Unless otherwise specified, $f \colon \mathbb{R} \to \mathbb{R}$ denotes a real-valued function.

Problem 1. For each of the following statements, determine what they mean, and find a function which satisfies the condition.

- 1. $\forall \varepsilon > 0, \, \forall \delta > 0, \, \text{if } 0 < |x a| < \delta \text{ then } \left| f(x) L \right| < \varepsilon.$
- 2. $\exists \varepsilon > 0, \, \forall \delta > 0, \, \text{if } 0 < |x a| < \delta \text{ then } \left| f(x) L \right| < \varepsilon.$
- 3. $\forall \varepsilon > 0, \exists \delta > 0, \text{ if } 0 < |x a| < \delta \text{ then } |f(x) L| < \varepsilon.$
- 4. $\exists \varepsilon > 0, \exists \delta > 0, \text{ if } 0 < |x a| < \delta \text{ then } |f(x) L| < \varepsilon.$
- 5. $\forall \delta > 0, \exists \varepsilon > 0, \text{ if } 0 < |x a| < \delta \text{ then } |f(x) L| < \varepsilon.$
- 6. $\exists \delta > 0, \forall \varepsilon > 0, \text{ if } 0 < |x a| < \delta \text{ then } |f(x) L| < \varepsilon.$

Problem 2. One of the above is the statement " $\lim_{x \to a} f(x) = L$ ". Write out the negation of this statement with quantifiers.

Problem 3 (Spivak 5.9). Prove that $\lim_{x \to a} f(x) = \lim_{h \to 0} f(h+a)$.

Problem 4. For the following, determine whether the limit $\lim_{x\to a} f(x)$ exists using the ε - δ definition of the limit. If it does, compute the value.

- a) f(x) = x 2, with $a \in \mathbb{R}$
- b) $f(x) = x^2$, with a = 1

c)
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$
, with $a = 0$
d)
$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q}\\ \sqrt{|x|}, & \text{else} \end{cases}$$
, with $a \in \mathbb{R}$

Problem 5 (Monotonicity of the limit).

a) Suppose $f(x) \leq g(x)$ for all x. If the limits exist, prove that

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x) \tag{1}$$

b) What happens if f(x) < g(x) for all x?

Problem 6 (Squeeze Theorem). Suppose that there exists a c > 0 so that $f(x) \le g(x) \le h(x)$ for all x with |x - a| < c. Suppose that $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$. Prove that $\lim_{x \to a} g(x)$ exists and equals L.

Problem 7. We say f is Lipschitz if for all x and y, $|f(x) - f(y)| \le k|x - y|$ for some k > 0. Prove that f is continuous.

Problem 8. Let $f: [a, b] \to [a, b]$ be a continuous function. Show that f has a fixed point. That is, there exists some $c \in [a, b]$ such that f(c) = c.

Problem 9 (Bonus). We say a set M is a *metric space* if there is a map $d: M \times M \to \mathbb{R}$ such that for all $x, y, z \in M$,

- $d(x, y) \ge 0$, with equality if and only if x = y.
- d(x, y) = d(y, x) (Symmetry)
- $d(x, z) \le d(x, y) + d(y, z)$ (Triangle inequality)

Generalize the definition of a limit to a metric space, and prove that limits are unique.