Problem 1 (Spivak 20-1). Find the following Taylor polynomials

1. $f(x)=\mathbf{e}^{\mathbf{e}^{x}}$, degree 3 at 0 .
2. $f(x)=\mathbf{e}^{\sin x}$, degree 3 at 0 .
3. exp, degree n at 1 .
4. $f(x)=x^{5}+x^{3}+x$, degree 4 at 0 .
5. $f(x)=x^{5}+x^{3}+x$, degree 4 at 1 .

Problem 2 (Spivak 20-7). Denote by a_{n} and b_{n} the coefficients of the Taylor polynomials at p of f and g, respectively. That is,

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(p)}{n!} \quad b_{n}=\frac{g^{(n)}(p)}{n!} \tag{1}
\end{equation*}
$$

Compute the coefficients of the Taylor polynomials (at p) of the following functions in terms of a_{n} and b_{n} :

1. $f+g$
2. $f g$
3. f^{\prime}
4. $h(x)=\int_{p}^{x} f$
5. $s(x)=\int_{0}^{x} f$

Problem 3 (Spivak 20-11). Use Taylor's theorem to compute the following limits without using L'Hôpital's rule. Hint: Expand the numerator and denominator separately as Taylor polynomials

1. $\lim _{x \rightarrow 0} \frac{\mathbf{e}^{x}-1-x-\frac{1}{2} x^{2}}{x-\sin x}$
2. $\lim _{x \rightarrow 0} \frac{\frac{\mathbf{e}^{x}}{1+x}-1-\frac{1}{2} x^{2}}{x-\sin x}$ (Hint: Is there a nice expression for $\frac{1}{1+x} ?$)
3. $\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)$
4. $\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{\sin \left(x^{2}\right)}\right)$

Problem 4 (Spivak 20-6). Here is a formula which is sometimes true:

$$
\begin{equation*}
\arctan x+\arctan y=\arctan \left(\frac{x+1}{1-x y}\right) \tag{2}
\end{equation*}
$$

1. Prove that

$$
\begin{equation*}
\frac{\pi}{4}=\arctan \frac{1}{2}+\arctan \frac{1}{3}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239} \tag{3}
\end{equation*}
$$

2. Use the second expression to prove $\pi=3.14159 \ldots$.
