Problem 1 (Spivak 22-1). Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{1}{n^{p+1}} \cdot \sum_{k=1}^{n} k^{p}\right]=\frac{1}{p+1} \tag{1}
\end{equation*}
$$

Problem 2 (Spivak 22-2). Compute the following limits:

1. $\lim _{n \rightarrow \infty} \frac{n}{n+1}-\frac{n+1}{n}$
2. $\lim _{n \rightarrow \infty} n-\sqrt{n+a} \sqrt{n+b}$
3. $\lim _{n \rightarrow \infty} \frac{a^{n}-b^{n}}{a^{n}+b^{n}}$
4. $\lim _{n \rightarrow \infty} \frac{2^{n^{2}}}{n!}$

Problem 3 (Spivak 22-3). Consider the sequence

$$
\begin{equation*}
a_{n}=\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{7}, \ldots\right) \tag{2}
\end{equation*}
$$

For which $\alpha \in \mathbb{R}$ does there exist a subsequence $a_{n_{k}}$ which converges to α ?
Problem 4 (Spivak 22-5). Prove the sequence

$$
\begin{equation*}
(\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots) \tag{3}
\end{equation*}
$$

converges and find its limit.
Problem 5.

1. Prove that a sequence converges if and only if all of its subsequences converge.
2. Prove that a Cauchy sequence converges if and only if it has a convergent subsequence (you only need one!).

Definition. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, we define the n-th compositional power of f as

$$
\begin{aligned}
f^{\circ 0}(x) & :=x \\
f^{\circ(n+1)}(x) & :=f\left(f^{\circ n}(x)\right)
\end{aligned}
$$

That is, $f^{\circ n}(x)=\underbrace{f(f(\cdots f}_{n}(x) \cdots))$.
Problem 6 (Spivak 22-20). Let $x \in \mathbb{R}$ and f be continuous such that the sequence $a_{n}=f^{\circ n}(x)$ converges to ℓ. Prove that ℓ is a fixed point of f (that is, $f(\ell)=\ell$.

Problem $7\left(^{*}\right)$. Does the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?

- If it does, compute the limit.
- If it does not, given $M>0$, find a good estimate for N to guarantee that $\sum_{n=1}^{N} \frac{1}{n}>M$.

