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Preface

These notes comprise the course MATH 498/872, given by Dr. Steven Rayan in the winter term of 2018
at the University of Saskatchewan. The course will serve as an introduction to “modern geometry” as well as
a window into research-level mathematics, not only in its content, but how it is performed. We will see the
interactions between mathematics and physics (particularly viewing physics as inspiration) and will endeavor to
break down artificial boundaries between mathematical subdisciplines

1 A General Introduction: What is Geometry?

The field of geometry is in some sense difficult to define. We can look back at its history to gain persepec-
tive:
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• The “First Revolution of Geometry” (approx. 300 B.C.) was Euclid’s study of plane geometry under strict
axioms. This could be called the axiomitization of geometry.

• The “Second Revolution of Geometry” (approx. 1650 A.D.) was the discovery of algebraic equations
common smooth shapes, which was made possible by Descartes’ devolopment of the Cartesian coordinate
system. This could be called the algebraification of geometry, and it is still incomplete.

• The “Third Revolution of Geometry” (approx. 1850 A.D.) was the realization that geometry occurs when
a topological space is equipped with a metric (and the geometry is dependent on the metric). This is due
mainly to Riemann, Poincaré, and Klein, and could be called the definition of geometry.

• The “Fourth Revolution of Geometry” (mid 20th century onward) was the recogntion of the fact that most
(and perhaps the only) interesting geometries arise as solutions to equations from physics, and that most
of these are complex. This could be called the complexification of geometry, and it is the era in which we
are living right now.

Now, as this course ostensibly deals with Einstein’s Equations, we should introduce them. Einstein’s Equa-
tions can be expressed as R = αg, where α is a real number, g is a metric, and R is a curvature. Note that
curvature depends on g, so perhaps we should write R(g) = αg. Thus, we are solving for g. Such a solution is
called an Einstein metric. There are, in general, a huge number of possible metrics we could choose for a space,
so choosing Einstein metrics cuts down our choices. In this course, we deal exclusively with the case α = 0, i.e.
R(g) = 0. Amongst such solutions are some special solutions called Calabi-Yau metrics (Calabi-Yau metrics are
solutions to R(g) = 0 that have the additional property of being Kähler). The existence of Calabi-Yau metrics
was an open problem from the early 1950s to the mid 1970s, when existence was proven by Shing-Tung Yau,
for which he won the Fields Medal. It was realized in 1985 that Calabi-Yau metrics were exactly the metrics that
were being sought after in string theory.

2 Geometry from Decorated Vector Spaces

2.1 Multilinear Functions and Scalar Product Spaces

To begin, we consider vector spaces V over the real numbers. Recall that if V is n-dimensional, then V ∼=Rn.
This isomorphism can be thought of as a change of basis (if {b1, . . . ,bn} is a basis, then we send b1 to the first
canonical basis vector in Rn, b2 to the second, et cetera).

We can create geometry on V by equipping V with some additional structure, called a decoration, which in
this case is a multilinear function mapping k copies of V into R. Recall that a function S : V × . . .×V → R is
multilinear if

S(~x1, . . . ,a~xi +b~yi, . . . ,~xk) = aS(~x1, . . . ,~xi, . . . ,~xk)+bS(~x1, . . . ,~yi, . . . ,~xk) (1)

for all i.

Example. The basic notion of geometry is afforded by the Pythagorean theorem: in Rn, the length of~x is given

by ‖~x‖ =
√

x2
1 + . . .+ x2

n. This is truly geometry since we are measuring length of ~x. The space Rn equipped

with ‖ • ‖ is called Euclidean space. Note that ‖~x‖ is certainly not bilinear, but it arises from ‖~x‖2 = ~xT~x,
which can be thought of as taking the bilinear function S : Rn×Rn→ R given by S(~x,~y) =~xT~y and specializing
to ~x =~y. Hence, Euclidean space can be thought of as (Rn,S), where S(~x,~y) =~xT~y and we obtain length as
‖~x‖=

√
S(~x,~x).

In view of this, it is worth pursuing multilinear functions more formally. We define the set of all linear
functions from a given vector space V to R:

V ∗ = {S : V → R | S is linear} (2)

V ∗ is known as the dual vector space of V , and indeed it is a vector space: for S,T ∈V ∗, S+T is linear, and for
k ∈ R, kS is linear, and the zero vector is the zero function S(~x) = 0 for all~x ∈V . So, from a vector space V , we
have formed a new one! We should calculate it’s dimension, as that is one of the only identifying characteristics
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that vector spaces have. Choose a basis and identify V with Rn: now, V ∗ is the set of linear maps Rn to Rn. We
know that each such map can be represented by a 1×n matrix, and thus V ∗ is n-dimensional over R:

S(~x) =
(
s1 s2 . . . sn

)


x1
x2
...

xn

 (3)

This also tells us that V and V ∗ can be thought of as the spaces of column and row vectors resepctively.
Suppose we want to consider bilinear functions V ×V → R. Denote this set by

V ∗⊗V ∗ = {S : V ×V → R | S is bilinear} (4)

Read V ∗⊗V ∗ as “the tensor product of V ∗ with itself”. This is again a vector space. What is it’s dimension?
Once again choose a basis, then S ∈V ∗⊗V ∗ is a bilinear function Rn×Rn→ R. Such maps are represented by
1×n×n tensors, which are simply n×n matrices:

S(~x,~y) =~xT


s11 s12 . . . s1n

s21
. . .

...
sn1 snn

~y (5)

And so we see that the dimension of V ∗×V ∗ is n2.
In general, the tensor product of V ∗ with itself k times, denoted V ∗⊗ . . .⊗V ∗ = (V ∗)⊗k is an nk-dimensional

vector space, whose elements are k-linear functions V × . . .×V → R. If we regard V as Rn, then elements of
(V ∗)⊗k are represented by (k+1)-tensors of size 1×n× . . .×n (which are effectively k-tensors of size nk). Note
that the vector spaces (V ∗)⊗k are associated canonically to V : that is, there is no special choices or extra data
involved in constructing them.

Example. V ∗⊗V ∗⊗V ∗ consists of tri-linear functions S : V ×V ×V →R, each of which can be represented by
a 3-tensor A.

In this new language, Euclidean space consists of V ∼=Rn and an element of V ∗⊗V ∗, specifically the element
S(~x,~y) =~xT~y, which corresponds to the identity matrix A = In. This choice of matrix is in fact canonical: let
P be a change of basis matrix for V (i.e. P is an n× n invertible matrix). Then P acts on A by conjugation to
produce a representation of S in the new basis. In this case we have P−1AP = P−1InP = In, so our choice was
unique. This is not true in general. Also, notice that in this special case

S(~y,~x) = S(~y,~x)T

= (~yT~x)T

=~xT (~yT )T

=~xT~y

= S(~x,~y)

(6)

That is, S is a symmetric function.
The subspace of V ∗⊗V ∗ consisting of symmetric bilinear functions V×V →R is denoted S 2(V ∗). Elements

S of S 2(V ∗) are represented by symmetric matrices, as one might expect.

Example. For a 2-dimensional vector space V , elements of S 2(V ∗) are represented by symmetric 2×2 matrices
(these are matrices A which satisty AT = A.). By writing

A =

(
a b
c d

)
(7)

we can see that A ∈ S 2(V ∗) implies b = c, and thus that the dimension of S 2(V ∗) of is 3.
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We can produce other geometries on V by using symmetric matrices which are not the identity. This inspires
the following definition:

Definition. The pair (V,S) is called a scalar product space if S is a nondegenerate element of S 2(V ∗), where
“nondegenerate” means that any matrix representing S is invertible. Note that if A represents S and A is invertible,
then any other representation P−1AP is also invertible. The map S is known as the scalar procuct.

Now, we would like to say that the length of ~x ∈ V induced by S is ‖~x‖S =
√

S(~x,~x), analagous to our
definition for Euclidean space. However, S(~x,~x) could be negative. Hence, we deal mostly with the length
squared instead of length: ‖~x‖2

S = S(~x,~x).

Example. Consider (R2,S) with S corresponding to A =

(
1 0
0 −1

)
. We can see that AT = A and det(A) 6= 0, so

this is a true scalar product space. Evaluate

S(~x,~y) =~xT
(

1 0
0 −1

)
~y

=
(
x1 x2

)(1 0
0 −1

)(
y1
y2

)
=
(
x1 x2

)( y1
−y2

)
= x1y1− x2y2

(8)

Observe ∥∥∥∥(1
0

)∥∥∥∥2

S
= S

((
1
0

)
,

(
1
0

))
= (1)(1)− (0)(0) = 1∥∥∥∥(0

1

)∥∥∥∥2

S
= S

((
0
1

)
,

(
0
1

))
= (0)(0)− (1)(1) =−1

(9)

Definition. When every nonzero vector in V has positive length squared, we say that S is positive definite and
that (V,S) is a positive definite inner product space (or just inner product space).

When every nonzero vector in V has negative length squared, we say that S is negative definite and that (V,S)
is a negative definite inner product space

If neither of these is true, then S is indefinite.

Note that we only use the term “inner product” when S is definite.
Recall the following: a symmetric matric A has only real eignevalues, and is always diagonalizable with

mutually orthogonal eigenvectors (with respect to the Euclidean inner product). That is, if λi and λ j are two
eigenvalues of A, then they are both real, and if λi has eigenvector~vi and λ j has~v j, then~vT

i ~v j = 0. Diagonaliz-
ability also implies that there exists a complete basis for V consisting of eigenvectors of the matrix.

Suppose that S is a scaler product on V and that A is a representative of S, and let~x be any nonzero vector in V .
If we let {~v1, . . . ,~vn} be a mutually orthogonal basis of eigenvectors from A, we can write~x = a1~v1 + . . .+an~vn.
Then

‖~x‖2
S = S(~x,~x) = (a1~v1 + . . .+an~vn)

T A(a1~v1 + . . .+an~vn)

= (a1~v1 + . . .+an~vn)
T (a1λ1~v1 + . . .+anλn~vn)

=
n

∑
i, j=1

aia jλ j~vT
i ~v j

=
n

∑
i=1

a2
i λi~vT

i ~vi

(10)

Since a2
i and~vT

i ~vi are both non-negative for all i (and cannot be zero for all i), we can say that if λi > 0 for all i,
then ‖~x‖2

S > 0. Additionally, if λi < 0 for all i, then ‖~x‖2
S < 0. The converse of these statements is true as well:

if S is positive definite, then λi > 0 for all i, and if S is negative definite, then λi < 0 for all i. It is a crucial point
here that eigenvalues are basis independent.

To summarize:
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• S is positive definite if and only if A has only positive eigenvalues

• S is negative definite if and only if A has only negative eigenvalues

• S is indefinite if A has some positive and some negative eigenvalues (A will never have eigenavalues equal
to 0 by invertibility).

Of particular physical intereset is the case when A has n−1 positive eigenvalues and 1 negative eigenvalue.
In this case, (V,S) is said to be a Lorentzian space, and V is sometimes denoted V n−1,1 or Rn−1,1 to emphasize
the Lorentz scalar product.

Example. Recall the space V ∼= R2 with S given by A =

(
1 0
0 −1

)
. This scalar product has 2−1 = 1 positive

eigenvalues and 1 negative eigenvalue, and hence we can look (V,S) as Lorentzian space (R1,1,S). Also recall

that S(~x,~y) = x1y1−x2y2,
∥∥∥∥(1

0

)∥∥∥∥2

S
= 1, and

∥∥∥∥(0
1

)∥∥∥∥2

S
=−1. We can also calculate

∥∥∥∥(1
1

)∥∥∥∥2

S
= (1)(1)−(1)(1) =

0, which shows that we can have nonzero vectors with length squared equal to zero. This phenomenon occurs

in indefinite scalar product spaces. In this case, any vector of the form~x =
(

a
a

)
or~x =

(
a
−a

)
will have length

squared equal to zero. If we draw the following picture

x1

x2

then values along the red lines correspond to ‖•‖2
S = 0, values in the top and bottom quadrants correspond to

‖•‖2
S < 0, and values in the right and left quadrants correspond to ‖•‖2

S > 0. To more nicely appeal to physicists
sensibilities, let x = x1, x2 = t, and rotate the picture by π

2 :

~x
t

x

where here the values along the red lines correspond to ‖ • ‖2
S = 0, values in the top and bottom quadrants

correspond to ‖•‖2
S > 0, and values in the right and left quadrants correspond to ‖•‖2

S < 0. If we consider the
vector~x = (t0,x0) as the displacement of a particle from x = 0 to x = x0 in the time t. The average speed of this
particle is x0

t0
< 1. If (t0,x0) were above (or below) both of the red lines, then the average speed would be x0

t0
> 1.

Indeed, the sign of ‖•‖2
S distinguishes when speed is above or below 1.
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If we take 1 to be the absolute maximum speed possible (normalized), then having ‖~x‖2
S < 0 corresponds to

motion below this speed limit, and ‖~x‖2
S > 0 corresponds to forbidden motion above this limit. This structure

works well with special relativity, one of the axioms of which is constancy of speed of light.

Definition. If ‖~x‖2
S < 0, then~x is said to be timelike. If ‖~x‖2

S > 0, then~x is said to be spacelike. If ‖~x‖2
S = 0, then

~x is said to be lightlike (or null).

Example. Consider the Lorentzian space (R2,1,S) with S corresponding to

A =

1 0 0
0 1 0
0 0 −1

 (11)

Here we draw the cone corresponding to ‖•‖2
S = 0

This cone is called the light cone.

A Lorentzian scalar product can be seen as creating time and space! Time is the direction of the eigenvector
corresponding to the negative eigenvalue, and space is spanned by the eigenvectors corresponding to the positive
eigenvalues.

Figure 1: https://xkcd.com/1524/

In summary:
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• If (V,S) is an n-dimensional scalar product space with n positive eigenvalues, then its all space, no time.
That is, all vectors~x are spacelike.

• If (V,S) is an n-dimensional scalar product space with n− k positive eigenvalues and k negative eigenval-
ues, then we have n− k space directions and k time directions.

• If (V,S) is an n-dimensional scalar product space with n negative eigenvalues, then its all time, no space.
That is, all vectors~x are timelike.

2.2 Symplectic Vector Spaces

Up to this point, we have been been considering symmetric bilinear functions. What if we instead use anti-
symmetric (or skew symmetric) bilinear functions? We define the subspace ∧2(V ∗)⊂V ∗⊗V ∗ of antisymmetric
binlinear functions. These are the functions represented by matrices B which satisfy BT =−B. We read ∧2(V ∗)
as “wedge V ∗”.

Let ω denote such a function. It is clear that ω(~x,~y) =−ω(~y,~x) for all~x,~y ∈V . Thus

ω(~x,~x) =−ω(~x,~x)

2ω(~x,~x) = 0

ω(~x,~x) = 0

(12)

This tells us that ω can’t give us a useful length. More generally, if~y = k~x for some k, then ω(~x,~y) = 0:

ω(~x,~y) = ω(~x,k~x)

=−ω(k~x,~x)

=−kω(~x,~x)

=−ω(~x,k~x)

=−ω(~x,~y)

(13)

which implies ω(~x,~y) = 0.
Let’s take a closer look at the representatives B of ω:

• n = 1: B = (b), so BT =−B implies b = 0, so detB = 0.

• n = 2: B =

(
0 b
−b 0

)
. Here detB = b2, unless b = 0.

• n = 3: B =

 0 b c
−b 0 d
−c −d 0

. detB = 0.

• n = 4: detB is not necessarily 0.

• n = 5: detB is always 0.

It is a fact that detB = 0 whenever n is odd. So if we impose that ω(~x,~y) =~xT B~y is nondegenerate, then n
must be even!

Definition. A symplectic vector space (V,ω) is an even-dimensional vector space V ∼= R2n equipped with a
nondegenerate antisymmetric bilinear function ω ∈ ∧2(V ∗). The function ω is refereed to as the symplectic
form.

Example. Here we look at (R2,ω) with ω represented by B =

(
0 1
−1 0

)
. This is clearly antisymmetric with
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determinant 1. We calculate

ω(~x,~y) =~xT
(

0 1
−1 0

)
~y

=
(
x1 x2

)( 0 1
−1 0

)(
y1
y2

)
=
(
x1 x2

)( y2
−y1

)
= x1y2− x2y1

(14)

For any vector~x ∈V , we can define P to be the set of all vectors~y such that~y = k~x for some k.

~x

P

x1

x2

So, if~y ∈ P, then ω(~x,~y) = 0. Conversely, if~y ∈ R2 and ω(~x,~y) = 0, then

x1y2− x2y1 = 0

x1y2 = x2y1
x1

x2
=

y1

y2

(15)

Hence we can say ω(~x,~y) = 0 if and only if ~y ∈ P. We will denote R2 \ P by M. Clearly if ~y ∈ M, then
ω(~x,~y) 6= 0. This is telling us that ω is detecting which vectors are parallel to ~x and which are transverse to ~x.
That is, ω “detects” P and M by ω(~x,~z) = 0 if~z ∈ P and ω(~x,~z) 6= 0 if~z ∈M.

Theorem 1. (Darboux’s Theorem at a point for symplectic vector spaces): If (V,ω) is a symplectic vector space
of dimension 2n, then there exists a basis of V in which ω is represented by(

0n In

−In 0n

)
This says that the first n basis vectors span a subspace P, the next n basis vectors span M, and the vectors are

all mutually orthogonal with respect to the Euclidean inner product. In particular, it tells us that up to change of
basis, there is only one symplectic vetor space of dimension 2n.

This is interesting in physics as well: if we have n variables x1, . . . ,xn (position coordinates) they generate
n derivate operators d

dx1
, . . . , d

dxn
(momenta). A symplectic form is an easy way of taking 2n coordinates and

declaring which are positions and which are momenta.

2.3 Complex Vector Spaces

Complex vector spaces arise when we try to create C from R2 using the technique of multilinear of algebra.
Recall C ∼= R2 as sets, but C has a special element i with the property i2 = −1. We would like to turn i into a
linear transformation of some kind, so we need to know exactly how i acts. The element i acts on (x+ iy) ∈C in

the following way: i(x+ iy) = ix−y =−y+ ix. If we write these as vectors in R2, then i
(

x
y

)
=

(
−y
x

)
. This can
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be expressed as a linear transformation J : R2→ R2 represented by a 2×2 matrix C that takes
(

x
y

)
to
(
−y
x

)
.

Hence C =

(
0 −1
1 0

)
. This is the matrix that “changes” R2 into C. That is, C∼= (R2,J).

Note that J ◦ J is represented by C2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
=−I2. So J is indeed the trans-

formation analogue of i. The eigenvalues of J are solutions to det(CλI2):

det
(
−λ −1
1 −λ

)
= 0

−λ
2 +1 = 0

λ
2 =−1

λ =±i

(16)

One can recover i as an eigenvalue of J!

Definition. A pair (V,J) is a complex vector space if V ∼= R2n and J is a linear function V → V such that
J ◦ J = J2 =−IdV . Here J is called the complex structure.

Note that this definition has no explicit nondegeneracy condition: J2 =−IdV is in fact a stronger condition.
We write V ∗⊗V = {linear functions V →V}, so J ∈V ∗⊗V .

Theorem 2. (Darboux’s Theorem at a point for complex vector spaces): If (V,J) is a complex vector space of
dimension 2n, then there exists a basis of V in which J is represented by(

0n −In

In 0n

)
This shows that on a vector space, there are only cosmetic differences between symplectic structures and

complex structures. We will see that on manifolds they are truly different.

2.4 Kähler Vector Spaces

Now suppose that an even-dimensional vector space V possesses both a symplectic form ω and a complex
structure J. We can think of this as a triple (V,ω,J). Note that if~x ∈V , then J(~x) ∈V by definition. So, we can
compose ω and J in two different ways: ω(~x,J(~y)) or ω(J(~x),J(~y)). We don’t consider ω(J(~x),~y) since it is the
same, essentially, as ω(~x,J(~y)): ω(J(~x),~y) =−ω(~x,J(~y)) by skew symmetry. We refer to ω(~x,J(~y)) as ω◦ J.

Definition. We say that J preserves ω (or that ω and J are compatible) if ω(J(~x),J(~y)) = ω(~x,~y).

If (V,J) is a complex vector space, denote by ∧2
J(V

∗) the skew symmetric linear functions which are com-
patible with J. We call ∧2

J(V
∗) the Kähler cone of J.

Given (V,J), take a nondegenerate ω ∈ ∧2
J(V

∗). We can see that ω◦ J is a bilinear function:

ω◦ J :V ×V →V ×V → R
(~x,~y) 7→ (~x,J(~y)) 7→ ω(~x,J(~y))

(17)

Hence ω◦ J ∈V ∗⊗V ∗. Consider how this acts on (~y,~x):

(ω◦ J)(~y,~x) = ω(~y,J(~x))

= ω(J(~y),J2(~x))

= ω(J(~y),−~x)
=−ω(J(~y),~x)

= ω(~x,J(~y))

= (ω◦ J)(~x,~y)

(18)
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Thus, ω◦ J is symmetric ! That is, (V,ω,J) being compatible implies ω◦ J ∈ S(V ∗). We say that J symmetrizes
its compatible ω’s.

What matrix represents ω◦ J? If B represents ω and C represents J, we can compute

(ω◦ J)(~x,~y) = ω(~x,J(~y))

=~xT B(J(~y)

=~xT B(C~y)

=~xT (BC)~y)

(19)

to see that ω◦ J is represented by BC, and since B and C are both invertible, BC is invertible and hence ω◦ J is
nondegenerate. That is, ω◦ J is a scalar product on V ! This leads to the following definition:

Definition. A Kähler vector space (V,ω,J) is an even-dimensional vector space V equipped with a complex
structure J ∈V ∗⊗V , J2 =−IdV , and a compatible symplectic form ω ∈ ∧2

J(V
∗) called a Kähler form. Together,

ω and J induce a scalar product on V by S = ω◦ J, called the Kähler product.

Example. Consider (R2,ω,J), where ω and J are the symplectic and complex structures on R2 represented in

the standard way: B =

(
0 1
−1 0

)
and C =

(
0 −1
1 0

)
. To show that these give R2 the structure of a Kähler vector

space, it is enough to show that ω and J are compatible. Recall that ω(~x,~y) = x1y2− x2y1, J(~x) =
(
−x2
x1

)
and

J(~y) =
(
−y2
y1

)
. Thus,

ω(J(~x),J(~y)) =
(
−x2 x1

)( 0 1
−1 0

)(
−y2
y1

)
=
(
−x2 x1

)(y1
y2

)
= x1y2− x2y1

= ω(~x,~y)

(20)

So ω and J are compatible, and thus ω is a Kähler form for J and S = ω ◦ J is a Kähler product. What is this

Kähler product exactly? It is the scalar product whose matrix is BC =

(
0 1
−1 0

)(
0 −1
1 0

)
=

(
1 0
0 1

)
. Hence,

the Kähler structure on R2 gives it the Euclidean inner product.

Note that eigenvalues of BC are not related to those of B and C in a simple way, and thus ω◦ J is in no way
guarenteed to be an inner product.

Definition. If ω ◦ J is positive definite, then ω is a positive Kähler form for J, and we write ω ∈ ∧2
J+(V

∗). We
call ∧2

J+(V
∗) the positive cone of J.

In particular, we have the following inclusions:

∧2
J+(V

∗)⊂ ∧2
J(V

∗)⊂ ∧2(V ∗)⊂V ∗⊗V ∗ (21)

2.5 Vector Bundles Defined by Vector Spaces

Now let us revisit length: suppose e stand at the origin of a vector space V . To measure the length squared ‖~x‖2
S

of a vector~x, we simply apply the scalar product S. If we walk to P ∈V and find a new vector~y to measure, how
do we calculate ‖~y‖2

S? We have to put~y into “standard position” by translating it: we apply S to the vectory1− p1
...

yn− pn

 (22)
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Another way of thinking about this is to translate the whole vector space: keep the vector ~y fixed but translate
V so that it is centered at P. We don’t want to completely forget about our position, though; that is, we want
to remember P. We want to keep both the old and new vector spaces! This is in some sense more natural that
translating vectors around. We can think of each point in V as being equipped with its own copy of V , centered
at that point.

V

•O

•P

•Q

Copy of V centered at P

Copy of V centered at Q (23)

Now, what exactly have we created? As a set, (23) is V ×V , the set of pairs (~x,~y). For each P ∈V , there is a
copy of V .

Example. R2 = R×R as a set.

As a vector space, V×V has dimension 2n. We denote this vector space V⊕V since, strictly speaking, V×V
does not have a vector space structure, it is simply a set. Read V ⊕V as “the direct sum of V with itself”.

Example. R2 = R⊕R as a vector space.

So, (23) is V⊕V as a vector space, but it has even more structure than that. Note that the example R2 =R⊕R
has an internal symmetry: neither ~x nor ~y is more important. However, in (23), we do care about the original
vector space, as it is the space in which we are moving around in, while the other V ’s are just for measuring
vectors. This asymmetry is an extra structure on top of V ⊕V .

Definition. Consider V ⊕V for some vector space V . If we declare one of the summands V to be the base VB

and the other to be the fibre VF , then VB⊕VF is called the vector bundle defined by V . The base is the vector
space of positions and the fibre is the vector space for measuring vectors.

A few remarks:

• We often denote VF over P ∈VB by VP to emphasize where this fibre lives.

• We also sometimes denote VB⊕VF by U .

• VB doesn’t need a scalar product, since measurements occur in VF . In fact, VB need not even be a vector
space, only a set!

• A symplectic form on an even-dimensional vector space V induces a vector bundle structure in V with the
position subspace as the base and the momentum subspace as the fibre.

11



• We could be more general and turn W ⊕V , where W and V are vector spaces of different dimensions, into
a vector bundle with base V and fibre W . This is the vector bundle of W over V . Here, however, there is
no natural way of identifying vectors in V with ones in the fibre.

Now we will consider the scalar product S on VP. Is there a reason that we would have to use the same S at
each P? From a mathematical point of view, there is no good reason to insist that S be constant with respect to
P. Appropriately, we allow S to depend on P ∈VB, that is, SP ∈ S 2(V ∗P ).

Definition. As P varies, SP creates a family of scalar products, one for each fibre VP. This family is known as
a metric on V , and is usually denoted by g. On a single fibre VP, g is simply SP. but we often write gP. If g is
positive definite for each P ∈VB, then g is a Riemannian metric. If gP is Lorentzian for every P ∈VB, then g is a
Lorentzian metric.

We can think of each P ∈VB as having a vector space S 2(V ∗P ) attached to it, in which gP lives. This gives rise
to another bundle S 2(V ∗P )⊕VB, which we denote by S 2(U∗). This is a bundle of spaces of symmetric bilinear
functions, one such space for each P ∈VB.

VB
•P

•gP

S 2(V ∗P )

VB
•P

•~xP

VP

(24)

So gp measures~xP, et cetera.

Definition. The choice of a vector ~xP in each VP is a section of a bundle U . Hence, the metric is a section of
S 2(U∗).

Normally, we ask that the metric g be smooth (meaning smooth as a function of P). That is, the map from
VB to S 2(U∗) given by P 7→ AP where AP is the matrix which represents gP, is smooth.

Example. Consider the bundle U =R2
B⊕R2

F . A metric g on R2 is a section of S 2(U∗) = S 2((R2)∗)⊕R2
B which

is smooth and nondegenerate at each point in the base.

From each S 2((R2)∗), let us take gP = g(p1,p2) given by A(p1,p2) =

(
1 p1 p2

p1 p2 1

)
. What kind of metric is

g? Eigenvalues of A(p1,p2) are given by (1−λ)2− p2
1 p2

2 = 0 which reduces to λ = 1± p1 p2. Thus,

• If 0≤ |p1 p2|< 1 then A(p1,p2) has two positive eigenvalues and hence g is Riemannian.

• If |p1 p2|> 1 then A(p1,p2) has one positive and one negative eigenvalue and hence g is Lorentzian.

• If |p1 p2|= 1, then A(p1,p2) has at least one zero eigenvalue and is degenerate.

p1

p2

12



Here, the red curve is the degeneracy locus. Points P on the “interior” have fibres R2
P equipped with gP Rieman-

nian. Points P on the “exterior” have fibres R2
P equipped with gP Lorentzian. Note that the Euclidean metric

occurs along the axes.

At the point (2,1) ∈ R2
B, we have g(2,1)(~x,~y) =

(
x1 x2

)(1 2
2 1

)(
y1
y2

)
, so we can calculate, for example,

∥∥∥∥(1
1

)∥∥∥∥2

g(2,1)

= g(2,1)

((
1
1

)
,

(
1
1

))
=
(
1 1

)(1 2
2 1

)(
1
1

)
=
(
1 1

)(1
1

)
= 6

(25)

Finally, we should note that we could also equip V with a varying JP and ωP, and hence have a varying
Kähler structure. Doing so requires further conditions on JP and ωP, called integrability conditions, which we
will see later.

3 Geometry on Smooth Manifolds

3.1 Smooth Manifolds

Now we would like to replace the base VB with something more general. Which features of VB do we wish to
keep? Chiefly, the base needs to have coordinates p = (p1, . . . , pn) that keep track of which which fibre we are
working in. We also want to keep being “tricked” into thinking that our world (the base) is flat. Of course, it is
not, but what we see immediately around us seems to be.

Suppose that we have the circle as our base. This is usually denoted S1, the emph1-sphere. Note that S1

is not necessarily the “round” or unit circle, the set points all equidistant from a given point. These are simply
presentations of the 1-sphere: to a mathematician, S1 is used to denote the closed loop.

∼= ∼=

(26)

That is, we permit deformations of our picture which do not “tear” it. (Here, “∼=” is a homeomorphism).
All the above pictures belong to the same homeomorphism class. For example, the usual round circle is a
representative of the class S1. How can we tell the difference between a closed and an open loop? If we embed
them in the plane without self-intersections, then the closed loop has an interior and exterior, while the open loop
does not (the closed loop divides the plane while the open loop does not). A curve is homeomorphic to S1 if and
only if a non-self-crossing embedding of that curve into the plan has an interior and exterior.

So, we are starting with curves and we want to coordinatize them. For example, to put coordinates on S1, we
could embed it in R2 as the round circle and use the induced (or extrinsic) coordinates from R2.

13



•(x,y)

(27)

But these coordinates depend on each other as x2+y2 = 1. So these coordinates “remember” the embedding.
Also, we should only need one coordinate to tell us where we are on the circle. Even further, our S1 may not live
in R2, but somewhere more exotic.

How could we put a single coordinate on S1 without immersing it in some ambient space? Let’s try this:
First, homeomorph S1 so that it is round. Then put an angle (or polar coordinate) θ on S1. Now we are using θ

to assign each point on S1 to number in the interval [0,2π). This is equivalent to taking the interval [0,2π) and
gluing the ends to make a coordinatized closed loop.

•θ

•θ=0

(28)

Now we could certainly put a vector bundle structure on S1 and measure a vector~x ∈ Vθ using gθ. Suppose
we had a family of vectors ~xθ ∈ Vθ varying with theta. Suppose we want to konw how fast ~xθ is changing with
respect to θ at some θ0. Roughly, this is some kind of derivative d~x

dθ

∣∣
θ=θ0

, which is some limit limθ→θ0

~xθ−~xθ1
θ−θ0

.

Note that if θ0 = 0, then this is limθ→0
~xθ−~x0

θ
, which only makes sense as a one-sided limit! In general, ε−δ limits

are only well-defined if there is a ball (or, in this case, an interval) around the value which we are approaching.
The problem here is that [0,2π) is half-closed as an interval, which is an obstruction to analysis. Coordinates

must come from an open set on Rn, where n is as small as possible. Let us try extending the interval by a small
amount, and use (−ε,2π). Here, the problem is that if we assign more than one θ to a single point, gθ can have
two different values depending on θ, and how can we know which one to use?

The solution is the following: don’t try to cover all of S1 with an open set from R1, but cover it with patches
that overlap each other but not themselves, and have a way of translating between them.

Example. We will cover the circle with two patches (open sets from R1) that each miss exactly one point. Let
us embed S1 into R2 again, just temporarily.

•P=(X ,Y )

•N=(0,1)

LP

•(a,0)

(29)
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In this picture, a is the coordinate assigned to the point P. The line Lp has equation −(1−Y )
X x+1 = y, and (a,0)

is on LP, thus Y−1
X a− 1 = 0, and so a(X ,Y ) = X

1−Y . Hence, if P ∈ S1 has coordinates X ,Y coming from an
embedding in R2, then a(P) = X

1−Y , a single number associated to P. We can obtain all values of a ∈R from this
map, and the map is one-to-one. The only issue (which is by construction) is that the point P = N has no value.
That is, a : S1 \{N} ↪→→ R.

Next, we do the same sort of projection operation, but from the south pole:

•P=(X ,Y )

•S=(0,−1)

LP

•(b,0)

(30)

to obtain b(P) = X
1+Y , and b : S1 \ {S} ↪→→ R. Now, the final hurdle is to understand how we can translate

from a to b. First projecting from the north pole, we have −1
a X +1 = Y . In addition, we know X2 +Y 2 = 1, and

thus

X2 +

(
−1
a

X +1
)2

= 1 =⇒
(

1+
1
a2

)
X2− 2X

a
= 0 (31)

and then either X = 0 or X = 2a
a2+1 . The restriction a 6= 0 makes X = 0 inadmissable, so we must have X = 2a

a2+1 .

The map we are constructing is from R \ {0} to S1 \ {N,S}. Now, −1
a X + 1 = Y becomes −1

a

(
2a

a2+1

)
+ 1 = Y ,

which implies Y = a2−1
a2+1 .

That is, given a ∈ R\{0}, the corresponding point P ∈ S1 has R2-induced coordinates
(

2a
a2+1 ,

a2−1
a2+1

)
. Now,

by applying the b coordinate map, we obtain

b =
2a

a2+1

1+ a2−1
a2+1

=
2a

(a2 +1)
(

1+ a2−1
a2+1

) =
2a

a2 +1+a2−1
=

1
a

(32)

So, what we have is a map

R\{0}→ S1 \{N,S} → R\{0}

a 7−→
(

2a
a2 +1

,
a2−1
a2 +1

)
7→ 1

a

(33)

The north pole coordinate is ϕN(P) = X
1−Y = a(X ,Y ), and the south pole coordinate is ϕS(P) = X

1+Y =

b(X ,Y ). Moreover, (ϕS ◦ϕ
−1
N )(a) = 1

a .

This example inspires the definition of a manifold:

Definition. A smooth manifold is a set M for which there exists a collection of subsets Uα ⊂M such that

•
⋃

αUα = M. That is, {Uα} covers M.

• there is a map ϕα : Uα ↪→ Rn such that Im(ϕα) is an open ball in Rn for each α. The maps ϕα are called
charts and the set of all ϕα is called the atlas. The number n is the dimension of M.

• for each α,β, the map ϕαβ := φβ◦ϕ−1
α : ϕα(Uα∩Uβ)→ϕβ(Uα∩Uβ) exists and is smooth as a map between

subsets of Rn. The maps ϕαβ are called transition functions.
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Example. S1 is a 1-dimensional manifold with atlas consisting of two charts ϕN and ϕS, with transition function
ϕNS(a) = 1

a . Moreover, dk(ϕNS)
dka exists for all a ∈ R\{0}, so the manifold is smooth.

Note that ϕαβ existing and being smooth for all α,β implies ϕβα exists and is smooth. That is, ϕαβ has to
have a smooth inverse. Thus, the transition functions satisfy the strong inverse function theorem:

Theorem 3. (The Strong Inverse Function Theorem)
If U and V are open subsets of Rn and F : U → V is a smooth, onto function, then F has a smooth inverse

F−1 : V →U if and only if the derivative of F is invertible at every point in U.
If this is satisfied, then F−1 has the same property, i.e. that the derivative of F−1 is invertible at every point

in V.

This works with the definition of manifold in the following way: We ask that, for each α,β, the function
ϕαβ = ϕ−1

α ◦ϕβ from ϕα(Uα∩Uβ) to ϕβ(Uα∩Uβ) is smooth. (Implicitly, this asks that ϕ−1
α exists. Also, when

Uα∩Uβ is empty, the function ϕαβ is the empty function, which is trivially smooth.)
By definition, ϕαβ is surjective onto ϕβ(Uα ∩Uβ). Also, the symmetry of the definition means that we are

also asking that ϕβα, which by definition is the inverse of ϕαβ, exists and is smooth. Hence, the definition of
manifold is satisfied when the smooth, onto function ϕαβ : ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ). is invertible with smooth
inverse.

This is equivalent to the strong inverse function theorem holding for ϕαβ and ϕβα, and so if we have a man-
ifold structure, then the derivatives of ϕαβ and ϕβα are everywhere invertible on ϕα(Uα∩Uβ) and ϕβ(Uα∩Uβ),
respectively.

The set M that we started with in the definition of manifold is a “pre-topological space”. A topology is a
collection of subsets of M which we declare to be the open sets of M, and which satisfy a few other properties1.
The definition of manifold should technically include that the Uα form a sufficiently “nice” (second countable
Hausdorff) topology on M. For our purposes, we will say that the subsets Uα in our manifold structure become
the open sets of M. This is known as the induced topology. Note that M is open in M, since M =

⋃
αUα. So we

should denote a manifold by (M,Uα) to emphasize the structure we have placed on it: indeed, manifold structure
is not unique in general. But of course we often just write M.

Example. All vector spaces V are manifolds: cover V by U =V ∼= Rn. This gives coordinates and no need for
transition functions.

Example. Every 1-dimensional connected pre-topological space that admits a smooth manifold structure is
homeomorphic either to the open loop or S1 (this includes knots).

1A topology T for a set X is a nonempty collection of subsets of X called the open sets such that ∅,X ∈ T , the union of any family
of open sets is open, and the intersection of a finite number of open sets is open.
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Example. Every 2-dimensional compact connected oriented pre-topological space admitting a smooth manifold
structure is one of the following:

· · ·

The genus g is a topological invariant that classifies such surfaces. All the surfaces of genus g ≥ 0 can be
made into manifolds.

Example. The easiest way to see the manifold structure on the torus T 2 (the genus 1 surface) is as the quotient
R2/Z2.

Any point in R2 can be obtained from a point in the fundamental domain D by the action +(k, j), k, j ∈ Z.
So if we look at points in R2 up to equivalence by this action, what is left over is the square with identified sides,
which we know is isomorphic to the torus. Thus, the torus receives a manifold structure from R2. This begs an
interesting question: is the torus actually “curved”? We know that other surfaces receive a manifold structure by
gluing: genus 2 curves come from the octagon, etc. However, there is no octagonal lattice on R2 and thus the
genus 2 surface cannot be obtained as R2 modulo a lattice. So the torus appears to be “flat” while the genus 2
surface is not.

Example. The spheres Sn all recieve manifold structures from stereographic projection.

Example. Cartesian products of manifolds are manifolds: if M, N are manifolds covered by Uα,Wα respectively,
then M×N is covered by Uα×Wα.

Example. In many cases, manifolds arise through restriction from a larger manifold: N ↪→ M. Under good
conditions, the manifold structure restricts. Such “good conditions” include when M ∼=Rn and N is cut out of M
by smooth equations: that is, N = {~x ∈ Rn|F(~x) =~y}, where F(~x) is a smooth function.

Example. Using what we calculated earlier, we can draw out the manifold structure on S1 very explicitly:
Thus, ϕNS = ϕS ◦ϕN : R\{0}→ R\{0}, a 7→ 1

a .

3.2 Vector Bundles on Manifolds

Now we want to be able to put a vector bundle struture on M. We could do this by putting a copy of a vector
space at every point in ϕα. However, if a point p is in both Uα and Uβ, then we are going to need some sort of
transition funtion.
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That is, locally, the bundle looks like Uα×Rr for each α. If p ∈Uα ∩Uβ, then its associated fibre is not
unique: we have both Vϕα(p) and Vϕβ(p). How do we convert from on to the other? The map we are looking for
should be an invertible, linear transformation from Vϕα(p)

∼=Rr to Vϕβ(p)
∼=Rr (that is, an r× r matrix). For each

~a ∈ ϕα(Uα∩Uβ), we want an invertible r× r matrix that we will call Eαβ(~a).

V~a

~a ∈ ϕα(Uα∩Uβ)

Vϕαβ(~a)

ϕαβ(~a) ∈ ϕβ(Uα∩Uβ)

Uα∩Uβ

Eαβ(~a)

ϕαβ

ϕα ϕβ

(34)

Note that the data of a vector bundle here is really just the collection of transition functions Eαβ. That is,
once we pick our r× r Eαβ, this tells us that the fibres are copies of Rr. We can write this as

Eαβ : ϕα(Uα∩Uβ)→ GL(r,R) (35)

where GL(r,R) is the general linear group: the group of invertible r× r matrices with real entries.
Here, we will take an aside to make an interesting observation: namely, that GL(r,R) is manifold itself, as

well as a group. This can be seen by writing GL(r,R) = {~x ∈Rr2 |det(~x) 6= 0}, since the determinant is a smooth
function, and so GL(r,R) is cut smoothly out of Rr2

, and so it is a submanifold. This is an example of a Lie
group: a group which is also a manifold.

Example. S1 is another example of a Lie group: to see this embed S1 in C as eiθ for {θ∈R}. Now if g= eiθ ∈ S1

and h = eiψ ∈ S1, then gh = eiθeiψ = ei(θ+ψ) ∈ S1. The identity of this group is ei(0), and the inverse of eiθ is
ei(−θ). When regarded as a group, S1 is usually denoted U(1).

Recall that the transition functions for a vector bundle on a manifold are Eαβ : ϕα(Uα∩Uβ)→GL(r,R). We
can ask for this assignment to be smooth, which leads to the following definition:

Definition. Given a manifold M, a smooth vector bundle V →M of rank r is a collection of smooth functions
Eαβ : ϕα(Uα∩Uβ)→ GL(r,R) for each α,β that index the cover of M.

A few remarks:

• If r = 1, the V →M is said to be a line bundle on M (all the fibres are copies of the real line).
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• If Eαβ = IdR for all α,β and all ~a ∈ ϕα(Uα ∩Uβ) (or if M has only a single chart) then the bundle is the
trivial bundle of rank r over M. This is often denoted M×Rr.

Every bundle has a trivial bundle of every rank r ≥ 1. Are there any other “natural” bundles on a manifold
M? Recall that we already have natural invertible matrices associate to every point ~a ∈ ϕα(Uα∩Uβ): For each
~a ∈ ϕα(Uα∩Uβ), the derivative D~aϕαβ is an invertible linear transformation, and so its matrix (the Jacobian) is
invertible. Recall the Jacobian J~aϕαβ:

J~aϕαβ =


∂

∂a1
(ϕαβ)1 · · · ∂

∂a1
(ϕαβ)1

...
. . .

...
∂

∂a1
(ϕαβ)n · · · ∂

∂an
(ϕαβ)n

 (36)

where (ϕαβ)i is the i-th entry of ϕαβ. This gives us a map~a 7→ J~aϕαβ. We can use this as Eαβ! The bundle defined
by this choice of Eαβ is called the tangent bundle of M, and is denoted T M→M. The tangent bundle has rank
equal to the dimension of M.

T M plays a special role: it “linearizes” M. The fibres of T M, denoted T~aM ∼= Rn are called tangent spaces
to M. Elements~x ∈ T~aM are called tangent vectors to M.

Example. M =V ∼= Rn, a vector space. As a manifold it has no transition functions, so every bundle is trivial.
Thus, T M = TV is trivial of rank n. That is, T M ∼=V ×Rn ∼=V ⊕V ∼=VF ⊕VB.

Example. Consider M = S1 with ϕN and ϕS as charts. We have a single transition function ϕNS(a) = 1
a and the

dimension of M is 1. Thus the Jacobian is 1× 1: Ja(ϕNS) =
( d

da ϕNS
)
=
( d

da
1
a

)
=
(−1

a2

)
. Thus, T S1→ S1 is the

line bundle defined by a 7→ −1
a2 for all a ∈ ϕN(UN ∩US) = R\{0}.

Say we have a vector x = 2 in T3M, which is the north-pole tangent space associated to p ∈ S1. The cor-
responding south-pole tangent space is T1

3
M. To get the corresponding vector in this space, we must apply

ENS(3) =
(−1

32

)
=
(−1

9

)
. Thus, the corresponding vector in T1

3
M is (ENS(3))(2) = −2

9 .

This construction actually captures the original idea that we were seeking: T M is the collection of “imag-
inary” vector spaces that we believe to be around us, and the balls ϕα(Uα) are the bits of Rn in our immediate
vicinity.

Now consider: what is really happening to T~aM when it is mapped to T~bM (where~b = ϕαβ(~a))? The map ϕαβ

“writes”~b coordinates in terms of the ~a coordinates. We can think of the~b entries as functions of the ~a-entries:
bi(a j). The entries of the Jacobian J~aϕαβ are dbi

da j
when ϕαβ are viewed this way. The natural action of J~aϕαβ is

to change d
dbi

to dbi
da j

d
dbi

= d
da j

.

So from this point of view, T~aM consists of vectors made up of operators d
dai

. More formally, T~aM =

span
{

d
da1

∣∣
~a, . . . ,

d
dan

∣∣
~a

}
.

Example. For M = S1, we have T~aS1 = span
{

d
da

∣∣
a=ϕN(p)

}
=
{

k d
da

∣∣
a=ϕN(p)

∣∣∣k ∈ R
}

. One can think of d
da

∣∣
a as the

generator of the tangent space. The vector~x = 2 in T3S1 could then be thought of as 2 d
da

∣∣
a=3, and its counterpart

in T1
3
S1 would be −2

9
d

da

∣∣
b= 1

3
.

We could use these to differentiate functions on the circle (that is, f : S1→ R). For example, let f (a) = a2

on S1 \{N,S}. The vector~x acts on this function by

d
da

(a2)
∣∣
a=3 = 2(2a)

∣∣
a=3 = 12 (37)

On the other chart, we have

−2
9

d
db

(a2)
∣∣
b= 1

3
=
−2
9

d
db

(
1
b2

)∣∣
b= 1

3
=
−2
9

(
2
−1
b3

)∣∣
b= 1

3
=

4
9
(27) = 12 (38)
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This illustrates that we can indeed to analysis on M, and the answers we get should not depend on coordinates.
The metric (the family of scalar products) will live on T M: to each tangent space T~aM, we assign a scalar

product g~a : T~aM×T~aM→ R. We will certainly want the g~a to be compatible across transitions: g~a(~x~a,~y~a) =
g~b(~x~b,~y~b), where p ∈ Uα ∩Uβ, ~a ∈ ϕα(p), ~b = ϕαβ(~a), ~x~a,~y~a ∈ T~aM, and ~x~b,~y~b ∈ T~bM. We can write ~x~b =
(J~aϕαβ)~x~a, so ~x~b is the vector corresponding to ~x~a in Tϕαβ(~a)M = T~bM. Likewise for ~y~a and ~y~b. So, g~a(~x~a,~y~a) =
g~b(~x~b,~y~b) says that

~xT
~a A~a~y~a =~xT

~b
A~b~y~b

=
(
J~aϕαβ~x~a

)T A~b
(
J~aϕαβ~y~a

)
=~xT

~a (J~aϕαβ)
T A~b(J~aϕαβ)~y~a

(39)

So we can see how the matrix of the scalar product must transform: A~a = (J~aϕαβ)
T A~b(J~aϕαβ). This rule tells us

how the metric transforms from coordinate patch to coordinate patch.

• Note that we will sometimes use a superscript α to remind ourselves that ~a ∈ ϕα(Uα), i.e. that ~a is an
α-coordinate.

Example. Let us put a metric on M = S1 and see this in practice. Take gN
a with representative matrix AN

a = (1),
constant for all a ∈ ϕN(UN). Now if b = ϕNS(a) = 1

a , the AS
b must satisfy AN

a = (JaϕNS)
T AS

~b
JaϕNS. That is,

(1) =
(−1

a2

)T
AS

b

(−1
a2

)
, and so we must have AS

b =
(
a4
)
=
( 1

b4

)
. So we could describe g completely by g= (gN

a ,g
S
b)

where gN
a = (1) and gS

b =
( 1

b4

)
.

Now consider, at a point a = 2, the vector xN
2 = 4. The length of xN

2 is given by

‖xN
2 ‖g =

√
gN

2 (x
N
2 ,x

N
2 )

=

√
xN

2
T AN

2 xN
2

=
√
(4)(1)(4)

= 4

(40)

We can also measure it in the south-pole coordinates, but first we must transform it according to our rules:

xS
1
2
= ENS(2)xN

2

= (J2ϕNS)xN
2

=

(
−1
a2

)∣∣∣∣
a=2

(4)

=−1

(41)

And then we can calculate the length of xS
1
2
=−1 to be

‖xS
1
2
‖g =

√
gS

1
2
(xS

1
2
,xS

1
2
)

=

√
xS

1
2

T AS
1
2
xS

1
2

=

√√√√(−1)

(
1

(1
2)

4

)
(−1)

=
√

16 = 4

(42)

Note that on S, the metric is non-Euclidean but gives lengths that agree with those from N.
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3.3 Metrics, Sections, Vector Fields, and One-forms

Since gα

~a : T α

~a M × T α

~a M → R is bilinear, symmetric, and nondegenerate, it belongs to S 2
(
(T α

~a M)∗
)
⊂

(T α

~a M)∗⊗ (T α

~a M)∗. Inspired by this, we can create more bundles: in particular, we define a bundle T ∗M→M
whose fibres are the dual vector spaces (T α

~a M)∗ = {linear maps T α

~a M→ R} with transition functions Eαβ(~a) =(
J~aϕαβ

)−1. This bundle is called the cotangent bundle of M.

Recall that T α

~a M = span
{

d
da1

∣∣
~a, . . . ,

d
dan

∣∣
~a

}
. that is, we are thinking of tangent vectors as being made up of

these derivative operators. If we don’t specify ~a, we get a whole family of operators d
da1

, . . . , d
dan

that do not
belong to any particular tangent space until we specify ~a. We can take a linear combination v = k1

d
da1

+ . . .+

kn
d

dan
, where the ki are functions ki : ϕα(Uα)→ R. Hence, if we evaluate v at ~a, we get the tangent vector

v(~a) = k1(~a) d
da1

∣∣
~a + . . .+ kn(~a) d

dan

∣∣
~a ∈ T α

~a .

Sections of T M→M are called vector fields. In a similar way, we can define operators that generate sections
of T ∗M→M: namely, da1, . . . ,dan. These are linear maps defined as follows, at each~a:

(
dai
∣∣
~a

)( d
da j

∣∣∣∣
~a

)
= δi j =

{
1, if i = j
0, if i 6= j

(43)

This is consistent with dai
∣∣
~a ∈ {linear maps T α

~a M → R}. A linear combination θ = ∑
n
i=1 kidai (where ki :

ϕα(Uα)→ R) is a section of T ∗M→ R, and is called a one-form. Vector fields and one-forms are dual to each
other in the sense that one forms take in vector fields and “spit out” numbers.
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Going further, one can define a bundle S 2(T ∗M) whose fibre at~a ∈ ϕα(Uα) is S 2
(
(T α

~a M)∗
)
. In other words,

a metric g is a section of S 2(T ∗M). From a global point of view, g takes in two vector fields v,w and at each
point p ∈M returns the number gp(vp,wp) (we say p here instead of~a since g is coordinate-invariant).

To summarize,

Bundle Section

T M vector fields v = ∑
n
i=1 ki

d
dai

T ∗M one-forms θ = ∑
n
i=1 kidai

S 2(T ∗M) metrics g = ∑
n
i, j=1 gi jdai⊗da j

The notation g = ∑
n
i, j=1 gi jdai⊗da j comes about because the metric is a section of S 2(T ∗M)⊂ T ∗M⊗T ∗M,

and T ∗M⊗ T ∗M has a basis given by dai⊗ da j. So g can be written as a linear combination of these g =

∑
n
i, j=1 gi jdai⊗ da j, where gi j : ϕα(Uα)→ R and gi j = g ji. This way of writing g is called a line element, from

which we can reconstruct the associated matrix representation.

3.4 The Problem of Mercury and the Einstein Equations

In 1859 it was realized that the observed orbit of the planet Mercury did not match with that predicted
by Newtonian mechanics. At first it was hypothesized that another planet (preemptively named Vulcan) was
perturbing this orbit. When astronomers could not find Vulcan or resolve this disparity by any other means, a
revolutionary idea was needed.

Einstein resolved this with the following idea: suppose that the universe is a manifold M and a particle moves
from p to q in M, and traces out a curve γ. The curve γ could be parametrized by “time” t (normalized): that is,
γ : [0,1]→M, γ(0) = p, γ(1) = q. At each point along γ, the particle has a velocity denoted γ̇. So, γ(t) is a point
in M and γ̇(t) is a point in T α

ϕα(γ(t))
M. That is, γ̇ is a vector field on M. Now if M is equipped with a metric g, we

can define the (arc)length of γ(t) by Lg(γ) =
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

Consider the following: If one drops an object near the earth, under gravity it will take the shortest path to
the ground. This is an example of the principle of least action: If an event is to be selected by nature from a
set of possible events E, and the set has a function H : E → R that is bounded below, then in the absence of
other constraints, the event that occurs is the one that minimizes H. This is not rigourous in the least, and is
not theorem: it is a principle that is taken as a postulate or ansatz. Of all the paths the ball could take, it takes
the one that minimizes the Euclidean length LEuclid(γ). Einstein postulated that particles on a manifold would
act the same way, and move along a length-minimizing path. Now the question is, what metric g are we using?
That is, how are we defining length? The Euclidean metric agreed with observations for all the planets aside
from Mercury. So there were two possibilities: either the priciple does not hold, or the Euclidean metric is the
incorrect one to use to measure length in our universe.

A paper in 1913 by Eintein and Grossmann proposed the following correspondance between ideas in geom-
etry and physics:

Physics Geometry

spacetime manifold
gravitational field metric g

path of motion distance-minimizing curve (w.r.t g)

This could be thought of as general relativity in a nutshell. The next hurdle is to find out what the correct
metric g should be. There are several ways to go about finding a condition on g that would make it “physical”.
Firstly, note that that the metric seems to be locally given by

A =


1 0 . . . 0
0 1
... 1
0 −1

 (44)

This is the Lorentzian equivalent of the Euclidean metric, called the Minkowski metric
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• Idea 1 : Poisson′s Equation. The gravitational field should be in an equilibrium state. That is, the final
state of an evolutionary (time-dependent) process that shaped it. The study of partial differential equations
tells us that such a process is described by Poisson’s equation: ∆gi j = fi j, where ∆ = d2

dx2
1
+ . . .+ d2

dx2
n

and fi j

are fixed functions ϕα(Uα)→R. So what should the functions fi j be? They could be determined by initial
or boundary conditions, and another possiblity is fi j, leading to ∆gi j = 0. This is known as Laplace’s
Equation. Supporting this idea is the fact that Newtonian gravity is also related to Poisson’s equation’:
∆φ = 4πGρ, where φ is the Newtonian potential, G is the gravitational constant, and ρ is density of a
gravitational source. When we take a point mass (ρ = 0), we get a solution φ(r) = −Gm

r .

• Idea 2 : Critical points. At an ordinary point in space p, it is difficult to detect “first-order” deformations
from the Minkowski metric. Another way of saying this is that Dpgi j = 0. That is, we may often find
ourselves at a critical point of g. If we take the Taylor expansion of the components of g at p, we see

gi j = δi j +
1
2

D2
pgi j + . . . (45)

where

δi j =


1, if i = j 6= n
0, if i 6= j
−1, if i = j = n

(46)

What this is saying is that sufficiently close to p, gi j ≈ δi j +
1
2 D2

pgi j, or gi j ∝ kD2
pgi j. Here we see a

proprtionality between two symmetric bilinear transformations. Perhaps

g ∝ ∑
i j

D2
pgi j (47)

• Idea 3 : Curvature control. Recall that the topology of a manifold does not imply anything (for now)
about curvature. Curvature is a feature of the metric, and in fact there are natural tensors associated to g that
measure curvature. One such object is the Riemann tensor Rie(g), the existence of which is a consequence
of the Fundamental Thereom of Semi-Riemannian Geometry, which comes from the existence of the Levi-
Civita Connection, which is a derivative of vector fields induced by g. We will not define Rie(g) formally,
but we will list a few facts about it:

– Rie(g) is a section of (T ∗M)⊗4. That is, it is a map that takes in 4 vector fields and gives a value in
R.

– If Rie(g) = 0, we say that (M,g) is flat.

– If Rie(g) 6= 0, we say that (M,g) is not flat.

– Tr(Rie(g)) is a section of (T ∗M)⊗2. That is, Tr(Rie(g)) is a bilinear function.

– By the “Bianchi Identity”, Tr(Rie(g))is symmetric, and thus Tr(Rie(g)) ∈ S 2(T ∗M).

Further, we define the Ricci tensor R(g) to be Tr(Rie(g)). If R(g) = 0, (M,g) is said to be Ricci-flat. This
is a weaker condition that flat: R(g) = 0 or R(g) ∝ g allows us to control the curvature without making g
“uninteresting”.

So, what is R(g)? There does exist a formula which does not depend on the type of coordinates: we can
represent R(g) by an n×n matrix of entries Ri j, which are given by

Ri j =
n

∑
k=1

d
dak

Γ
k
ji−

d
da j

Γ
k
ki +

n

∑
l=1

n

∑
k=1

Γ
k
klΓ

l
ji−Γ

k
jlΓ

l
ki (48)

These Γk
i j are functions called Christoffel symbols (colloquially, the Christ-awful equations) defined by

Γ
k
i j =

n

∑
m=1

gkm
(

dgmi

da j
+

dgm j

dai
−

dgi j

dam

)
(49)

where gkm is the (k,m)-th entry of the inverse matrix of the metric.
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• Idea 4 : Minimizing the Einstein−Hilbert Action. Both Hilbert and Einstein believed that g should be
“action-minimizing” (that is, that g should minimize the “Einstein-Hilbert Action”). This idea leads to the
equation

R(g) = αg (50)

for some α ∈R. This is known as Einstein’s Equation (or Equations, if thought of in terms of the entries).

Note that if n = 4 (spacetime with 3 space dimensions and 1 time) then g and R(g) are given by 4× 4

matrices of functions of coordinates. By symmetry, there are
(

4+2−1
2

)
= 10 independent terms. This

is why Einstein’s Equations are often given as a set of 10 individual equations that must be solved. If g
solves R(g) = αg, then (M,g) is called an Einstein Manifold. Einstein’s Equation is sometimes expressed
as

R(g)− 1
2

s(g)g+Λg =
8πG
c4 T (51)

where s(g) is the scalar curvature, Λ is the cosmological constant (which was introduced to get solutions
which did not expand and contract over time), G is the gravitational constant, c is the speed of light, and T
is a symmetric bilinear tensor caled the stress-energy tensor. In mathematics we set T to 0, and R(g) = αg
is called the vacuum Einstein Equation(s).

With all these mind, the question is: can we find solutions to R(g) = αg? The answer is yes!

Example. Consider M = Rn with g given by

A =


1 0 . . . 0

0
. . .

... 1
0 −1

 (52)

Recall that we can refer to this as Rn−1,1. This is a solution (with α = 0) since all the entries are constant.

Interestingly, Einstein conjectured no other exact solution to his equations could be found. In 1916, Karl
Schwarzschild constructed the following:

Example. Let M = R×R>0× S2. This is a manifold: R is covered by itself, U = R with coordinate t, R>0
is covered by itself, V = R>0 with coordinate r, and S2 is covered by UN ,US, S2 coordinatized by θ and ϕ (the
latitude and longitude). Note that this is not the “usual” structure on S2. Here t is time, and (r,θ,ϕ) are spherical
coordinates. That is, at a fixed time t = t0 and fixed radius r = r0, we are on a fixed sphere of radius r0, with
latitude given by θ ∈ [−π

2 , π

2 ] and longitude given by ϕ ∈ [0,2π]. For M > 0 constant, g is given by

A(t,r,θ,ϕ) =


2M
r −1 0 0 0

0
(
1− 2M

r

)−1 0 0
0 0 r2 0
0 0 0 r2 sin2

θ

 (53)

The constant M has an interpretation as the mass of the object generating the gravity, and the spacetime is
centered at this mass. We will need to know the eigenvalues of this matrix: since it is diagonal, the eigenvalues
are exactly the entries. Hence, it is Lorentzian. We would like to know, in particular, when gtt < 0: this is when
r > 2M.

• r = 2M is a critical value for g. This is called the Schwarzschild radius.

• When r > 2M, the negative eigenvalue is in the time direction.

• When r < 2M, the negative eigenvalue is in the r direction, and so r is the time direction? This is called
causality change.
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The metric “looks” degenerate or nonexistent at θ = 0 or r = 2M, but this is only a defect of the coordinates we
chose (recall latitude and longitude do not come from a natural manifold structure on S2). Note that g models a
universe near an object of mass M that is gravitating. We take it to a spherical shell of any radius greater than
2M. Can it be demonstrated that this a solution to R(g) = αg for some α? Yes, we used a computer (MAPLE)
to compute R(g) and found that R(g) = 0. Thus, (M,g) is Ricci-flat (and is consequently an Einstein manifold
for α = 0). This g solves the problem of Mercury when we take 2M = 2.95×103m (twice the mass of sun) and
r = 6.96×108m (the radius of the sun). Specifically, there is a distance-minimizing curve around the “star” that
agrees remarkably well with the orbit of Mercury.

What if we had a point mass centered at r = 0? Recall that g is undefined at r = 0, and this is not simply a
defect a coordinate. Perhaps r→ 0 means that gravity is “blowing up” as we approach the centre. All light and
matter that enters the r = 2M ball cannot escape. This is a black hole! In this context, the Schwarzschild radius
is called the event horizon.

Since 1916, there have been many solutions found (in 4 and other dimensions). For example,

• Reissner-Nordström (models gravity near a charged mass)

• Taub-NUT (models gravity near a massive magnetic monopole2)

• Gödel (contains closed distance-minimizing curves, i.e. particles that revisit moments they have already
experienced!)

• Mixmaster (models the end state of a chaotic universe)

• Kerr (models gravity near a rotating mass or black hole — featured in Interstellar!)

Up until now we have only been posing the R(g) = αg question for Lorentzian metrics. This is really only a
physical restriction: could we find Riemannian solutions?

Consider the Euclidean metric g = ∑ j da j⊗da j. if we map a1→ ia1, then g becomes

d(ia1)⊗d(ia1)+
n

∑
j=2

da j⊗da j =−da1⊗da1 +
n

∑
j=2

da j⊗da j (54)

This is known as the Wick transformation. In the late 1960’s, it was realized that Riemannian metrics were
potentially useful for unifying gravity. (M,g), with g Riemannian (and some conditions on its decay: g =
Euclidean+O(r−4)) is called a gravitational instanton). The takeaway here is that Riemannian metrics and
complex manifolds (because of the Wick transformation) became interesting to physics!

We will not explicitly emphasize Riemannian over Lorentzian (or vice-versa) in what follows, but most
examples that we consider will be Riemannian.

Figure 2: Calvin and Hobbes by Bill Watterson (not precisely the type of relativity which we are talking about,
but still entertaining).

2A magnetic monopole, a particle with a single unit of “magnetic charge”, has never been observed in nature. On the contrary, electric
monopoles — which we usually call electrons — are observed all the time. This is an interesting asymmetry in electromagnetic theory.
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3.5 The Idea of Unification

At the intersection of general relativity and geometry, we have an object of interest, namely Einstein mani-
folds, which we recall are manifolds M with metric g such that R(g) = αg. Lorentzian Einstein manifolds were
of chief intereset after 1930. In parallel, the following were occuring:

• The formalization of classical mechanics (position and momentum). In the mid 1800’s , Hamilton’s study
of this lead to symplectic geometry (M with a symplectic structure on its tangent spaces (along with an
extra condition)) as its own field.

• Riemann pioneered complex manifolds (through his study of Riemann surfaces), leading to a formal defi-
nition around 1950.

One of the themes here is the idea of “unificiation”: For examples of unification in physics, we have

• Force and its resulting acceleration are equivalent (F = ma). (Newton, 1687)

• The electric and magnetic forces are equivalent. (Maxwell, 1865)

• The weak and strong and electromagnetic forces are equivalent. (Glashow-Salam-Weinberg, 1979)

• Gravity and the other forces are equivalent. (string theory (?))

On the other hand, for examples of unification in mathematics, we have

• The algebraification of geometry. That is, the Cartesian plane and equations for common shapes. (Descartes,
1600’s)

• The Fundamental Theorem of Calculus: this is the idea that area can be viewed as a difference of an-
tiderivatives. (Newton, 1687)

• The Nullstellensatz (“theorem of zeroes”) which provides a link between algebraic objects known as ideals
and geometric objects called varieties. (Hilbert, 1900)

• The unification of complex, symplectic, and Riemannian geometry: the idea that a complex structure and
a symplectic form induce a metric g = ω◦ J. (Eric Kähler, 1932)

• The Langlands Program (a link between algebra, geometry and representation theory)

By around 1950, mathematics was better formalized than it was previously, largely due to the efforts of David
Hilbert and Emmy Noether. At this point, Kähler manifolds (manifolds which have (ω,J,g) all compatible) were
garnering attention for the unification that they represented. To formally define these, we need to define complex
and symplectic manifolds.

4 Calabi-Yau Manifolds

4.1 Complex Manifolds

There are two natural definitions of a complex manifold, based on what we have done so far:

Definition. (1) A complex manifold is a smooth manifold M with a complex structure on each tangent space
TpM. That is, a linear map Jp : TpM→ TpM such that J2

p =−Id for each p ∈M. We refer to the Jp collectively
as J.

Note that this definition requires rk(T M) to be even (equivalently, dim(M) even).

Definition. (2) A complex manifold is a set M with a covering by subsets Uα and charts ϕα : Uα ↪→Cn such that
ϕα(Uα) is an open ball in Cn. Further, we must have for each α,β that the transition functions ϕαβ = ϕβ ◦ϕ−1

α :
ϕα(Uα∩Uβ)→ ϕβ(UαcapUβ) are holomorphic.
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Here, holomorphic means that φαβ satisfies the Cauchy-Riemann Equations, which in turn is equivalent to the
following: For each~a∈ϕα(Uα∩Uβ)⊂Cn∼=R2n, J~aϕαβ is a 2n×2n matrix, interpreted as a linear transformation

T α

~a M→ T β

ϕαβ(~a)
M. The fibre T α

~a M ∼= R2n has a linear transformation J2
~a =−Id (this is the complex structure that

was making R2n into Cn). Likewise, T α

~b
M ∼= R2n has J2

~b
= −Id. The condition ϕαβ holomorphic means that

Jβ ◦ Jαϕαβ = Jαϕαβ ◦ Jα.
The big question here is now the question of whether these two definitions are equivalent. In fact, they are

different as stated. Definition 2 implies definition 1, but definition 1 is not strong enough to imply definitition
2. We must add a condition to definition 1 to make them agree, and that condition is the following: For all v,w
vector fields on M and for each p ∈M, we ask that Jp satisy

NJp(vp,wp) = 0 (55)

where
NJp(vp,wp) = [Jpvp,Jpwp]− Jp[Jpvp,wp]− Jp[vp,Jpwp]− [vp,wp] (56)

where [−,−] is the Lie bracket defined by

[vp,wp]( f ) = vp(wp( f ))−wp(vp( f )) (57)

where vp and wp are differentiating f : M→ R by interpreting vp as ∑ki(p) d
dxi

∣∣
p (and similarly for wp). NJ is

called the Nijenhuis tensor. With this extra condition, the two definitions are equivalent (this is the Newlander-
Nirenberg Theorem (1957)).

The vanishing of NJ captures the notion of the Jp’s varying holomorphically from tangent space to tangent
space. Without the vanishing of NJ , J is called an almost complex structure. Having both definitions is very
useful! The first is easier to work with in terms of Kähler structure, while the second is easier to construct
examples from.

Example. Our basic example of a comploex manifold will be the the projective line, denoted P1. This is actually
S2 with a complex structure obtained as follows: cover S2 with UN ,US and choose charts ϕn,ϕS that map into C
instead of R2. The transition function here is ϕNS(z) = 1

z (the complex analogue of the S1 transition function!).
So, ϕNS : ϕN(UN ∩US)→ ϕS(UN ∩US) is a map from CC∗ to C∗. Further, one can check that 1

z is holomorphic
on C∗, so we have constructed a 1-dimensional complex manifold.

This is called the projective line; why? This is because is a complex “line” (C1) together with an extra point,
to which all real lines in C converge. This extra point is the point at “infinity” that ϕN sends p = N to. The
adjective “projective” refers to the fact that parallel lines converge at infinity. As a set, P1 is S2, and in terms of
holomorphic coordinates it has a coordinate z∈C (z is the north-pole coordinate) as well as an extra point z = ∞.

Example. Every 2-dimensional (over R) smooth surface of genus g can be turned into a 1-dimensional complex
manifold: These are called curves since they are 1-dimensional over C, but are unhelpfully collectively referred
to as Riemann surfaces.

genus smooth complex

0 the 2-sphere S2 the projective line P1

1 the torus T 2 the elliptic curve
2 the 2-holed pretzel P2 the genus 2 curve
...

...
...
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So, a complex curve is 1-dimensional over C and 2-dimensional over R, a complex surface is 2-dimensional
over C and 4-dimensional over R, a 3-fold is 3-dimensional over C and 6-dimensional over R, et cetera. Note
the following convention: an n-manifold is an n-dimensional smooth manifold over R, while an n-fold is an
n-dimensional complex manifold (2n-dimensional over R).

We can gain some intuition about complex manifolds by studying Riemann surfaces. Here, M is 1-dimensional
over C, so T M has rank 1 (over C). That is, the tangent bundle of a Riemann surface is a holomorphic line bun-
dle. Section of T M are called holomorphic vector fields. These look like v= k d

dz , where k is a single holomorphic
function kα : ϕα(Uα)→ C. The functions kα (recall that the superscript α denotes the chart) collectively van-
ish finitely many times over M. This is a result from complex analysis, owing to the fact that M is closed and
compact.

Let M = P1 and let v be a holomorphic vector filed on M. the data of v is really vN = kN d
dz and vS = kS d

dz ,
where kN is a function of z and kS is a function of 1

z . The transition function relates kN and kS:

−1
z2 kn(z) = kS(

1
z
). (58)

Equivalently, kN(z) = z2kS(1
z ) (we absorb the −1 into kS). Recall that holomorphic imples complex analytic,

which means that we can expand these functions as Taylor series’. Thus, we have

k0 + k1z+ k2z2 + k3z3 + · · ·= z2(l0 + l1
1
z
+ l2

1
z2 + . . .) (59)

which simplifies to

k0 + k1z+ k2z2 + k3z3 + · · ·= l0z2 + l1z+ l2 + l3
1
z
+ l4

1
z2 + . . . (60)

which tells us that there are only three possible nonzero coefficients on each side; k0 = l2, k1 = l1 and k2 = l0. In
particular, kN(z) = k0 + k1z+ k2z2 = z2kS(1

z ). At any p ∈ P1, vN
p = kN(p) d

dz

∣∣
p = (k0 + k1(p)+ k2(p2)) d

dz

∣∣
z=p.

Hence; we have proven that holomorphic vector fields on P1 are represented by degree 2 polynomials (in the
coordinates of one chart) and so the space of holomorphic vector fields on P1 is C3.

As a corollary, every nonzero holomorphic vector field on P1 vanishes at 2 points on P1. Note that if a vector
field is constant on one chart, it vanishes ar 2 points on the other chart. This is reminescent of the so-called hairy
ball theorem. Every holomorphic vector field is a smooth vector field, and smooth vector fields on S2 must vanish
twice. Moreover, the topological Euler characteristic of the sphere is also 2. Thus, our result about the vanishing
of holomorphic vector fields is an example of complex/algebraic geometry detecting a topological property.

Recall that the elliptic curve (g = 1) is really just the fundamental domain in C. That is, C/D = M. Thus the
tangent bundle is trivial (T M = M×C) and v = k d

dz on a single chart. The function k is a holomorphic function
ϕ(M)→C, and since ϕ(M) is compact in C, k is constant and thus the space of holomorphic vector fields on the
elliptic curve is just C. Thus the generic (k 6= 0) vector field on M is nowhere vanishing.

We have the facts

genus the number of times a generic vector field vanishes

0 2
1 0
...

...
g 2−2g
...

...

The fact that when g≥ 2, 2−2g < 0 seems strange. What this means is that a holomorphic vector fields on a
genus 2 (or higher) surface has |2−2g|= 2g−2 more “poles” (places where kα→ ∞) than zeroes. These poles
are two-dimensional asymptotes. In the following, 2−2g =−2, and p,q are the poles of the vector field.
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As a corollary: on a genus g≥ 2 surface, there are no nonzero holomorphic vector fields.

Definition. The number 2−2g is called the degree of the tangent bundle a Riemann surface M of genus g. This
is also called the first chern class of T M.

deg(T M) = c1(T M) = 2−2g (61)

Chern classes were introduced in 1946 by Shiing-Shen Chern, one of the fathers of complex geometry. We
will see a different interpretation of them later on.

Let us focus on the interpretation of deg(T M) = 2−2g.

• M = P1: We have previously computed deg(TP1) = 2 (from vN(z) = (k0 + k1z+ k2z) d
dz ), and so there is a

C3’s worth of vector fields on P1.

• For M the elliptic curve, M has a one-dimensional space of holomorphic vector fields vα(z) = kddzα.
The transitions for T M mean that k is the same on each chart, and each such v is nonvanishing (except
when k = 0 and we have the zero vector field. This is consistent with the idea that on an elliptic curve,
T M = M×C

• When g≥ 2, 2−2g≤ 0 and so every nonzero vector field has 2−2g more poles than zeroes.

By duality, deg(T ∗M) = 2g−2. This implies that P1 has no nonzero holomorphic one-forms (they all have
exactly two more poles than zeroes), the elliptic curve has constant one-forms, and a curve with g≥ 2 as plenty
of holomorphic one-forms, vanishing at 2g−2 points.

4.2 Symplectic Manifolds

Now, what about symplectic geometry?

Definition. A symplectic manifold is a smooth manifold with a family ω of symplectic structures ωp on each
tangent space TpM (that is, ω ∈ ∧2(T ∗p M)) such that ωp is nondegenerate at each point p ∈M and dω = 0 (when
dω = 0, we say ω is closed).

Note that this definition again necessitates that rk(T M) = dim(M) is even over R. As a section of ∧2(T ∗M),
ω can be written in a basis of one-forms as ω = ∑i, j ωi jdxi∧dx j.

Definition. Elements of ∧k(T ∗M) are called k-forms. The function d is the exterior derivative,

d : ∧k(T ∗M)→∧k+1(T ∗M)

defined by the following:

d(α∧β) = dα∧β+α∧dβ and d( f dx) = d f ∧dx (62)

where (d f )p(vp) = (Dp f )(vp). These equations also imply d2x = d(dx) = 0
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From this definition, we can write

dω = d

(
∑
i, j

ωi jdxi∧dx j

)
= ∑

i, j
d (ωi jdxi∧dx j)

= ∑
i, j

d(ωi jdxi)∧dx j +ωi jdxi∧d2x j

= ∑
i, j

dωi j ∧dxi∧dx j,

(63)

a 3-form which we ask to be identically zero. Why is this? From a physics point of view, if a system of differential
equations is Hamiltonian (i.e. has an energy function H) then there exists a Poisson bracket. If this bracket
is everywhere nondegenerate, then the bracket becomes ω, and the closure condition dω = 0 corresponds to
conservation of energy H along flows of the system. From a mathematical point of view, dω= 0 gives Darboux’s
Theorem on manifolds: that is, around each point p ∈M, there exists an open (in the manifold topology) set U

such that ω can be written ω =

(
0 In

−In 0

)
at each point in U . In particular, ω is locally constant.

The conditions NJ = 0 and dω = 0 are referred to as integrability conditions.

4.3 Kähler Manifolds and the Calabi Conjecture

Now suppose that a manifold M is both complex and symplectic. Then by the Newlander-Nirenberg Theorem,
there exists a family J of complex structures on tangent spaces. We say that ω is compatible with J if ω(Ju,Jv) =
ω(u,v) for all smooth vector fields u,v on M. Technically, we should say ωp(Jpup,Jpvp) = ω(up,vp) for all
p∈M. Then (ω◦J)(u,v) = ω(u,Jv) is a metric on M (a nondegenerate section of S 2(T ∗M)). Alternatively, if M
is a complex manifold with metric g, and g(Ju,Jv) = g(u,v) for all smooth vector fields u,v, then (g◦ J)(u,v) =
g(Ju,v) is an (almost) symplectic form on M (only ‘almost’ due to the fact that dω = 0 is not guaranteed in this
direction).

Definition. If (M,J,ω) has ω compatible with J, then M is called a Kähler manifold.

Alternatively,

Definition. If (M,J,g) has g compatible with J and d(g◦ J) = 0, then M is called a Kähler manifold.

The form ω is called the Kähler form and g is called the Kähler metric. It is an important fact that all compact
Riemann surfaces are Kähler. The following is sometimes called the Kähler package:

Structure J ω g
Integrability NJ = 0 dω = 0 ?

It seems that there is no integrability condition on g. Should there be? If so, what should it be? Calabi was
the first to notice this asymmetry, and proposed that we consider R(g) = 0. That is we could say g integrable if
and only if g is a Ricci-flat Einstein metric.

Note that if we start with g and form ω as ω◦ J, we can do the following:

g R

(g◦ J)(u,v) = g(Ju,v) (R◦ J)(u,v) = R(Ju,v)

curvature

antisymmetrize

curvature

antisymmetrize

(64)

This defines R(ω), the Ricci form or Ricci curvature of ω. The Ricci tensor R(g) can be thought of as
the symmetric curvature, and the Ricci form R(ω) as the antisymmetric curvature. These contain the same
information and can be obtained from one another by composing with J.
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Definition. If (M,J,ω) is Kähler, and g = ω◦J satisfies R(g) = 0 (equivalently, if R(ω) = 0) then M is said to be
Kähler-Einstein. The equation R(ω) = 0 is the Kähler-Einstein equation (which is a special case of R(ω) = αω).
Equivalently, M is Kähler-Einstein if the Kähler data is tri-integrable: NJ = 0, dω = 0, and R(g) = 0.

The Kähler-Einstein Problem is the following: given (M,J,ω) a Kähler manifold, when is (M,J,ω) Kähler-
Einstein? We will attempt to gain insight into this problem by studying Riemann surfaces.

Instead of defining c1(T M) as deg(T M) a priori, we can define c1(T M) =
∫

M R(ω). The fact that R(ω) is a
nondegenerate 2-form means that it can be integrated over the 2-dimensional real surface M. Moreover, the fact
that M is compact implies that the integral converges.

Theorem 4. (The Gauss-Bonnet-Riemann-Roch-Chern Theorem):

1
2π

c1(T M) =
1

2π

∫
M

R(ω) = χ(M) = 2−2g = deg(T M) (65)

This theorem can be proven using the so-called “dd-lemma” for Kähler manifolds, which we will state
shortly. In addition, it has the following consequences. It does not matter which (compatible) ω is used to define
c1(T M): it is 2π(2g− 2) regardless. Thus c1(T M), up to a factor of 2π, it is equal to the Euler characteristic
(which is a purely topological invariant). The topological invariants g and χ are obtainable from one another in
a one-to-one way. We usually redefine c1(T M) as 1

2π

∫
M R(ω) so that c1(T M) ∈ Z. We can define the first Chern

class of a manifold c1(M) = c1(T M).
It is possible to say similar things in higher dimension but for complex dimension ≥ 2, deg(T M) is still a

number but it is not canonical. Also, c1(M) is no longer a number (but can be turned into one again by making
some choices). Unless, of course, c1(M) is a zero object, in which case c1(M) is a number: it is 0.

Let M be any Kähler manifold (M,J,ω). If R(ω) = 0, then c1(T M) = 1
2π

∫
M R(ω) = 0. That is, a Kähler-

Einstein structure imposes c1(M) = 0. Immediately, if M is a Riemann surface with Kähler-Einstein structure,
then c1(M) = 0 = 2− 2g, which implies g = 1 and thus the only Riemann surface which can have a Kähler-
Einstein structure is the elliptic curve. Consider the other direction: is c1(M) = 0 enough to guarentee the
existence of Kähler-Einstein structures? For example, let M be the elliptic curve with any compatible ω and
compute R(ω). Calabi was not able to find any explicit compatible ω with R(ω) = 0. He did, however, pose the
following:

The Calabi Conjecture (1957): If a compact Kähler manifold (M,J,ω) has c1(M) = 0, then there exists a
smooth function φ : M→ R such that R(ω+ddφ) = 0.

The term dd is the complex Laplacian, which is the antiholomorphic exterior derivative followed by the
holomorphic one, giving a complex 2-form. So what we are doing is taking ω and disturbing it a bit: that is,
disturbing (M,J,ω) to (M,J,ω+ ddφ). However a sequence of φ such that R(ω+ ddφ) = 0 was unable to be
found. We say that ω+ddφ is in the same Kähler class as ω since d(ω+ddφ) = dω+d2dφ = 0. The function
φ is called a Kähler potential.

Lemma 5. (The dd-Lemma): ω is compatible with J if and only if ω = dd f for some funciton f : M→R, where
d and d are exterior derivatives coming from J.

Recall that the Kähler cone of J is ∧2
J(T

∗M), the set of all nondegenerate closed ω’s compatible with J. So
if we start with a compatible symplectic form ω, then ω+ ddφ = dd f + ddφ = dd( f + φ), and so ω+ ddφ ∈
∧2

J(T
∗M). This tells us that compatibility is not an issue when we deform ω in this way.

Example. We could consider M = R2 with J given by C = and ω given by B =. This is Kähler and hence a
Kähler manifold. Recall that ω◦ J is the metric given by I2. That is, the Kähler metric is the Euclidean metric.
ω constant implies that R(ω) = 0, and hence Euclidean space is Kähler-Einstein. However this is not the sort of
solution that Calabi was looking for: he was looking for noncompact examples, such as on a Riemann surface.

Physicists did not necessarily see immediate value in these constructions, even if ω◦J was Lorentzian. Com-
patibility is a strong condition: why should the Einstein metric g have to be compatible with ω via some complex
structure J? Moreover, a Kähler-Einstein structure imposes c1(M) = 0, and there was no evidence that the first
chern class of the universe was zero. What they wanted was exact solutions to the original Einstein equations,
not some even more difficult equations! Mathematicians thought there was a potential reward: if c1(M) = 0 im-
plies the existence of a Kähler-Einstein structure, then Kähler-Einstein metrics are purely topological in nature,
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and we would know they exist simply from the topology of a space (no equations required). In the 1960’s, the
Kähler-Einstein problem was identified by the leading geometers of the day (Calabi, Chern, Atiyah and others) to
be a major problem in mathematics, a problem bridging topology and geometry in need of an analytical solution.
In the late 1970’s Shing-Tung Yau, a student of Chern, solved this problem.

4.4 A Sketch of Yau’s Proof of the Calabi Conjecture

Shing-Tung Yau proved the Calabi conjecture to be true. The following is a rough sketch of his revolutionary
proof.

We have c1(M) = 0, and thus
∫

M R(ω) = 0. One way that this could happen is if R(ω) = 0. Another
possibility is that R(ω) = dd f for some f , in which case∫

M
R(ω) =

∫
M

dd f =
∫

V
d2d f =

∫
V

0 = 0 (66)

where V is the volume contained in M. This is in fact always the case, by another application of the dd-Lemma.
So R(ω)− dd f = 0. What we wnat next is a function φ : M→ R such that R(ω+ ddφ) = R(ω)− dd f . Calabi
found that this equation is equivalent to

−dd logdet(ω+ddφ) =−dd logdet(ω)−dd f

dd log
(

det(ω+ddφ)

det(ω)

)
= dd f

det(ω+ddφ) = e f det(ω)

(67)

which is a nonlinear partial differential equation in variables zi,zi, in particular is a type of Monge-Ampére
equation. The question becomes: does there exist a solution φ for each f ? Note that there is a particular
normalization at R(ω) = dd f that ensures that two different φ cannto be solutions for the same f . Calabi showed
that if a solution φ exists for f , then it is unique (up to addition of a constant). The next point is to realize that
there is at least one solution: for f = 0 there is a trivial solution φ = 0.

Next, we want to consider the map Φ : φ 7→ f which takes solutions φ of det(ω+ddφ) = e f det(ω) to the f
for which they are solutions. Let the set of solutions to 67 be S ⊆ C ∞(M) . Thus Φ : S/R→ C ∞(M) (S/R is S
modding out by translation by R). So Im(Φ) is the set of f with solutions. The fact that if φ exists for f then it is
unique implies that Φ is injective. We also know that Im(Φ) is nonempty. Next, Calabi showed that dd is locally
invertible: if we have a solution φ0 for f0 then there exists a set of solutions for f ’s near to f0. Thus Im(Φ) is a
nonempty open subset of C ∞(M).

The following is the key to the proof, due to Yau. Consider Im(Φ) ⊆ C ∞(M). Now suppose F ∈ Im(Φ) \
Im(Φ) and suppose that there exists a sequence φ1,φ2, . . . of solutions such that f1, f2, . . . approaches F . We
want to show that {φi} converges to a φ∞ that is a solution for 67 for F . Yau provided a priori bounds on the
φi and their derivatives in terms of the derivatives of log( fi). The goal was to show that the sequence {φi} lies
in a compact subset of C ∞(M)/R. This would imply that the φi converge to a (finite) φ∞ that is a solution for
F . Then Im(Φ) = Im(Φ), so Im(Φ) is open and closed, as well as nonempty. Thus Im(Φ) = C ∞(M) and so
every f in C ∞(M) has a solution φ, and so the Calabi Conjecture is true. Most such bounds are not initially good
enough to conclude compactness: they require careful incremental improvements (about a dozen in this case),
each requiring different analytical tricks and estimates. Yau was able to do this this for the equation 67 with the
condition det(ω+ ddφ) > 0. This method of proof is now called the continuity method. Yau was awarded the
1982 Fields Medal for this work.

This solves the Kähler-Einstein problem in the affirmative:

Theorem 6. (The Calabi-Yau Theorem): If (M,J,ω) is Kähler with c1(M) = 0 then M admits a Ricci-flat Kähler
structure within its Kähler class (that is, ω is deformed to ω+ddφ)).

Such manifolds are now called Calabi-Yau manifolds (Kähler-Einstein more generally refers to Kähler man-
ifolds with R(ω) = αω for some α, and Calabi-Yau refers specifically to the α = 0 case).

32



4.5 Calabi-Yau Geometry and Hodge Numbers

We have the following different types of Kähler-Einstein manifolds:

• α = 0: Calabi-Yau.

• α > 0: Fano (or del Pezzo).

• α < 0: General type. The name “general type” comes from the fact that when M is of any dimension, α

plays the role of 2−2g. Recall that most Riemann surfaces have 2−2g < 0, so it can be thought of as the
“most common”.

For α > 0, the Kähler-Einstein problem is solved n the positive: there exists φ such that R(ω+ddφ) = αω.
This is known as the Aubin-Yau Theorem, and was proved earlier than the α = 0 case.

For α < 0, the Kähler-Einstein problem is negative. The Riemann surface M = P1 with Kähler structure
given by the complex analogue of the round metric (this is known as the Fubini-Study metric) is Kähler-Einstein
for α = 1: R(ω) = ω. Thus P1 is an example of a Fano Kähler-Einstein manifold. However there are Kähler
manifolds with c1(M) a positive class for which R(ω+ ddφ) = αω has no solution φ for any α > 0 (the first
examples of such manifolds were found by Tian). So when exactly is a Fano Kähler manifold Einstein? A
condition was found in 2012, by Donaldson/Tian/et al.

Note that Yau’s proof for α = 0 is a proof of existence and uniqueness, but it is not constructive. In particular,
no one has ever written down an explicit Calabi-Yau metric on a compact Calabi-Yau manifold.

One could ask for a rough classification of Calabi-Yau manifolds:

complex dimension Calabi-Yau manifolds

1 The elliptic curve E
2 K3 surfaces
3 Calabi-Yau 3-folds
...

...
n Calabi-Yau n-folds
...

...

The K3 surfaces include E×E as well as other nontrivial elliptic fibrations. There is ongoing interest in Calabi-
Yau 3-folds.

There is a small issue with the definition of Calabi-Yau manifolds that we use. What if M were noncompact
but not just R2n (that is, noncompact but interesting). Certain aspects of our arguements break down in the
absence of compactness. We could replace the condition c1(M) = 0 with det(T ∗M) = M×C. The determinant
of the vector bundle T ∗M is defined in the following way: the transition functions of T ∗M are elements of
GL(n,C) (i.e. they are invertible, complex-valued Jacobians) where n = dimC(M). The determinants of these
are nonzero complex numbers (i.e. elements of C∗ = GL(1,C)) which can be used to define a line bundle on M.
Now note that det(T ∗M) = M×C certainly implies that c1(M) = 0, but not the converse. So this is a stronger
condition and we are thus restricting our class a bit. The line bundle det(T ∗M) is called the canonical line bundle
of M.

A complex manifold M is called projective if there is a complex embedding M ↪→ PN . A projective mani-
fold is always Kähler (by restricting the Fubini-Study Kähler structure from PN to M). We have two different
definitions of Calabi-Yau manifolds: a Kähler manifold with c1(M) = 0 and R(ω) = 0 can be thought of as the
differential geometer’s or physicist’s definition of Calabi-Yau manifolds, while a projective complex manifold
with det(T ∗M) = M×C can be thought of as the algebraic geometer’s definition.

The Strominger-Yau-Zaslow Conjecture (1996): Every Calabi-Yau manifold (either definition) is a torus
fibration (possibly degenerate).

That is, the conjecture is that there exists a manifold B and a smooth map π such that π : M→B is surjective
and π−1(b) is homeomorphic to S1×·· ·×S1 (except possibly at some b∈B , where the fibre is some degenerate
torus). The compactness of M is controlled by B . That is, if M is compact then B is compact and if M is
noncompact then B is noncompact (but the fibres are always compact). Note that B need not be a complex
manifold.
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Example. The elliptic curve E is a torus fibration in two different ways: B ×E where B is a single point, as
well as S1×S1.

Around 1985, Calabi-Yau manifolds gained attention in physics due to a paper by Candelas, Horowitz,
Strominger, and Witten called “Vacuum configurations for superstrings”.

Figure 3: https://smbc-comics.com/index.php?id=4130

A natural question arose: are there equations that integrate string theory into gravitational theory? This was
important because of the belief that string theory might be the correct forum for unifying gravity with other
forces and quantum theory. The following set of equations, which mimic the Einstein equation in some sense,
accomplishes this:

R(g)+δ(T )+2∇
g(dΦ) = 0 (68)

δ(T ) = ∇
grad(Φ)•T

∇
g
ψ = 0

(2dΦ−T )•ψ = 0

These are equations on (M,g,Φ,T,ψ), where Φ is a function (called the dilaton), T is a 3-form, ψ is a
“spinor field” (which can be thought of as the string), and ∇g is the Levi-Civita connection of the metric. Under
the assumption of “supersymmetry”, these equations were found to have a 10-dimensional space of solutions,
the idea being that the strings themselves should generate spacetime and its properties, at least locally. So, the
freedom of the strings should equal the dimension of spacetime.
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This seems to say that our universe M should be (at least locally)

R3,1×X ,

where R3,1 is just 4-dimensional Minkowski space and X is 6-dimensional over R. We only experience 4 dimen-
sions, so X should be compact and small enough so that we cannot detect it (diamg(X)≤ 10−17cm).

If we have a compact X with g and T , then T can be reduced to a 2-form ωT (by evaluating one of its slots).
We can then ask that g = ωT ◦ J for some complex structure J. This can be thought of as an additional equation,
one that makes g and T have a relationship to one another other than equation 68. This is important because,
if we take Φ to be constant (a common assumption in physics), then the original relationship between g and T
coming from equation 68 is lost. In fact, under the “constant dilaton” assumption, equation 68 reduces to simply

R(g) = 0.

Since we have a complex structure J, a symplectic form ωT , and a metric g (all related by g = ωT ◦ J) with
R(g) = 0, we have that X is a Calabi-Yau manifold, by Yau’s result!

That is to say, the compactification of the 6-dimensional non-Minkowski part of superstring theory is a
Calabi-Yau 3-fold. From here on, what we know (or think we know) about Calabi-Yau manifolds is largely due to
the efforts of physicists. String theory has lead to some serious controversy in physics. An experimentalist could
ask whether string theory leads to testable predictions, and a theorist would reply that indeed they do, although
these are such high energy predictions that we will never see such experiments 3. The latest developments are

That is not to say that theorists are completely satisfied with the theory; there are some questions. For
example, our simplest nontrivial solution to the Einstein equation R(g) = 0 was the Schwazchild metric, which
assumes M = R×R>0×S2. We need a topology before we can solve the equation! Another question is that of
how many Calabi-Yau 3-folds X the string equations could be solved on. That is, from the point of string theory,
which X could we use? Are there many reasonable choices or only a few? This is known as the problem of
moduli (or vacua). Moreover, when are two Calabi-Yau manifolds isomorphic and when are they different? We
are going to introduce more invariants which will help us answer this question.

Recall that a complex manifold M comes with operators d and d, as we have seen in the context of Yau’s
proof. We will now define a new kind of form, having so-called “mixed type”.

Definition. Let M be a complex manifold. A (p,q)-form is a p+q-form defined by

θ = ∑ fi1,...,ip, j1,..., jqdzi1 ∧·· ·∧dzip ∧dz j1 ∧·· ·∧dz jq . (69)

We denote by Λp,q(T ∗M) the set (in fact, the vector space) of all (p,q)-forms on M.

Example. We have already seen examples of such forms in our study of Kähler structures: ω = dd f is a (1,1)-
form.

Definition. We define d : Λp,q(T ∗M)→ Λp,q+1(T ∗M) by

dθ =
(
J(z1,...zn) f

)dz1
...

dzn

∧dzi1 ∧·· ·∧dzip ∧dz j1 ∧·· ·∧dz jq . (70)

One can calculate that d
2
= 0.

Definition. The Dolbeault cohomology groups H p,q(M) are defined by

H p,q(M) =
ker
(
d : Λp,q(T ∗M)→ Λp,q+1(T ∗M)

)
im
(
d : Λp,q−1(T ∗M)→ Λp,q(T ∗M)

) . (71)

A form θ is closed if dθ = 0. A form ψ is exact if ψ = dη for some η.

3Do two wrongs make a right? Possibly!

35



If ψ is exact, then dψ = d
2
η = 0, so all exact (p,q)-forms are closed. The Dolbeault cohomology groups are

basically closed (p,q)-forms modulo exact (p,q)-forms.

Definition. The Hodge numbers of M are hp,q = dimCH p,q(M).

When M is smooth, compact and Kähler, the Hodge numbers are topological invariants. Note that H p,q(M) =
0 when either p or q is less than zero, and moreover H p,q(M) = 0 when either p or q is greater than the complex
dimension of M, which we denote by n. Now recall that we had redefined Calabi-Yau manifolds to be projective
manifolds with det(T ∗M) = M×C. Projectivity of the manifold implies H p,q ∼= Hn−p,n−q. Finally, being Calabi-
Yau imposes another condition: H p,0 ∼= Hn−p,0.

The Hodge numbers can be viewed as forming a diamond:

Example. Consider a Riemann surface, so dimC(M) = n = 1. The Hodge numbers can be organized as

h0,0

h0,1h1,0

h1,1
(72)

where projectivity implies h1,0 = h0,1 and h1,1 = h0,0.

Definition. The k-th Betti number of M is bk = ∑p+q=k hp,q.

The Betti numbers are sums of the rows of the Hodge diamond. So continuing our example above, we have
b0 = h0,0, b1 = h1,0 +h0,1 = 2h1,0, and b2 = h1,1.

The Betti number bk has a topological interpretation as the number of deformation classes of closed topo-
logical submanifolds a real dimension k.

Example. Let M = S1 (this is not a complex manifold, but Betti numbers are purely topological so we can still
look at them). Up to deformation, there is only one point on S1 (as any point can be rotated to any other) and
there is only one circle, S1 itself. Hence b0 = 1 and b1 = 1.

Example. Consider the 2-sphere S2. Again b0 = 1, and now b2 = 1 since there is only one sphere in S2, itself.
b1 = 0, since all closed loops on S2 can be contracted to points.

Example. Now consider the torus, M = T 2. Again b0 = 1 and b2 = 1, and here b1 = 2, since there are two
distinct incompressible loops on T 2 (these could be thought of as the two copies of S1 that generate T 2 as
S1×S1).

For any Riemann surface M, b0 = 1, b1 = 2g, and b2 = 1. So the Hodge diamond of any Riemann surface is

1

gg

1 (73)

We can write directly
h0,0 = dimC

(
ker
(
d : Λ

0,0→ Λ
0,1)) . (74)

Note that Λ0,0 is the space of functions f : M→C, so we are asking for functions which have zi derivates 0. That
is, H0,0 is the space of holomorphic functions f : M→ C. Since M is compact, all holomporphic functions are
constant, so H0,0 ∼= C.
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In addition,

h1,1 = dimC

(
ker
(
d : Λ1,1→ Λ1,2

)
im
(
d : Λ1,0→ Λ1,1

) )
= TωΛ

2
J(T

∗M)

(75)

where ω is our symplectic form and Λ2
J(T

∗M) is the Kähler cone of J. This tells us that h1,1 is the dimension of
the Kähler cone of J, which is 1 for the elliptic curve.

Recall that the elliptic curve can be realized by C/Γ, where Γ is some lattice structure on C:

Γ = {mw1 +nw2|m,n ∈ Z}
∼= {m+n

w2

w1
|m,n ∈ Z}

(76)

Thus τ := w2
w1
∈ C∗ determines Γ and hence the elliptic curve. H0,0 = TJC∗ (the complex cone of the torus) and

so h0,0 = 1, which is consistent with the dimension of C∗. Thus for M the elliptic curve we have

1

11

1 (77)

where the first row accounts for “complex deformations” of M, the second row comes from g = 1, and the
bottom row accounts for “symplectic deformations”. We must fine-tune two real numbers (the complex modulus
and symplectic modulus) of the elliptic curve to set the background for the string equations.

Now let us turn our attention to K3 surfaces: here, the Hodge diamond is

h0,0

h0,1h1,0

h1,1

h2,2

h1,2h2,1

h0,2h2,0

(78)

with some symmetries induced by the conditions on the Hodge numbers. In fact, for any K3 surface, one can
calculate that the Hodge diamond is

1

00

20

1

00

11

(79)

The fact that h1,1 = 20 implies that there are 40 real parameters required to fix a particular K3 surface.
Equivalently, therea re 40 real parameters required to fix the background fro K3 string theory.
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Finally, we can consider Calabi-Yau 3-folds, which have Hodge diamonds calculated as

1

00

h1,1

h2,2

h1,2h2,1

1

00

00

0

1

0

1

(80)

Now we see that not all of the terms are constant, although we do have h1,1 = h2,2 (the symplectic dimension)
and h1,2 = h2,1 (the complex dimension).

4.6 Mirror Symmetry and a Look Forward

Let us take a look at a particular CY 3-fold:

Example. The Fermat quintic M is a Calabi-Yau submanifold of P4 defined by the equation x5
1 + x5

2 + x5
3 + x5

4 +
x5

5 = 0, and has Hodge diamond
1

00

1

1

101101

1

00

00

0

1

0

1

(81)

This says that there are 202 real numbers required to fix a complex structure on M. This is certainly not ideal for
physicists, who wish to do calculations!

In 1990, Greene and Plesser found a different Calabi-Yau 3-fold M̌ with Hodge diamond

1

00

101

101

11

1

00

00

0

1

0

1

(82)

The 3-fold M̌ can be obtained from M via quotient by a finte group action. The important fact is that physics is
the same on M and M̌, and so problems on one could be solved on the other if they are simpler there (and indeed
this turned out to be the case). In this case, the idea would be to work symplectically in M and complexly in M̌.
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The idea of mirror symmetry is that there are pairs of Calabi-Yau 3-folds in which the interior diamond
is rotated. If M solves the type II string equations (known as the B-model), then M̌ solves the type I string
equations (known as the A-model). Whether the universe is type A or B is indistinguishable by phsyics, so these
are equally valid.

For example, counting degree n curves on the Fermat quintic is a natural problem. Candelas and de la Ossa,
who were physicists, published a result on this topic using the idea that counting curves on M is the the same
as counting solutions to (II) to on M, which is the same as counting solutions to (I) on M̌. Around the same
time, Ellingsrud and Strømme (who were mathematicians) published another solution using classical methods.
But these two results were different! It turned out to be the mathematicians who were mistaken, and this dustup
re-interested many mathematicians in Calabi-Yau manifolds and got them working on mirror symmetry.

Computations have found many examples of mirror pairs, but mathematically this seems to be a coincidence:
why is this happening? What is the truth?

In 1994, Kontsevich proposed a rigorous interperetation of mirror symmetry, the understanding of which
involves the following ideas: Note that complex manifolds form a category, which we call Cpx. The morphisms
of Cpx are complex analytic maps between manifolds. Symplectic manifolds also form a category, Symp. The
morphisms of Symp are symplectomorphisms, which are defined in the following way. If (M,ω),(M′,ω′) ∈
Ob(Symp), f : M→M′ is a symplectomorphism if ω′( f∗u, f∗v) = ω(u,v) ( f∗ is the induced map on the tangent
space).

The Homological Mirror Symmetry Conjecture: Mirror symmetry is a pair of functors Cpx MS−−−→ Symp
and Symp SM−−−→ Cpx such that MS◦SM = Id.

Note that this conjecture has no reference to Calabi-Yau geometry, it is more general than that. The idea
is that complex structure can be transformed to symlectic structure and vice-versa. If (M,J,ω) is CY, then the
mirror of (M,J,ω) should be (M̌,MS(J),SM(ω) = (M̌, ω̌, J̌).

The queston of how to define these functors in general is open.

Example. Recalling our discussion of symplectic and complex structures on vector spaces, R2 has J =
(

0 −1
1 0

)
and ω =

(
0 1
−1 0

)
. That is, on vector spaces these structures are truly the same (they are equivalent up to a

change of basis), and when we move on to the study of such structures on manifolds, we lose sight of this
equivalence. Mirror symmetry suggests that we could still cross this gap on manifolds!

For R2, the mirror symmetry functor is nothing but the transpose:

MS(R2,J) = (R2,JT ). (83)

Example. Considering the elliptic curve E , both the Kähler and complex cones are C∗, which suggests that MS
should be a map from C∗ to C∗. Indeed,

MS(E,τ) = (Ě,dde2πiτzz) (84)

where τ is the lattice parameter of E. This is a Fourier transform. If E = S1× S1 with radii r1 and r2, then
Ě = S1×S1 with radii 1

r1
and 1

r2
. This is known as T -duality.

A further part of the conjecture says that the mirror of a torus fibration is realized by dualizing the fibres. In
this context, the question is what is is happening on the singular locus (the bad fibres).

Kontsevich actually went even further, and conjectured that mirror symmetry takes each holomorphic bundle
V on (M,J) to a submanifold L ⊂ M̌ with ω̌

∣∣
L = 0 (this is what is known as a Lagrangian submanifold). Such

and L is necessarily half the dimension of M̌, for reasons coming from linear algebra.
Vector bundles have an operation on them: they can be tensored together. If U has transition functions

Eαβ ∈ GL(m,C) and V has transition functions Fαβ ∈ GL(n,C), then the tensor product U ⊗V is defined as the
bundle with transition functions EαβFαβ (the tensor product of matrices):

EαβFαβ =


(Eαβ)11Fαβ (Eαβ)12Fαβ . . .

(Eαβ)21Fαβ

. . .
...

sn1

 . (85)
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So rk(U ⊗V ) = mn. Kontsevich conjectured that if mirror symmetry takes U to L and V to N, then U ⊗V
should go to L⊗N. The problem here is, what is the tensor product of two manifolds? Kontsevich defined
L⊗N to be the so-called “pair of pants” product (or quantum product), inspired by complex dimension 2: For
K3 surfaces, Lagrangian submanifolds have dimension 1

2 2 = 1, so they are Riemann surfaces. If L and N are
Riemann surfaces

then L⊗N is the pair of pants product

and this is still Lagrangian. The part of the conjecture that is missing is what this product should be in higher
dimension.

Now let’s consider other directions. In 1987, Nigel Hitchin produced and interesting manifold by solving the
Yang-Mills equations on a Riemann surface M of genus g:

R(V )+φ∧φ = 0

dφ = 0
(86)

where R(V ) is a skew-symmetric form on V . Solutions to these equations are pairs (V,φ) in which V is a
holomorhpic vectro bundle on M and φ is a holomorphic map V →V ×T ∗M. If we label µ1(V,φ) = R(V )+φ∧φ

and µ2(V,φ) = dφ, then these are moment maps! The space of solutions is, up to equivalence,

µ−1
1 (0)∩µ−1

2 (0)
GL(r,C)

. (87)

This is a hyperkähler quotient , thus the solution space is (noncompact) Calabi-Yau, and when r = 2 it has
dimension 6g− 6. So for g = 2, this sopace is 6 complex dimensional. This is known as the moduli space of
Higgs bundles, and it has a very natural torus fibration
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where a point in a fibre is (V,φ), and there is a map h that takes a point in the fibre to the characteristic
polynomial of φ, so the base B is the space of characteristic polynomials. This base is exactly 3 complex dimen-
sional, so the fibres are as well. Here the tori are T 6 (boring Calabi-Yau 3-folds) but the singular fibres are very
interesting. Thaddeus and Hausel considered dualizing the fibres: The tori are now Lagrangian submanifolds,
but what should the mirror of the bad fibres be? Moreover, is this mirror a moduli space of something?

If we ask for the transition funcitons of V to be Eαβ ∈ SL(2,C), then V with transition functions in PGL(2,C)
generate the mirror.

There is a conjecture that the nilpotent cone (one of the bad fibres) is the X that we were looking for before:
it is part of our universe.
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