Problem 1. Find all the points where f is continuous, where

$$
f(x)= \begin{cases}\frac{1}{q}, & \text { if } x=\frac{p}{q} \in \mathbb{Q} \text { in lowest terms } \tag{1}\\ 0, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Problem 2 (Spivak 6-7). Suppose that f satisfies $f(x+y)=f(x)+f(y)$ and that f is continuous at 0 . Prove that f is continuous at a for all a.

Problem 3 (Spivak 6-15). Prove that if f is continuous at a, then for any $\varepsilon>0$ there is a $\delta>0$ so that whenever $|x-a|<\delta$ and $|y-a|<\delta$, we have $|f(x)-f(y)|<\varepsilon$.

Problem 4 (Spivak 7-5). Suppose f is continuous and $f(x) \in \mathbb{Q}$ for all x. What can you say about f ?

Problem 5 (Spivak 7-10). Suppose f and g are continuous on $[a, b]$ and $f(a)<g(a)$, yet $f(b)>g(b)$. Prove $f(x)=g(x)$ for some $x \in[a, b]$.

Problem 6 (Spivak 7-18). Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, positive $(f(x)>$ 0 for all x), and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f(x)=0=\lim _{x \rightarrow-\infty} f(x) \tag{2}
\end{equation*}
$$

Prove that f attains a maximum on \mathbb{R} (i.e. there exists a y such that $f(y) \leq f(x)$ for all $x)$.

Problem 7. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Show that f has a fixed point. That is, there exists some $c \in[a, b]$ such that $f(c)=c$.

