Problem 1 (Spivak 22-1). Prove that

$$\lim_{n \to \infty} \left[\frac{1}{n^{p+1}} \cdot \sum_{k=1}^{n} k^p \right] = \frac{1}{p+1} \tag{1}$$

Problem 2 (Spivak 22-2). Compute the following limits:

1.
$$\lim_{n \to \infty} \frac{n}{n+1} - \frac{n+1}{n}$$

2.
$$\lim_{n \to \infty} n - \sqrt{n+a}\sqrt{n+b}$$

3.
$$\lim_{n \to \infty} \frac{a^n - b^n}{a^n + b^n}$$

4.
$$\lim_{n \to \infty} \frac{2^{n^2}}{n!}$$

Problem 3 (Spivak 22-3). Consider the sequence

$$a_n = \left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{7}, \dots\right)$$
(2)

For which $\alpha \in \mathbb{R}$ does there exist a subsequence a_{n_k} which converges to α ?

Problem 4 (Spivak 22-5). Prove the sequence

$$\left(\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots\right)$$
 (3)

converges and find its limit.

Problem 5.

- 1. Prove that a sequence converges if and only if all of its subsequences converge.
- 2. Prove that a Cauchy sequence converges if and only if it has a convergent subsequence (you only need one!).

MAT157

Definition. Given a function $f \colon \mathbb{R} \to \mathbb{R}$, we define the <u>*n*-th compositional</u> power of f as

$$f^{\circ 0}(x) \coloneqq x$$
$$f^{\circ (n+1)}(x) \coloneqq f(f^{\circ n}(x))$$

That is, $f^{\circ n}(x) = \underbrace{f(f(\cdots f_n))}_n(x) \cdots)$.

Problem 6 (Spivak 22-20). Let $x \in \mathbb{R}$ and f be continuous such that the sequence $a_n = f^{\circ n}(x)$ converges to ℓ . Prove that ℓ is a fixed point of f (that is, $f(\ell) = \ell$).

Problem 7 (*). Does the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?

- If it does, compute the limit.
- If it does not, given M > 0, find a good estimate for N to guarantee that $\sum_{n=1}^{N} \frac{1}{n} > M$.

MAT157