(y) and that f is continuous at 0. Prove that f is continuous at a for all a.

Problem 3 (Spivak 6-15). Prove that if f is continuous at a, then for any $\varepsilon > 0$ there is a $\delta > 0$ so that whenever $|x - a| < \delta$ and $|y - a| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.

Problem 4 (Spivak 7-5). Suppose f is continuous and $f(x) \in \mathbb{Q}$ for all x. What can you say about f?

Problem 5 (Spivak 7-10). Suppose f and g are continuous on [a, b] and f(a) < g(a), yet f(b) > g(b). Prove f(x) = g(x) for some $x \in [a, b]$.

Problem 6 (Spivak 7-18). Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, positive (f(x) > 0 for all x), and

$$\lim_{x \to \infty} f(x) = 0 = \lim_{x \to -\infty} f(x) \tag{2}$$

Prove that f attains a maximum on \mathbb{R} (i.e. there exists a y such that $f(y) \leq f(x)$ for all x).

Problem 7. Let $f: [a, b] \to [a, b]$ be a continuous function. Show that f has a fixed point. That is, there exists some $c \in [a, b]$ such that f(c) = c.