# Hypertoric Hitchin Systems 

Evan J. A. Sundbo<br>Department of Mathematics<br>University of Toronto

May 13, 2020

## Table of Contents

(1) Hypertoric Varieties and Motivation
(2) Construction and Properties of $\mathfrak{D}(\Gamma)$
(3) Relationship to Classical Hitchin Systems
(4) An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

## Table of Contents

(1) Hypertoric Varieties and Motivation
(2) Construction and Properties of $\mathfrak{D}(\Gamma)$
(3) Relationship to Classical Hitchin Systems
4) An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

## Some Definitions

We will be working over $\mathbb{C}$ to not complicate things.

## Definition

An toric variety is an irreducible variety $X$ such that
(i) $\left(\mathbb{C}^{*}\right)^{n}$ is an open dense subset of $X$
(ii) the action of $\left(\mathbb{C}^{*}\right)^{n}$ on itself extends to an action of $\left(\mathbb{C}^{*}\right)^{n}$ on $X$.

## Some Definitions

We will be working over $\mathbb{C}$ to not complicate things.

## Definition

An toric variety is an irreducible variety $X$ such that
(i) $\left(\mathbb{C}^{*}\right)^{n}$ is an open dense subset of $X$
(ii) the action of $\left(\mathbb{C}^{*}\right)^{n}$ on itself extends to an action of $\left(\mathbb{C}^{*}\right)^{n}$ on $X$.

All of $\left(\mathbb{C}^{*}\right)^{n}, \mathbb{C}^{n}$, and $\mathbb{P}^{n}$ are easy examples of toric varieties.

## Some Definitions

We will be working over $\mathbb{C}$ to not complicate things.

## Definition

An toric variety is an irreducible variety $X$ such that
(i) $\left(\mathbb{C}^{*}\right)^{n}$ is an open dense subset of $X$
(ii) the action of $\left(\mathbb{C}^{*}\right)^{n}$ on itself extends to an action of $\left(\mathbb{C}^{*}\right)^{n}$ on $X$.

All of $\left(\mathbb{C}^{*}\right)^{n}, \mathbb{C}^{n}$, and $\mathbb{P}^{n}$ are easy examples of toric varieties.
Toric varieties have a close connection to combinatorics (fans, polytopes, etc.).

## Some Definitions

Let's ask for a bit more structure:

## Definition

An symplectic toric variety is a triple $(X, \omega, H)$ where $X$ is a compact toric variety, $\omega$ is a symplectic form on $X$ and $H$ is a corresponding moment $\operatorname{map} H: X \rightarrow \mathbb{R}^{n}$.

## Some Definitions

Let's ask for a bit more structure:

## Definition

An symplectic toric variety is a triple $(X, \omega, H)$ where $X$ is a compact toric variety, $\omega$ is a symplectic form on $X$ and $H$ is a corresponding moment map $H: X \rightarrow \mathbb{R}^{n}$.
$\mathbb{P}^{n}$ is symplectic toric.

## Some Definitions

Let's ask for a bit more structure:

## Definition

An symplectic toric variety is a triple $(X, \omega, H)$ where $X$ is a compact toric variety, $\omega$ is a symplectic form on $X$ and $H$ is a corresponding moment map $H: X \rightarrow \mathbb{R}^{n}$.
$\mathbb{P}^{n}$ is symplectic toric.
The symplectic toric varieties are in one-to-one correspondence with a special class of polytopes.

## Delzant polytopes

## Definition

A Delzant polytope $\Delta$ in $\mathbb{R}^{n}$ is a convex polytope which is
(i) simple, meaning there are $n$ edges meeting at each vertex
(ii) rational, meaning that the edges meeting at the vertex $p$ are of the form $p+t u_{i}, t \geq 0, u_{i} \in \mathbb{Z}^{n}$
(iii) smooth, meaning that for each vertex, the $u_{i}$ can be chosen to be a $\mathbb{Z}$-basis for $\mathbb{Z}^{n}$.

## Delzant polytopes

## Definition

A Delzant polytope $\Delta$ in $\mathbb{R}^{n}$ is a convex polytope which is
(i) simple, meaning there are $n$ edges meeting at each vertex
(ii) rational, meaning that the edges meeting at the vertex $p$ are of the form $p+t u_{i}, t \geq 0, u_{i} \in \mathbb{Z}^{n}$
(iii) smooth, meaning that for each vertex, the $u_{i}$ can be chosen to be a $\mathbb{Z}$-basis for $\mathbb{Z}^{n}$.

Examples:


## Delzant polytopes

## Delzant's Theorem

Symplectic toric manifolds are classified by Delzant polytopes:
\{symplectic toric manifolds\} $\longleftrightarrow$ \{Delzant polytopes\}

$$
(M, \omega, H) \mapsto H(M)
$$

## Delzant polytopes

## Examples:



## Delzant polytopes

## Examples:



## Delzant polytopes

## Examples:



## Hyperkähler structure

## Definition

A 4n-dimensional manifold is hyperkähler is it has a Riemannian metric $g$ which is Kähler with respect to three complex structures $I$, $J$, and $K$ which satisfy quaternionic relations

## Hyperkähler structure

## Definition

A 4n-dimensional manifold is hyperkähler is it has a Riemannian metric $g$ which is Kähler with respect to three complex structures $I$, $J$, and $K$ which satisfy quaternionic relations

Examples: the Hilbert scheme of $k$ points, the moduli space of Higgs bundles (Hitchin systems), Nakajima quiver varieties.

## Hypertoric varieties

## Definition

A manifold which is both hyperkähler and toric, with the action of the torus being holomorphic with respect to all the complex structures, is called hypertoric

## Hypertoric varieties

## Definition

A manifold which is both hyperkähler and toric, with the action of the torus being holomorphic with respect to all the complex structures, is called hypertoric

Examples: If $X$ is symplectic toric, then $T^{*} X$ can be given hypertoric structure.

## Hypertoric varieties

## Definition

A manifold which is both hyperkähler and toric, with the action of the torus being holomorphic with respect to all the complex structures, is called hypertoric

Examples: If $X$ is symplectic toric, then $T^{*} X$ can be given hypertoric structure.

- Toric varieties can be written as Kähler quotients by vector spaces
- Hypertoric varieties can be written as hyperkähler quotients by tori.


## Hypertoric big picture

## \{Hypertoric varieties\}

\{"additive" hypertoric varieties\} \{"multiplicative" hypertoric varieties\}

$$
\left(T^{*} \mathbb{C}^{n} / / / T_{\mathbb{R}}\right) \quad\left(\left(T^{*} \mathbb{C}^{n}\right)^{\circ} / / / T_{\mathbb{R}}\right)
$$

## Hypertoric big picture

## \{Hypertoric varieties\}

\{"additive" hypertoric varieties\}

$$
\left(T^{*} \mathbb{C}^{n} / / / T_{\mathbb{R}}\right)
$$

\{"multiplicative" hypertoric varieties\}


## Hypertoric big picture

\{Hypertoric varieties\}
\{"additive" hypertoric varieties\}

$$
\left(T^{*} \mathbb{C}^{n} / / / T_{\mathbb{R}}\right)
$$

\{" multiplicative" hypertoric varieties\}


## Table of Contents

(1) Hypertoric Varieties and Motivation
(2) Construction and Properties of $\mathfrak{D}(\Gamma)$
(3) Relationship to Classical Hitchin Systems

4 An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

## The Tate Curve

The building block of all hypertoric Hitchin systems is $\mathfrak{D}(\Theta)$, the Tate curve.

## The Tate Curve

The building block of all hypertoric Hitchin systems is $\mathfrak{D}(\boldsymbol{O})$, the Tate curve.

Let $\mathbb{C}_{n}^{2}$ be a copy of $\mathbb{C}^{2}$ with coordinates $x_{n}, y_{n}$. Then let

$$
\tilde{\mathfrak{D}}(\boldsymbol{O})=\bigsqcup_{n \in \mathbb{Z}} \mathbb{C}_{n}^{2} / \sim,
$$

with relations given by $x_{n} y_{n}=x_{n+1} y_{n+1}$ and $x_{n}=y_{n+1}^{-1}$.

## The Tate Curve

We have a map $\tilde{q}: \tilde{\mathfrak{D}}(\Theta) \rightarrow \mathbb{C}$ given by $\tilde{q}\left(x_{n}, y_{n}\right)=x_{n} y_{n}$.

## The Tate Curve

We have a map $\tilde{q}: \tilde{\mathfrak{D}}(\Theta) \rightarrow \mathbb{C}$ given by $\tilde{q}\left(x_{n}, y_{n}\right)=x_{n} y_{n}$.
The generic fibre of $\tilde{q}$ is $\mathbb{C}^{*}$, and the fibre over zero is an infinite chain of copies of $\mathbb{P}^{1}$.

## The Tate Curve

We have a map $\tilde{q}: \tilde{\mathfrak{D}}(\Theta) \rightarrow \mathbb{C}$ given by $\tilde{q}\left(x_{n}, y_{n}\right)=x_{n} y_{n}$.
The generic fibre of $\tilde{q}$ is $\mathbb{C}^{*}$, and the fibre over zero is an infinite chain of copies of $\mathbb{P}^{1}$.

There is an action of $\mathbb{Z}$ which "shifts over by one" on $\tilde{q}^{-1}(\mathbb{D})$. We define

$$
\mathfrak{D}(\Theta)=\tilde{q}^{-1}(\mathbb{D}) / \mathbb{Z}
$$

## The Tate Curve



## The Tate Curve

Note that $q^{-1}(0)$ is the singular toric variety associated to the "periodic Delzant polytope" $[0,1] / \sim=S^{1}$

## The Tate Curve

Note that $q^{-1}(0)$ is the singular toric variety associated to the "periodic Delzant polytope" $[0,1] / \sim=S^{1}$


## The Tate Curve

Note that $q^{-1}(0)$ is the singular toric variety associated to the "periodic Delzant polytope" $[0,1] / \sim=S^{1}$


We can also idenfity $\mathfrak{D}(\Theta)$ with $T^{*} \mathbb{C}^{\circ}=\{(z, w): z w+1 \neq 0\}$.

## Construction of $\mathfrak{D}(\Gamma)$

In general, start with an embedding of tori $\left(\mathbb{C}^{*}\right)^{k}=T \rightarrow D=\left(\mathbb{C}^{*}\right)^{n}$.

## Construction of $\mathfrak{D}(\Gamma)$

In general, start with an embedding of tori $\left(\mathbb{C}^{*}\right)^{k}=T \rightarrow D=\left(\mathbb{C}^{*}\right)^{n}$.
$D$ acts on $\mathfrak{D}(\Theta)^{n}=\left(T^{*} \mathbb{C}^{n}\right)^{\circ}=\left\{\left(z_{i}, w_{i}\right): z_{i} w_{i}+1 \neq 0\right\}$, and we get a "moment map"

$$
\begin{aligned}
\left(\mu_{\mathbb{C}}, \mu_{\mathbb{R}}\right): & \left(T^{*} \mathbb{C}^{n}\right)^{\circ} \longrightarrow D^{\vee} \times \mathfrak{d}_{\mathbb{R}}^{*} \\
& \left(z_{i}, w_{i}\right)_{i=1}^{n} \mapsto\left(\left(z_{i} w_{i}+1\right),\left(\left|z_{i}\right|^{2}+\left|w_{i}\right|^{2}\right)\right)_{i=1}^{n}
\end{aligned}
$$

## Construction of $\mathfrak{D}(\Gamma)$

In general, start with an embedding of tori $\left(\mathbb{C}^{*}\right)^{k}=T \rightarrow D=\left(\mathbb{C}^{*}\right)^{n}$.
$D$ acts on $\mathfrak{D}(\Theta)^{n}=\left(T^{*} \mathbb{C}^{n}\right)^{\circ}=\left\{\left(z_{i}, w_{i}\right): z_{i} w_{i}+1 \neq 0\right\}$, and we get a "moment map"

$$
\begin{aligned}
\left(\mu_{\mathbb{C}}, \mu_{\mathbb{R}}\right): & \left(T^{*} \mathbb{C}^{n}\right)^{\circ} \longrightarrow D^{\vee} \times \mathfrak{d}_{\mathbb{R}}^{*} \\
& \left(z_{i}, w_{i}\right)_{i=1}^{n} \mapsto\left(\left(z_{i} w_{i}+1\right),\left(\left|z_{i}\right|^{2}+\left|w_{i}\right|^{2}\right)\right)_{i=1}^{n}
\end{aligned}
$$

Compose the above maps with $D^{\vee} \rightarrow T^{\vee}$ to get a map $\mu_{H K}$ from $\left(T^{*} \mathbb{C}^{n}\right)^{\circ}$ to $T^{\vee} \times \mathfrak{t}_{\mathbb{R}}^{*} \cong T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^{*}$.

## Construction of $\mathfrak{D}(\Gamma)$

## Definition

For $\mu_{H K}: \mathfrak{D}(\Theta)^{n} \rightarrow T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^{*}$, the hypertoric Hitchin system or Dolbeault hypertoric variety associated to $\Gamma$ is

$$
\mathfrak{D}(\Gamma)=\mathfrak{D}(\Theta)^{n} / / /(\beta, 0) T_{\mathbb{R}}=\mu_{H K}^{-1}(\beta, 0) / T_{\mathbb{R}}
$$

## Construction of $\mathfrak{D}(\Gamma)$

## Definition

For $\mu_{H K}: \mathfrak{D}(\Theta)^{n} \rightarrow T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^{*}$, the hypertoric Hitchin system or Dolbeault hypertoric variety associated to $\Gamma$ is

$$
\mathfrak{D}(\Gamma)=\mathfrak{D}(\Theta)^{n} / / /{ }_{(\beta, 0)} T_{\mathbb{R}}=\mu_{H K}^{-1}(\beta, 0) / T_{\mathbb{R}}
$$

This is a hypertoric variety of dimension $2 n-2 k$ with a proper map $q: \mathfrak{D}(\Gamma) \rightarrow \mathbb{D}$.

## Construction of $\mathfrak{D}(\Gamma)$

## Definition

For $\mu_{H K}: \mathfrak{D}(\Theta)^{n} \rightarrow T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^{*}$, the hypertoric Hitchin system or Dolbeault hypertoric variety associated to $\Gamma$ is

$$
\mathfrak{D}(\Gamma)=\mathfrak{D}(\Theta)^{n} / / /{ }_{(\beta, 0)} T_{\mathbb{R}}=\mu_{H K}^{-1}(\beta, 0) / T_{\mathbb{R}}
$$

This is a hypertoric variety of dimension $2 n-2 k$ with a proper map $q: \mathfrak{D}(\Gamma) \rightarrow \mathbb{D}$.

The data of the embedding $T \rightarrow D$ and generic $\beta \in T_{\mathbb{R}}^{\vee}$ give a periodic hyperplane arrangement, which in turn we associate with a graph $\Gamma$.

## Alternatively:

A graph 「 yields a periodic hyperplane arrangment.

## Alternatively:

A graph 「 yields a periodic hyperplane arrangment.
Then $q^{-1}(0)$ of $\mathfrak{D}(\Gamma)$ is constructed from toric varieties $\left\{\mathfrak{X}_{i}\right\}$ associated to this arrangement, glued together as prescribed by the arrangement.

## Alternatively:

A graph 「 yields a periodic hyperplane arrangment.
Then $q^{-1}(0)$ of $\mathfrak{D}(\Gamma)$ is constructed from toric varieties $\left\{\mathfrak{X}_{i}\right\}$ associated to this arrangement, glued together as prescribed by the arrangement.


## Structure of $\mathfrak{D}(\Gamma)$

The focus on on this specific fibre is because of the fact that $\mathfrak{D}(\Gamma)$ deformation retracts to $q^{-1}(0)$.

## Structure of $\mathfrak{D}(\Gamma)$

The focus on on this specific fibre is because of the fact that $\mathfrak{D}(\Gamma)$ deformation retracts to $q^{-1}(0)$.

The generic fibres are complex Lagrangians with the structure of abelian varieties.

## Example

Let


## Example

Let


Then the periodic hyperplane arrangement associated to $\Gamma$ is


## Example

Let


Then the periodic hyperplane arrangement associated to $\Gamma$ is


## Example

Let


Then the periodic hyperplane arrangement associated to $\Gamma$ is


Thus the irreducible components $\mathfrak{X}_{i}$ of $q^{-1}(0)$ in $\mathfrak{D}(\Gamma)$ are $\mathbb{P}^{2}, \mathbb{P}^{2}$, and $\mathrm{Bl}_{x_{1}, x_{2}}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$.

## Table of Contents

(1) Hypertoric Varieties and Motivation
(2) Construction and Properties of $\mathfrak{D}(\Gamma)$
(3) Relationship to Classical Hitchin Systems

## (4) An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

## The Moduli Space of Higgs Bundles

## Definition

A Higgs bundle on a Riemann surface $\Sigma$ of genus at least 2 is a pair $(E, \Phi)$ where $E$ is a holomorphic vector bundle on $X$ and $\Phi$ is a map $E \rightarrow E \otimes K_{\Sigma}$.

## The Moduli Space of Higgs Bundles

## Definition

A Higgs bundle on a Riemann surface $\Sigma$ of genus at least 2 is a pair $(E, \Phi)$ where $E$ is a holomorphic vector bundle on $X$ and $\Phi$ is a map $E \rightarrow E \otimes K_{\Sigma}$.

The moduli space of stable Higgs bundles on $\Sigma$ of rank $r$ and degree $d$ is denoted $\mathcal{M}_{\Sigma}(r, d)$.

## The Hitchin Fibration



## The Hitchin Fibration



The space $\mathcal{B}_{r}=\bigoplus_{i=1}^{r} H^{0}\left(\Sigma, K_{\Sigma}^{\otimes i}\right)$ paramatrizes possible characteristic polynomials of $\Phi$. Think of $b \in \mathcal{B}_{r}$ as a map $b: \operatorname{Tot}\left(K_{\Sigma}\right) \rightarrow \operatorname{Tot}\left(K_{\Sigma}\right)^{\otimes r}$.

## Spectral Curves

## Definition

The spectral curve $\tilde{\Sigma}_{b}$ of $b \in \mathcal{B}_{r}$ is the inverse image in $\operatorname{Tot}\left(K_{\Sigma}\right)$ of the zero section of $\operatorname{Tot}\left(K_{\Sigma}\right)^{\otimes r}$ under the map $b$.

## Spectral Curves

## Definition

The spectral curve $\tilde{\Sigma}_{b}$ of $b \in \mathcal{B}_{r}$ is the inverse image in $\operatorname{Tot}\left(K_{\Sigma}\right)$ of the zero section of $\operatorname{Tot}\left(K_{\Sigma}\right)^{\otimes r}$ under the map $b$.

That is, $\tilde{\Sigma}_{a}=\left\{z \in \operatorname{Tot}\left(K_{\Sigma}\right): b(z)=\left(\operatorname{char}_{\lambda} \Phi\right)(z)=0\right\}$.

## The BNR Correspondence

## The BNR Correspondence

For $b \in \mathcal{B}_{r}$ with integral spectral curve $\tilde{\Sigma}_{b}$, there is an equivalence between isomorphism classes of torsion free sheaves of rank 1 on $\tilde{\Sigma}_{b}$ and Higgs bundles with characteristic polynomial $b$.

## The BNR Correspondence

## The BNR Correspondence

For $b \in \mathcal{B}_{r}$ with integral spectral curve $\tilde{\Sigma}_{b}$, there is an equivalence between isomorphism classes of torsion free sheaves of rank 1 on $\tilde{\Sigma}_{b}$ and Higgs bundles with characteristic polynomial $b$.

For $\tilde{\Sigma}_{b}$ smooth, $\operatorname{Jac}\left(\tilde{\Sigma}_{b}\right) \cong h^{-1}(b)$.

## The BNR Correspondence

## The BNR Correspondence

For $b \in \mathcal{B}_{r}$ with integral spectral curve $\tilde{\Sigma}_{b}$, there is an equivalence between isomorphism classes of torsion free sheaves of rank 1 on $\tilde{\Sigma}_{b}$ and Higgs bundles with characteristic polynomial $b$.

For $\tilde{\Sigma}_{b}$ smooth, $\operatorname{Jac}\left(\tilde{\Sigma}_{b}\right) \cong h^{-1}(b)$.
For $\tilde{\Sigma}_{b}$ with rational components and nodal singularities, $\overline{\operatorname{Jac}}\left(\tilde{\Sigma}_{b}\right) \cong h^{-1}(b)$.

## The BNR Correspondence

If we have a curve $\tilde{\Sigma}_{b}$ with rational components and nodal singularities, we can consider its dual graph 「 (a vertex for each component, an edge for each node).

## The BNR Correspondence

If we have a curve $\tilde{\Sigma}_{b}$ with rational components and nodal singularities, we can consider its dual graph 「 (a vertex for each component, an edge for each node).

## Theorem (Oda-Seshadri)

The compactified Jacobian of a curve $C$ with rational components and nodal singularities can be obtained by gluing the toric varieties associated to the periodic hyperplane arrangement arising from the dual graph of $C$ in the prescribed way.

## The BNR Correspondence

If we have a curve $\tilde{\Sigma}_{b}$ with rational components and nodal singularities, we can consider its dual graph 「 (a vertex for each component, an edge for each node).

## Theorem (Oda-Seshadri)

The compactified Jacobian of a curve $C$ with rational components and nodal singularities can be obtained by gluing the toric varieties associated to the periodic hyperplane arrangement arising from the dual graph of $C$ in the prescribed way.
$C \rightsquigarrow \Gamma \rightsquigarrow$ per. hpa $\rightsquigarrow$ sympl toric vars glued together $=\overline{\mathrm{Jac}}(C)$

## Upshot

The hypertoric Hitchin system $\mathfrak{D}(\Gamma)$ is a model for a small neighbourhood of a fibre of the classical Hitchin system that has spectral curve with dual graph 「.

## Upshot

The hypertoric Hitchin system $\mathfrak{D}(\Gamma)$ is a model for a small neighbourhood of a fibre of the classical Hitchin system that has spectral curve with dual graph $\Gamma$.

They are not expected to be isomorphic as complex manifolds, but they at least have the same cohomology.

## Table of Contents

(1) Hypertoric Varieties and Motivation
(2) Construction and Properties of $\mathfrak{D}(\Gamma)$
(3) Relationship to Classical Hitchin Systems
(4) An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

## Idea

The approach here is to utilize the toric structure of $q^{-1}(0)$ and employ the machinery of derived categories to calculate the cohomology of $\mathfrak{D}(\Gamma)$.

## Idea

The approach here is to utilize the toric structure of $q^{-1}(0)$ and employ the machinery of derived categories to calculate the cohomology of $\mathfrak{D}(\Gamma)$.

This is a work in progress!

## Cohomology of $\mathfrak{D}(\boldsymbol{O})$

Let $f$ be the map from the nodal elliptic curve $X$ to its associated periodic hyperplane arrangement $Y$.


## Cohomology of $\mathfrak{D}(\boldsymbol{O})$

Then $H^{j}\left(Y, R^{i} f_{*} \mathbb{Q}\right) \Longrightarrow H^{i+j}(X, \mathbb{Q})$.

## Cohomology of $\mathfrak{D}(\boldsymbol{O})$

Then $H^{j}\left(Y, R^{i} f_{*} \mathbb{Q}\right) \Longrightarrow H^{i+j}(X, \mathbb{Q})$.
We claim that in this case, the derived functor of $f$ is formal, i.e. $R f_{*} \mathbb{Q}=R^{0} f_{*} \mathbb{Q} \oplus R^{1} f_{*} \mathbb{Q}[-1]$.

## Cohomology of $\mathfrak{D}(\boldsymbol{O})$

Then $H^{j}\left(Y, R^{i} f_{*} \mathbb{Q}\right) \Longrightarrow H^{i+j}(X, \mathbb{Q})$.
We claim that in this case, the derived functor of $f$ is formal, i.e. $R f_{*} \mathbb{Q}=R^{0} f_{*} \mathbb{Q} \oplus R^{1} f_{*} \mathbb{Q}[-1]$.

It is not too difficult to show that $R^{0} f_{*} \mathbb{Q}=\mathbb{Q}_{S^{1}}$ and $R^{1} f_{*} \mathbb{Q}=j!\mathbb{Q}$.

## Cohomology of $\mathfrak{D}(\boldsymbol{O})$

Then $H^{j}\left(Y, R^{i} f_{*} \mathbb{Q}\right) \Longrightarrow H^{i+j}(X, \mathbb{Q})$.
We claim that in this case, the derived functor of $f$ is formal, i.e. $R f_{*} \mathbb{Q}=R^{0} f_{*} \mathbb{Q} \oplus R^{1} f_{*} \mathbb{Q}[-1]$.

It is not too difficult to show that $R^{0} f_{*} \mathbb{Q}=\mathbb{Q}_{S^{1}}$ and $R^{1} f_{*} \mathbb{Q}=j!\mathbb{Q}$. Thus

$$
\begin{gathered}
H^{0}(X, \mathbb{Q})=H^{0}\left(S^{1}, R^{0} f_{*} \mathbb{Q}\right)=\mathbb{Q} \\
H^{1}(X, \mathbb{Q})=H^{1}\left(S^{1}, R^{0} f_{*} \mathbb{Q}\right) \oplus H^{0}\left(S^{1}, R^{1} f_{*} \mathbb{Q}\right)=\mathbb{Q} \\
H^{2}(X, \mathbb{Q})=H^{1}\left(S^{1}, R^{1} f_{*} \mathbb{Q}\right)=\mathbb{Q}
\end{gathered}
$$

Does this work in general? We should check $\mathfrak{D}(\bullet \bullet)$.

The End

Thank you!

