Unless otherwise specified, $f: \mathbb{R} \rightarrow \mathbb{R}$ denotes a real-valued function.
Problem 1. For each of the following statements, determine what they mean, and find a function which satisfies the condition.

1. $\forall \varepsilon>0, \forall \delta>0$, if $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.
2. $\exists \varepsilon>0, \forall \delta>0$, if $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.
3. $\forall \varepsilon>0, \exists \delta>0$, if $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.
4. $\exists \varepsilon>0, \exists \delta>0$, if $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.
5. $\forall \delta>0, \exists \varepsilon>0$, if $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.
6. $\exists \delta>0, \forall \varepsilon>0$, if $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.

Problem 2. One of the above is the statement " $\lim _{x \rightarrow a} f(x)=L$ ". Write out the negation of this statement with quantifiers.

Problem 3 (Spivak 5.9). Prove that $\lim _{x \rightarrow a} f(x)=\lim _{h \rightarrow 0} f(h+a)$.
Problem 4. For the following, determine whether the limit $\lim _{x \rightarrow a} f(x)$ exists using the $\varepsilon-\delta$ definition of the limit. If it does, compute the value.
a) $f(x)=x-2$, with $a \in \mathbb{R}$
b) $f(x)=x^{2}$, with $a=1$
c) $f(x)=\left\{\begin{array}{ll}x \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$, with $a=0$
d) $f(x)=\left\{\begin{array}{ll}x^{2}, & x \in \mathbb{Q} \\ \sqrt{|x|}, & \text { else }\end{array}\right.$, with $a \in \mathbb{R}$

Problem 5 (Monotonicity of the limit).
a) Suppose $f(x) \leq g(x)$ for all x. If the limits exist, prove that

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) \tag{1}
\end{equation*}
$$

b) What happens if $f(x)<g(x)$ for all x ?

Problem 6 (Squeeze Theorem). Suppose that there exists a $c>0$ so that $f(x) \leq g(x) \leq h(x)$ for all x with $|x-a|<c$. Suppose that $\lim _{x \rightarrow a} f(x)=$ $\lim _{x \rightarrow a} h(x)=L$. Prove that $\lim _{x \rightarrow a} g(x)$ exists and equals L.

Problem 7. We say f is Lipschitz if for all x and $y,|f(x)-f(y)| \leq k|x-y|$ for some $k>0$. Prove that f is continuous.

Problem 8. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Show that f has a fixed point. That is, there exists some $c \in[a, b]$ such that $f(c)=c$.

Problem 9 (Bonus). We say a set M is a metric space if there is a map $d: M \times M \rightarrow \mathbb{R}$ such that for all $x, y, z \in M$,

- $d(x, y) \geq 0$, with equality if and only if $x=y$.
- $d(x, y)=d(y, x)$ (Symmetry)
- $d(x, z) \leq d(x, y)+d(y, z)$ (Triangle inequality)

Generalize the definition of a limit to a metric space, and prove that limits are unique.

