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Some Definitions

We will be working over C to not complicate things.

Definition

An toric variety is an irreducible variety X such that
(i) (C∗)n is an open dense subset of X
(ii) the action of (C∗)n on itself extends to an action of (C∗)n on X .

All of (C∗)n, Cn, and Pn are easy examples of toric varieties.

Toric varieties have a close connection to combinatorics (fans, polytopes,
etc.).
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Some Definitions

Let’s ask for a bit more structure:

Definition

An symplectic toric variety is a triple (X , ω,H) where X is a compact toric
variety, ω is a symplectic form on X and H is a corresponding moment
map H : X → Rn.

Pn is symplectic toric.

The symplectic toric varieties are in one-to-one correspondence with a
special class of polytopes.
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Delzant polytopes

Definition

A Delzant polytope ∆ in Rn is a convex polytope which is
(i) simple, meaning there are n edges meeting at each vertex
(ii) rational, meaning that the edges meeting at the vertex p are of

the form p + tui , t ≥ 0, ui ∈ Zn

(iii) smooth, meaning that for each vertex, the ui can be chosen to be
a Z-basis for Zn.

Examples:
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Delzant polytopes

Delzant’s Theorem

Symplectic toric manifolds are classified by Delzant polytopes:

{symplectic toric manifolds} ←→ {Delzant polytopes}

(M, ω,H) 7→ H(M)
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Delzant polytopes

Examples:

P1

P1 × P1

Blx(P1 × P1)
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Hyperkähler structure

Definition

A 4n-dimensional manifold is hyperkähler is it has a Riemannian metric g
which is Kähler with respect to three complex structures I , J, and K
which satisfy quaternionic relations

Examples: the Hilbert scheme of k points, the moduli space of Higgs
bundles (Hitchin systems), Nakajima quiver varieties.
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Hypertoric varieties

Definition

A manifold which is both hyperkähler and toric, with the action of the
torus being holomorphic with respect to all the complex structures, is
called hypertoric

Examples: If X is symplectic toric, then T ∗X can be given hypertoric
structure.

• Toric varieties can be written as Kähler quotients by vector spaces
• Hypertoric varieties can be written as hyperkähler quotients by tori.
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Hypertoric big picture

{Hypertoric varieties}

{”additive” hypertoric varieties}
(T ∗Cn /// TR) ((T ∗Cn)◦ /// TR)

{”multiplicative” hypertoric varieties}
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The Tate Curve

The building block of all hypertoric Hitchin systems is D( • ), the Tate
curve.

Let C2
n be a copy of C2 with coordinates xn, yn. Then let

D̃( • ) =
⊔
n∈Z

C2
n/ ∼,

with relations given by xnyn = xn+1yn+1 and xn = y−1
n+1.
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The Tate Curve

We have a map q̃ : D̃( • )→ C given by q̃(xn, yn) = xnyn.

The generic fibre of q̃ is C∗, and the fibre over zero is an infinite chain of
copies of P1.

There is an action of Z which ”shifts over by one” on q̃−1(D). We define

D( • ) = q̃−1(D)/Z.
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The Tate Curve

•

D

q
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The Tate Curve

Note that q−1(0) is the singular toric variety associated to the ”periodic
Delzant polytope” [0, 1]/ ∼ = S1

P1 q−1(0)

[0, 1] S1

We can also idenfity D( • ) with T ∗C◦ = {(z ,w) : zw + 1 6= 0}.
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Construction of D(Γ)

In general, start with an embedding of tori (C∗)k = T → D = (C∗)n.

D acts on D( • )n = (T ∗Cn)◦ = {(zi ,wi ) : ziwi + 1 6= 0}, and we get a
”moment map”

(µC, µR) : (T ∗Cn)◦ −→ D∨ × d∗R

(zi ,wi )
n
i=1 7→ ((ziwi + 1), (|zi |2 + |wi |2))ni=1

Compose the above maps with D∨ → T∨ to get a map µHK from
(T ∗Cn)◦ to T∨ × t∗R

∼= T∨R × t∗.
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Construction of D(Γ)

Definition

For µHK : D( • )n → T∨R × t∗, the hypertoric Hitchin system or Dolbeault
hypertoric variety associated to Γ is

D(Γ) = D( • )n ///(β,0) TR = µ−1
HK (β, 0)/TR,

This is a hypertoric variety of dimension 2n − 2k with a proper map
q : D(Γ)→ D.

The data of the embedding T → D and generic β ∈ T∨R give a periodic
hyperplane arrangement, which in turn we associate with a graph Γ.
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Alternatively:

A graph Γ yields a periodic hyperplane arrangment.

Then q−1(0) of D(Γ) is constructed from toric varieties {Xi} associated to
this arrangement, glued together as prescribed by the arrangement.⊔

Xi q−1(0)

⊔
H(Xi )

(⊔
H(Xi )

)
/ ∼
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Structure of D(Γ)

The focus on on this specific fibre is because of the fact that D(Γ)
deformation retracts to q−1(0).

The generic fibres are complex Lagrangians with the structure of abelian
varieties.
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Example

Let

• •Γ =

Then the periodic hyperplane arrangement associated to Γ is
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Example
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Then the periodic hyperplane arrangement associated to Γ is
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Example

Let

• •Γ =

Then the periodic hyperplane arrangement associated to Γ is

Blx1,x2(P1 × P1)

P2

P2

Thus the irreducible components Xi of q−1(0) in D(Γ) are P2, P2, and
Blx1,x2(P1 × P1).
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The Moduli Space of Higgs Bundles

Definition

A Higgs bundle on a Riemann surface Σ of genus at least 2 is a pair
(E ,Φ) where E is a holomorphic vector bundle on X and Φ is a map
E → E ⊗ KΣ.

The moduli space of stable Higgs bundles on Σ of rank r and degree d is
denoted MΣ(r , d).
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The Hitchin Fibration

• ••
charλΦ 6= λr charλΦ 6= λrcharλΦ = λr

Br

h

The space Br =
⊕r

i=1 H
0(Σ,K⊗iΣ ) paramatrizes possible characteristic

polynomials of Φ. Think of b ∈ Br as a map b : Tot(KΣ)→ Tot(KΣ)⊗r .
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Spectral Curves

Definition

The spectral curve Σ̃b of b ∈ Br is the inverse image in Tot(KΣ) of the
zero section of Tot(KΣ)⊗r under the map b.

That is, Σ̃a =
{
z ∈ Tot(KΣ) : b(z) = (charλΦ)(z) = 0

}
.
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The BNR Correspondence

The BNR Correspondence

For b ∈ Br with integral spectral curve Σ̃b, there is an equivalence
between isomorphism classes of torsion free sheaves of rank 1 on Σ̃b and
Higgs bundles with characteristic polynomial b.

For Σ̃b smooth, Jac(Σ̃b) ∼= h−1(b).

For Σ̃b with rational components and nodal singularities,
Jac(Σ̃b) ∼= h−1(b).
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The BNR Correspondence

If we have a curve Σ̃b with rational components and nodal singularities, we
can consider its dual graph Γ (a vertex for each component, an edge for
each node).

Theorem (Oda-Seshadri)

The compactified Jacobian of a curve C with rational components and
nodal singularities can be obtained by gluing the toric varieties associated
to the periodic hyperplane arrangement arising from the dual graph of C
in the prescribed way.

C  Γ per. hpa sympl toric vars glued together = Jac(C )
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Upshot

The hypertoric Hitchin system D(Γ) is a model for a small neighbourhood
of a fibre of the classical Hitchin system that has spectral curve with dual
graph Γ.

They are not expected to be isomorphic as complex manifolds, but they at
least have the same cohomology.
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Idea

The approach here is to utilize the toric structure of q−1(0) and employ
the machinery of derived categories to calculate the cohomology of D(Γ).

This is a work in progress!
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Cohomology of D( • )

Let f be the map from the nodal elliptic curve X to its associated periodic
hyperplane arrangement Y .

• •
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Cohomology of D( • )

Then H j(Y ,R i f∗Q) =⇒ H i+j(X ,Q).

We claim that in this case, the derived functor of f is formal, i.e.
Rf∗Q = R0f∗Q⊕ R1f∗Q[−1].

It is not too difficult to show that R0f∗Q = QS1 and R1f∗Q = j!Q. Thus

H0(X ,Q) = H0(S1,R0f∗Q) = Q

H1(X ,Q) = H1(S1,R0f∗Q)⊕ H0(S1,R1f∗Q) = Q

H2(X ,Q) = H1(S1,R1f∗Q) = Q

Does this work in general? We should check D( • • ).
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Rf∗Q = R0f∗Q⊕ R1f∗Q[−1].

It is not too difficult to show that R0f∗Q = QS1 and R1f∗Q = j!Q.

Thus

H0(X ,Q) = H0(S1,R0f∗Q) = Q

H1(X ,Q) = H1(S1,R0f∗Q)⊕ H0(S1,R1f∗Q) = Q

H2(X ,Q) = H1(S1,R1f∗Q) = Q

Does this work in general? We should check D( • • ).

Sundbo, Evan (U of T) May 13, 2020 32 / 33



Cohomology of D( • )

Then H j(Y ,R i f∗Q) =⇒ H i+j(X ,Q).

We claim that in this case, the derived functor of f is formal, i.e.
Rf∗Q = R0f∗Q⊕ R1f∗Q[−1].

It is not too difficult to show that R0f∗Q = QS1 and R1f∗Q = j!Q. Thus

H0(X ,Q) = H0(S1,R0f∗Q) = Q

H1(X ,Q) = H1(S1,R0f∗Q)⊕ H0(S1,R1f∗Q) = Q

H2(X ,Q) = H1(S1,R1f∗Q) = Q

Does this work in general? We should check D( • • ).

Sundbo, Evan (U of T) May 13, 2020 32 / 33



The End

Thank you!
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