Hypertoric Hitchin Systems

Evan J. A. Sundbo

Department of Mathematics University of Toronto

May 13, 2020

2 Construction and Properties of $\mathfrak{D}(\Gamma)$

1 Hypertoric Varieties and Motivation

2 Construction and Properties of $\mathfrak{D}(\Gamma)$

3 Relationship to Classical Hitchin Systems

4 An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

We will be working over ${\mathbb C}$ to not complicate things.

Definition

An *toric variety* is an irreducible variety X such that
(i) (ℂ*)ⁿ is an open dense subset of X
(ii) the action of (ℂ*)ⁿ on itself extends to an action of (ℂ*)ⁿ on X.

We will be working over ${\mathbb C}$ to not complicate things.

Definition

An *toric variety* is an irreducible variety X such that
(i) (ℂ*)ⁿ is an open dense subset of X
(ii) the action of (ℂ*)ⁿ on itself extends to an action of (ℂ*)ⁿ on X.

All of $(\mathbb{C}^*)^n$, \mathbb{C}^n , and \mathbb{P}^n are easy examples of toric varieties.

We will be working over ${\mathbb C}$ to not complicate things.

Definition

An *toric variety* is an irreducible variety X such that
(i) (ℂ*)ⁿ is an open dense subset of X
(ii) the action of (ℂ*)ⁿ on itself extends to an action of (ℂ*)ⁿ on X.

All of $(\mathbb{C}^*)^n$, \mathbb{C}^n , and \mathbb{P}^n are easy examples of toric varieties.

Toric varieties have a close connection to combinatorics (fans, polytopes, etc.).

Let's ask for a bit more structure:

Definition

An symplectic toric variety is a triple (X, ω, H) where X is a compact toric variety, ω is a symplectic form on X and H is a corresponding moment map $H: X \to \mathbb{R}^n$.

Let's ask for a bit more structure:

Definition

An symplectic toric variety is a triple (X, ω, H) where X is a compact toric variety, ω is a symplectic form on X and H is a corresponding moment map $H: X \to \mathbb{R}^n$.

 \mathbb{P}^n is symplectic toric.

Let's ask for a bit more structure:

Definition

An symplectic toric variety is a triple (X, ω, H) where X is a compact toric variety, ω is a symplectic form on X and H is a corresponding moment map $H: X \to \mathbb{R}^n$.

 \mathbb{P}^n is symplectic toric.

The symplectic toric varieties are in one-to-one correspondence with a special class of polytopes.

A Delzant polytope Δ in \mathbb{R}^n is a convex polytope which is

(i) simple, meaning there are n edges meeting at each vertex

(ii) rational, meaning that the edges meeting at the vertex p are of the form $p + tu_i$, $t \ge 0$, $u_i \in \mathbb{Z}^n$

(iii) smooth, meaning that for each vertex, the u_i can be chosen to be a \mathbb{Z} -basis for \mathbb{Z}^n .

A Delzant polytope Δ in \mathbb{R}^n is a convex polytope which is

(i) simple, meaning there are n edges meeting at each vertex

(ii) rational, meaning that the edges meeting at the vertex p are of the form $p + tu_i$, $t \ge 0$, $u_i \in \mathbb{Z}^n$

(iii) smooth, meaning that for each vertex, the u_i can be chosen to be a \mathbb{Z} -basis for \mathbb{Z}^n .

Delzant's Theorem

Symplectic toric manifolds are classified by Delzant polytopes:

 $\{symplectic \ toric \ manifolds\} \longleftrightarrow \{Delzant \ polytopes\}$

 $(M, \omega, H) \mapsto H(M)$

Delzant polytopes

Delzant polytopes

Delzant polytopes

A 4*n*-dimensional manifold is *hyperkähler* is it has a Riemannian metric g which is Kähler with respect to three complex structures I, J, and K which satisfy quaternionic relations

A 4*n*-dimensional manifold is *hyperkähler* is it has a Riemannian metric g which is Kähler with respect to three complex structures I, J, and K which satisfy quaternionic relations

Examples: the Hilbert scheme of k points, the moduli space of Higgs bundles (Hitchin systems), Nakajima quiver varieties.

A manifold which is both hyperkähler and toric, with the action of the torus being holomorphic with respect to all the complex structures, is called *hypertoric*

A manifold which is both hyperkähler and toric, with the action of the torus being holomorphic with respect to all the complex structures, is called *hypertoric*

Examples: If X is symplectic toric, then T^*X can be given hypertoric structure.

A manifold which is both hyperkähler and toric, with the action of the torus being holomorphic with respect to all the complex structures, is called *hypertoric*

Examples: If X is symplectic toric, then T^*X can be given hypertoric structure.

- Toric varieties can be written as Kähler quotients by vector spaces
- Hypertoric varieties can be written as hyperkähler quotients by tori.

Hypertoric big picture

Hypertoric big picture

2 Construction and Properties of $\mathfrak{D}(\Gamma)$

3 Relationship to Classical Hitchin Systems

 Φ An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

The building block of all hypertoric Hitchin systems is $\mathfrak{D}(\bigcirc)$, the Tate curve.

The building block of all hypertoric Hitchin systems is $\mathfrak{D}(\bigcirc)$, the Tate curve.

Let \mathbb{C}_n^2 be a copy of \mathbb{C}^2 with coordinates x_n, y_n . Then let

$$ilde{\mathfrak{D}}(ilde{\mathbb{O}}) = \bigsqcup_{n \in \mathbb{Z}} \mathbb{C}_n^2 / \sim,$$

with relations given by $x_n y_n = x_{n+1}y_{n+1}$ and $x_n = y_{n+1}^{-1}$.

We have a map $\tilde{q}: \tilde{\mathfrak{D}}(\bigcirc) \to \mathbb{C}$ given by $\tilde{q}(x_n, y_n) = x_n y_n$.

We have a map $\tilde{q}: \tilde{\mathfrak{D}}(\bigcirc) \to \mathbb{C}$ given by $\tilde{q}(x_n, y_n) = x_n y_n$.

The generic fibre of \tilde{q} is \mathbb{C}^* , and the fibre over zero is an infinite chain of copies of \mathbb{P}^1 .

We have a map $\tilde{q}: \tilde{\mathfrak{D}}(\bigcirc) \to \mathbb{C}$ given by $\tilde{q}(x_n, y_n) = x_n y_n$.

The generic fibre of \tilde{q} is \mathbb{C}^* , and the fibre over zero is an infinite chain of copies of \mathbb{P}^1 .

There is an action of \mathbb{Z} which "shifts over by one" on $\tilde{q}^{-1}(\mathbb{D})$. We define

$$\mathfrak{D}(igcold D)=\widetilde{q}^{-1}(\mathbb{D})/\mathbb{Z}.$$

The Tate Curve

Note that $q^{-1}(0)$ is the singular toric variety associated to the "periodic Delzant polytope" $[0,1]/\sim =S^1$

Note that $q^{-1}(0)$ is the singular toric variety associated to the "periodic Delzant polytope" $[0,1]/\sim =S^1$

Note that $q^{-1}(0)$ is the singular toric variety associated to the "periodic Delzant polytope" $[0,1]/\sim =S^1$

We can also idenfity $\mathfrak{D}(\bigcirc)$ with $T^*\mathbb{C}^\circ = \{(z, w) : zw + 1 \neq 0\}$.

In general, start with an embedding of tori $(\mathbb{C}^*)^k = T \to D = (\mathbb{C}^*)^n$.

In general, start with an embedding of tori $(\mathbb{C}^*)^k = T \to D = (\mathbb{C}^*)^n$.

D acts on $\mathfrak{D}(\bigcirc)^n = (T^*\mathbb{C}^n)^\circ = \{(z_i, w_i) : z_i w_i + 1 \neq 0\}$, and we get a "moment map"

$$(\mu_{\mathbb{C}}, \mu_{\mathbb{R}}) : (T^* \mathbb{C}^n)^{\circ} \longrightarrow D^{\vee} \times \mathfrak{d}_{\mathbb{R}}^*$$
$$(z_i, w_i)_{i=1}^n \mapsto ((z_i w_i + 1), (|z_i|^2 + |w_i|^2))_{i=1}^n$$

In general, start with an embedding of tori $(\mathbb{C}^*)^k = T \to D = (\mathbb{C}^*)^n$.

D acts on $\mathfrak{D}(\bigcirc)^n = (T^*\mathbb{C}^n)^\circ = \{(z_i, w_i) : z_i w_i + 1 \neq 0\}$, and we get a "moment map"

$$\begin{aligned} (\mu_{\mathbb{C}}, \mu_{\mathbb{R}}) &: (T^* \mathbb{C}^n)^\circ \longrightarrow D^{\vee} \times \mathfrak{d}_{\mathbb{R}}^* \\ & (z_i, w_i)_{i=1}^n \mapsto ((z_i w_i + 1), (|z_i|^2 + |w_i|^2))_{i=1}^n \end{aligned}$$

Compose the above maps with $D^{\vee} \to T^{\vee}$ to get a map μ_{HK} from $(T^*\mathbb{C}^n)^\circ$ to $T^{\vee} \times \mathfrak{t}^*_{\mathbb{R}} \cong T^{\vee}_{\mathbb{R}} \times \mathfrak{t}^*$.
For $\mu_{HK} : \mathfrak{D}(\bigcirc)^n \to T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^*$, the hypertoric Hitchin system or Dolbeault hypertoric variety associated to Γ is

$$\mathfrak{D}(\Gamma) = \mathfrak{D}(\bigcirc)^n /\!\!/_{(\beta,0)} T_{\mathbb{R}} = \mu_{HK}^{-1}(\beta,0)/T_{\mathbb{R}},$$

For $\mu_{HK} : \mathfrak{D}(\bigcirc)^n \to T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^*$, the hypertoric Hitchin system or Dolbeault hypertoric variety associated to Γ is

$$\mathfrak{D}(\Gamma) = \mathfrak{D}(\bigcirc)^n /\!\!/_{(\beta,0)} T_{\mathbb{R}} = \mu_{HK}^{-1}(\beta,0)/T_{\mathbb{R}},$$

This is a hypertoric variety of dimension 2n - 2k with a proper map $q : \mathfrak{D}(\Gamma) \to \mathbb{D}$.

For $\mu_{HK} : \mathfrak{D}(\bigcirc)^n \to T_{\mathbb{R}}^{\vee} \times \mathfrak{t}^*$, the hypertoric Hitchin system or Dolbeault hypertoric variety associated to Γ is

$$\mathfrak{D}(\Gamma) = \mathfrak{D}(\bigcirc)^n /\!\!/_{(\beta,0)} T_{\mathbb{R}} = \mu_{HK}^{-1}(\beta,0)/T_{\mathbb{R}},$$

This is a hypertoric variety of dimension 2n - 2k with a proper map $q: \mathfrak{D}(\Gamma) \to \mathbb{D}$.

The data of the embedding $T \to D$ and generic $\beta \in T_{\mathbb{R}}^{\vee}$ give a periodic hyperplane arrangement, which in turn we associate with a graph Γ .

A graph Γ yields a periodic hyperplane arrangment.

A graph Γ yields a periodic hyperplane arrangment.

Then $q^{-1}(0)$ of $\mathfrak{D}(\Gamma)$ is constructed from toric varieties $\{\mathfrak{X}_i\}$ associated to this arrangement, glued together as prescribed by the arrangement.

A graph Γ yields a periodic hyperplane arrangment.

Then $q^{-1}(0)$ of $\mathfrak{D}(\Gamma)$ is constructed from toric varieties $\{\mathfrak{X}_i\}$ associated to this arrangement, glued together as prescribed by the arrangement.

The focus on on this specific fibre is because of the fact that $\mathfrak{D}(\Gamma)$ deformation retracts to $q^{-1}(0)$.

- The focus on on this specific fibre is because of the fact that $\mathfrak{D}(\Gamma)$ deformation retracts to $q^{-1}(0)$.
- The generic fibres are complex Lagrangians with the structure of abelian varieties.

Example

Let

Let

Then the periodic hyperplane arrangement associated to $\boldsymbol{\Gamma}$ is

Let

Then the periodic hyperplane arrangement associated to $\boldsymbol{\Gamma}$ is

Let

Then the periodic hyperplane arrangement associated to $\boldsymbol{\Gamma}$ is

Thus the irreducible components \mathfrak{X}_i of $q^{-1}(0)$ in $\mathfrak{D}(\Gamma)$ are \mathbb{P}^2 , \mathbb{P}^2 , and $\mathsf{Bl}_{x_1,x_2}(\mathbb{P}^1 \times \mathbb{P}^1)$.

2 Construction and Properties of $\mathfrak{D}(\Gamma)$

3 Relationship to Classical Hitchin Systems

4) An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

A Higgs bundle on a Riemann surface Σ of genus at least 2 is a pair (E, Φ) where E is a holomorphic vector bundle on X and Φ is a map $E \to E \otimes K_{\Sigma}$.

A Higgs bundle on a Riemann surface Σ of genus at least 2 is a pair (E, Φ) where E is a holomorphic vector bundle on X and Φ is a map $E \to E \otimes K_{\Sigma}$.

The moduli space of stable Higgs bundles on Σ of rank r and degree d is denoted $\mathcal{M}_{\Sigma}(r, d)$.

The Hitchin Fibration

The Hitchin Fibration

The space $\mathcal{B}_r = \bigoplus_{i=1}^r H^0(\Sigma, K_{\Sigma}^{\otimes i})$ paramatrizes possible characteristic polynomials of Φ . Think of $b \in \mathcal{B}_r$ as a map $b : \operatorname{Tot}(K_{\Sigma}) \to \operatorname{Tot}(K_{\Sigma})^{\otimes r}$.

The spectral curve $\tilde{\Sigma}_b$ of $b \in \mathcal{B}_r$ is the inverse image in $\text{Tot}(K_{\Sigma})$ of the zero section of $\text{Tot}(K_{\Sigma})^{\otimes r}$ under the map b.

The spectral curve $\tilde{\Sigma}_b$ of $b \in \mathcal{B}_r$ is the inverse image in $\text{Tot}(K_{\Sigma})$ of the zero section of $\text{Tot}(K_{\Sigma})^{\otimes r}$ under the map b.

That is,
$$\tilde{\Sigma_a} = \left\{ z \in \mathsf{Tot}(K_{\Sigma}) : b(z) = (\mathsf{char}_{\lambda} \Phi)(z) = 0 \right\}.$$

The BNR Correspondence

For $b \in \mathcal{B}_r$ with integral spectral curve $\tilde{\Sigma}_b$, there is an equivalence between isomorphism classes of torsion free sheaves of rank 1 on $\tilde{\Sigma}_b$ and Higgs bundles with characteristic polynomial b.

The BNR Correspondence

For $b \in \mathcal{B}_r$ with integral spectral curve $\tilde{\Sigma}_b$, there is an equivalence between isomorphism classes of torsion free sheaves of rank 1 on $\tilde{\Sigma}_b$ and Higgs bundles with characteristic polynomial b.

For $\tilde{\Sigma}_b$ smooth, $\operatorname{Jac}(\tilde{\Sigma}_b) \cong h^{-1}(b)$.

The BNR Correspondence

For $b \in \mathcal{B}_r$ with integral spectral curve $\tilde{\Sigma}_b$, there is an equivalence between isomorphism classes of torsion free sheaves of rank 1 on $\tilde{\Sigma}_b$ and Higgs bundles with characteristic polynomial b.

For
$$\tilde{\Sigma}_b$$
 smooth, $\operatorname{Jac}(\tilde{\Sigma}_b) \cong h^{-1}(b)$.

For $\tilde{\Sigma}_b$ with rational components and nodal singularities, $\overline{\operatorname{Jac}}(\tilde{\Sigma}_b) \cong h^{-1}(b).$ If we have a curve $\tilde{\Sigma}_b$ with rational components and nodal singularities, we can consider its dual graph Γ (a vertex for each component, an edge for each node).

If we have a curve $\tilde{\Sigma}_b$ with rational components and nodal singularities, we can consider its dual graph Γ (a vertex for each component, an edge for each node).

Theorem (Oda-Seshadri)

The compactified Jacobian of a curve C with rational components and nodal singularities can be obtained by gluing the toric varieties associated to the periodic hyperplane arrangement arising from the dual graph of C in the prescribed way.

If we have a curve $\tilde{\Sigma}_b$ with rational components and nodal singularities, we can consider its dual graph Γ (a vertex for each component, an edge for each node).

Theorem (Oda-Seshadri)

The compactified Jacobian of a curve C with rational components and nodal singularities can be obtained by gluing the toric varieties associated to the periodic hyperplane arrangement arising from the dual graph of C in the prescribed way.

 $C \rightsquigarrow \Gamma \rightsquigarrow$ per. hpa \rightsquigarrow sympl toric vars glued together = $\overline{Jac}(C)$

The hypertoric Hitchin system $\mathfrak{D}(\Gamma)$ is a model for a small neighbourhood of a fibre of the classical Hitchin system that has spectral curve with dual graph Γ .

- The hypertoric Hitchin system $\mathfrak{D}(\Gamma)$ is a model for a small neighbourhood of a fibre of the classical Hitchin system that has spectral curve with dual graph Γ .
- They are not expected to be isomorphic as complex manifolds, but they at least have the same cohomology.

2 Construction and Properties of $\mathfrak{D}(\Gamma)$

3 Relationship to Classical Hitchin Systems

(4) An Approach to Calculate the Cohomology of $\mathfrak{D}(\Gamma)$

The approach here is to utilize the toric structure of $q^{-1}(0)$ and employ the machinery of derived categories to calculate the cohomology of $\mathfrak{D}(\Gamma)$. The approach here is to utilize the toric structure of $q^{-1}(0)$ and employ the machinery of derived categories to calculate the cohomology of $\mathfrak{D}(\Gamma)$.

This is a work in progress!

Cohomology of $\mathfrak{D}(\bigcirc)$

Let f be the map from the nodal elliptic curve X to its associated periodic hyperplane arrangement Y.

Cohomology of $\mathfrak{D}(\bigcirc)$

Then $H^{j}(Y, R^{i}f_{*}\mathbb{Q}) \implies H^{i+j}(X, \mathbb{Q}).$

Cohomology of $\mathfrak{D}(igodot)$

Then $H^{j}(Y, R^{i}f_{*}\mathbb{Q}) \implies H^{i+j}(X, \mathbb{Q}).$

We claim that in this case, the derived functor of f is formal, i.e. $Rf_*\mathbb{Q} = R^0f_*\mathbb{Q} \oplus R^1f_*\mathbb{Q}[-1].$

Cohomology of $\mathfrak{D}(\bigcirc)$

Then $H^{j}(Y, R^{i}f_{*}\mathbb{Q}) \implies H^{i+j}(X, \mathbb{Q}).$

We claim that in this case, the derived functor of f is formal, i.e. $Rf_*\mathbb{Q} = R^0f_*\mathbb{Q} \oplus R^1f_*\mathbb{Q}[-1].$

It is not too difficult to show that $R^0 f_* \mathbb{Q} = \mathbb{Q}_{S^1}$ and $R^1 f_* \mathbb{Q} = j_! \mathbb{Q}$.

Then $H^{j}(Y, R^{i}f_{*}\mathbb{Q}) \implies H^{i+j}(X, \mathbb{Q}).$

We claim that in this case, the derived functor of f is formal, i.e. $Rf_*\mathbb{Q} = R^0f_*\mathbb{Q} \oplus R^1f_*\mathbb{Q}[-1].$

It is not too difficult to show that $R^0 f_* \mathbb{Q} = \mathbb{Q}_{S^1}$ and $R^1 f_* \mathbb{Q} = j_! \mathbb{Q}$. Thus

$$H^{0}(X, \mathbb{Q}) = H^{0}(S^{1}, R^{0}f_{*}\mathbb{Q}) = \mathbb{Q}$$
$$H^{1}(X, \mathbb{Q}) = H^{1}(S^{1}, R^{0}f_{*}\mathbb{Q}) \oplus H^{0}(S^{1}, R^{1}f_{*}\mathbb{Q}) = \mathbb{Q}$$
$$H^{2}(X, \mathbb{Q}) = H^{1}(S^{1}, R^{1}f_{*}\mathbb{Q}) = \mathbb{Q}$$

Does this work in general? We should check $\mathfrak{D}(\bullet \longrightarrow \bullet)$.

Thank you!