The Geometry of Twisted Cyclic Quiver Varieties

Evan J. A. Sundbo
Department of Mathematics and Statistics
University of Saskatchewan

CMS Summer Meeting June 7-10, 2019

Joint work with Steven Rayan arXiv:1905.11508

Table of Contents

(1) Background \& motivation
(2) Cyclic quiver varieties for arbitrary genus
(3) Cyclic quiver varieties on \mathbb{P}^{1}
(4) $(k, 1)$ cyclic quiver varieties on \mathbb{P}^{1}

Table of Contents

(1) Background \& motivation
(2) Cyclic quiver varieties for arbitrary genus
(3) Cyclic quiver varieties on \mathbb{P}^{1}
(4) $(k, 1)$ cyclic quiver varieties on \mathbb{P}^{1}

Higgs bundles

Fix a Riemann surface X of genus $g \geq 0$ and a line bundle L of degree t.

Definition

An L-twisted Higgs bundle on X is a pair (E, Φ) where E is a holomorphic vector bundle on X and $\Phi: E \rightarrow E \otimes L$.

Higgs bundles

Fix a Riemann surface X of genus $g \geq 0$ and a line bundle L of degree t.

Definition

An L-twisted Higgs bundle on X is a pair (E, Φ) where E is a holomorphic vector bundle on X and $\Phi: E \rightarrow E \otimes L$.

Definition

(E, Φ) is stable if $\frac{\operatorname{deg} U}{\mathrm{rk} U}<\frac{\operatorname{deg} E}{\mathrm{rk} E}$ for all proper subbundles U of E such that $\Phi(U) \subseteq U \otimes L$.

Higgs bundles

Fix a Riemann surface X of genus $g \geq 0$ and a line bundle L of degree t.

Definition

An L-twisted Higgs bundle on X is a pair (E, Φ) where E is a holomorphic vector bundle on X and $\Phi: E \rightarrow E \otimes L$.

Definition

(E, Φ) is stable if $\frac{\operatorname{deg} U}{\mathrm{rk} U}<\frac{\operatorname{deg} E}{\mathrm{rk} E}$ for all proper subbundles U of E such that $\Phi(U) \subseteq U \otimes L$.

Definition

Two Higgs bundles (E, Φ) and $\left(E^{\prime}, \Phi^{\prime}\right)$ are equivalent if E and E^{\prime} are isomorphic as vector bundles and $\Phi=\Psi \Phi^{\prime} \Psi^{-1}$ for some $\psi \in H^{0}(X, \operatorname{Aut}(E))$.

The Hitchin system

We denote the moduli space of L-twisted Higgs bundles by $\mathcal{M}_{X, L}(r, d)$.

The Hitchin system

We denote the moduli space of L-twisted Higgs bundles by $\mathcal{M}_{X, L}(r, d)$.

Non-abelian Hodge theory

The Hitchin section

Let $g \geq 2, L=\omega_{X}$, and consider (E, Φ) with

$$
E=\omega_{X}^{\frac{1}{2}} \oplus \omega_{X}^{\frac{-1}{2}}, \quad \Phi=\left(\begin{array}{ll}
0 & q \\
1 & 0
\end{array}\right)
$$

where $q: \omega_{X}^{\frac{-1}{2}} \rightarrow \omega_{X}^{\frac{1}{2}} \otimes \omega_{X}$.

The Hitchin section

Let $g \geq 2, L=\omega_{X}$, and consider (E, Φ) with

$$
E=\omega_{X}^{\frac{1}{2}} \oplus \omega_{X}^{\frac{-1}{2}}, \quad \Phi=\left(\begin{array}{ll}
0 & q \\
1 & 0
\end{array}\right)
$$

where $q: \omega_{X}^{\frac{-1}{2}} \rightarrow \omega_{X}^{\frac{1}{2}} \otimes \omega_{X}$. This is section of $\mathcal{M}_{X, \omega_{X}}(2,0)$.

Cyclic Higgs bundles

Definition

An L-twisted cyclic Higgs bundle on X is a pair (E, Φ) of the form

$$
E=U_{1} \oplus \cdots \oplus U_{n}, \quad \Phi=\left(\begin{array}{cccc}
0 & \cdots & & \phi_{n} \\
\phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \phi_{n-1} & 0
\end{array}\right)
$$

where U_{i} are holomorphic line bundles on X and $\phi_{i}: U_{i} \rightarrow U_{i+1} \otimes L$.

Quivers

Definition

A quiver is a directed graph. A type $\left(r_{1}, \ldots, r_{n}\right)$ cyclic quiver is one of the form

Quivers

Definition

A quiver is a directed graph. A type $\left(r_{1}, \ldots, r_{n}\right)$ cyclic quiver is one of the form

Consider representations of a quiver Q in $\operatorname{Bun}(X, L)$. The moduli space of such representations is denoted $\mathcal{M}_{X, L}(Q)$.

Quivers

Definition

A quiver is a directed graph. A type $\left(r_{1}, \ldots, r_{n}\right)$ cyclic quiver is one of the form

Consider representations of a quiver Q in $\operatorname{Bun}(X, L)$. The moduli space of such representations is denoted $\mathcal{M}_{X, L}(Q)$.

The Hitchin section revisited

Let $g \geq 2, L=\omega_{X}$, and Q be the quiver

The Hitchin section revisited

Let $g \geq 2, L=\omega_{X}$, and Q be the quiver

The Hitchin section lies inside $\mathcal{M}_{X, L}(Q)$.

The Hitchin section revisited

Let $X=\mathbb{P}^{1}, L=\mathcal{O}(2)$, and Q be the quiver

The Hitchin section revisited

Let $X=\mathbb{P}^{1}, L=\mathcal{O}(2)$, and Q be the quiver

Here, $\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(2)}(Q)$ is a section of the moduli space $\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(2)}(2,0)$.

Table of Contents

(1) Background \& motivation

(2) Cyclic quiver varieties for arbitrary genus
(3) Cyclic quiver varieties on \mathbb{P}^{1}
(4) $(k, 1)$ cyclic quiver varieties on \mathbb{P}^{1}

A-type quiver varieties

Definition

An A-type quiver is a quiver of the form $\bullet \longrightarrow \cdots \longrightarrow \bullet$.

Moduli spaces of representations of A-type quivers play an important role in the study of Higgs bundles.

A-type quiver varieties

Definition

An A-type quiver is a quiver of the form $\bullet \longrightarrow \cdots \longrightarrow \bullet$.

Moduli spaces of representations of A-type quivers play an important role in the study of Higgs bundles.

Lemma

Given a $(1, \ldots, 1)$ cyclic quiver Q with stable representations, there is a unique underlying $(1, \ldots, 1) A$-type quiver which admits stable representations, which we call Q^{A}.

A-type quiver varieties

A representation of Q looks like

A-type quiver varieties

A representation of Q looks like

and a representation of Q^{A} looks like

$$
U_{1} \xrightarrow[\phi_{1}]{\longrightarrow} U_{2} \xrightarrow[\phi_{2}]{\longrightarrow} \cdots \underset{\phi_{n-1}}{ } U_{n}
$$

A-type quiver varieties

A representation of Q looks like

and a representation of Q^{A} looks like

$$
U_{1} \xrightarrow[\phi_{1}]{\longrightarrow} U_{2} \xrightarrow[\phi_{2}]{\longrightarrow} \cdots \underset{\phi_{n-1}}{ } U_{n}
$$

Lemma

Let Q be a $(1, \ldots, 1)$ cyclic quiver. Then $\mathcal{M}_{X, L}\left(Q^{A}\right)$ is an $r^{2 g}$-fold covering of $\prod_{i=1}^{n-1}$ Sym $^{d_{i+1}-d_{i}+t}(X)$.

The Hitchin map

For a representation $\left(U_{i}, \phi_{i}\right)$ of a cyclic quiver Q,

$$
h\left(\left(U_{i}, \phi_{i}\right)\right)=\phi_{1} \ldots \phi_{n} \in H^{0}\left(X, L^{\otimes n}\right)
$$

The Hitchin map

For a representation $\left(U_{i}, \phi_{i}\right)$ of a cyclic quiver Q,

$$
h\left(\left(U_{i}, \phi_{i}\right)\right)=\phi_{1} \ldots \phi_{n} \in H^{0}\left(X, L^{\otimes n}\right)
$$

So

$$
\left.\mathcal{M}_{X, L}(Q)\right|_{h^{-1}(0)}=\mathcal{M}_{X, L}\left(Q^{A}\right)
$$

Cyclic quiver varieties

Theorem (Rayan, S.)

$$
\left.\mathcal{M}_{X, L}(Q)\right|_{h^{-1}(\gamma)} \cong\left\{\left(U_{i} ; \phi_{i}\right) \in \mathcal{M}_{X, L}\left(Q^{A}\right):\left(\phi_{1} \ldots \phi_{n-1}\right) \subseteq(\gamma)\right\}
$$

Table of Contents

(1) Background \& motivation

(2) Cyclic quiver varieties for arbitrary genus
(3) Cyclic quiver varieties on \mathbb{P}^{1}
(4) $(k, 1)$ cyclic quiver varieties on \mathbb{P}^{1}

Cyclic quiver varieties on \mathbb{P}^{1}

On \mathbb{P}^{1}, a representation of Q looks like

Cyclic quiver varieties on \mathbb{P}^{1}

On \mathbb{P}^{1}, a representation of Q looks like

and
$\operatorname{Rep}(Q) \cong \prod_{i=1}^{n-1}\left(H^{0}\left(\mathbb{P}^{1}, \mathcal{O}\left(d_{i+1}-d_{i}+t\right)\right) \backslash\{0\}\right) \times H^{0}\left(\mathbb{P}^{1}, \mathcal{O}\left(d_{1}-d_{n}+t\right)\right)$

Cyclic quiver varieties on \mathbb{P}^{1}

The action of the automorphisms of $\mathcal{O}\left(d_{i}\right)$ on Φ is equivalent to the action of $\left(\mathbb{C}^{*}\right)^{n-1}$

$$
\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \cdot \Phi=\left(\begin{array}{cccc}
0 & \cdots & & \left(\lambda_{1}^{-1} \ldots \lambda_{n-1}^{-1}\right) \phi_{n} \\
\lambda_{1} \phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \lambda_{n-1} \phi_{n-1} & 0
\end{array}\right)
$$

Cyclic quiver varieties on \mathbb{P}^{1}

The action of the automorphisms of $\mathcal{O}\left(d_{i}\right)$ on Φ is equivalent to the action of $\left(\mathbb{C}^{*}\right)^{n-1}$

$$
\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \cdot \Phi=\left(\begin{array}{cccc}
0 & \cdots & & \left(\lambda_{1}^{-1} \ldots \lambda_{n-1}^{-1}\right) \phi_{n} \\
\lambda_{1} \phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \lambda_{n-1} \phi_{n-1} & 0
\end{array}\right)
$$

Now

$$
\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q) \cong \frac{\prod_{i=1}^{n-1}\left(\mathbb{C}^{d_{i+1}-d_{i}+t+1} \backslash\{0\}\right) \times \mathbb{C}^{d_{1}-d_{n}+t+1}}{\left(\mathbb{C}^{*}\right)^{n-1}}
$$

Cyclic quiver varieties on \mathbb{P}^{1}

Theorem part A (Rayan, S.)

The moduli space of representations of a $(1, \ldots, 1)$ cyclic quiver Q in the category $\operatorname{Bun}\left(\mathbb{P}^{1}, \mathcal{O}(t)\right)$ is a finite covering of $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(n t)\right) \backslash\{0\}$ which branches over points with roots of multiplicity greater than one, and whose sheets intersect over $0 \in H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(n t)\right)$ as $\prod_{i=1}^{n-1} \mathbb{P}^{d_{i+1}-d_{i}+t}$.

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a cover

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a cover

Recall

$$
\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \cdot \Phi=\left(\begin{array}{cccc}
0 & \cdots & & \left(\lambda_{1}^{-1} \ldots \lambda_{n-1}^{-1}\right) \phi_{n} \\
\lambda_{1} \phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \lambda_{n-1} \phi_{n-1} & 0
\end{array}\right)
$$

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a cover

Recall

$$
\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \cdot \Phi=\left(\begin{array}{cccc}
0 & \cdots & & \left(\lambda_{1}^{-1} \ldots \lambda_{n-1}^{-1}\right) \phi_{n} \\
\lambda_{1} \phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \lambda_{n-1} \phi_{n-1} & 0
\end{array}\right)
$$

Fix $\gamma=\phi_{1} \ldots \phi_{n} \neq 0$, then there are $\eta(Q)=\binom{n t}{d_{2}-d_{1}+t, \ldots, d_{n}-d_{n-1}+t, d_{1}-d_{n}+t}$ ways to distribute the zeroes.

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a cover

Recall

$$
\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \cdot \Phi=\left(\begin{array}{cccc}
0 & \cdots & & \left(\lambda_{1}^{-1} \ldots \lambda_{n-1}^{-1}\right) \phi_{n} \\
\lambda_{1} \phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \lambda_{n-1} \phi_{n-1} & 0
\end{array}\right)
$$

Fix $\gamma=\phi_{1} \ldots \phi_{n} \neq 0$, then there are $\eta(Q)=\binom{n t}{d_{2}-d_{1}+t, \ldots, d_{n}-d_{n-1}+t, d_{1}-d_{n}+t}$ ways to distribute the zeroes.

Also, $\left.\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)\right|_{h^{-1}(0)}=\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}\left(Q^{A}\right)$.

Cyclic quiver varieties on \mathbb{P}^{1}

Theorem part B (Rayan, S.)

The moduli space of representations of a $(1, \ldots, 1)$ cyclic quiver Q in the category $\operatorname{Bun}\left(\mathbb{P}^{1}, \mathcal{O}(t)\right)$ is the total space of

$$
\mathcal{O}_{\prod_{i=1}^{n-1} \mathbb{P}^{d_{i+1}-d_{i}+t}}(-1, \ldots,-1)^{\oplus d_{1}-d_{n}+t+1},
$$

where

$$
\mathcal{O}_{\prod_{i=1}^{n-1} \mathbb{P}^{d_{i+1}-d_{i}+t}}(-1, \ldots,-1)=\bigotimes_{i=1}^{n-1} p_{i}^{*} \mathcal{O}_{\mathbb{P}^{d_{i+1}-d_{i}+t}}(-1)
$$

and p_{i} is the natural projection onto the i-th factor.

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a vector bundle

Note that

$$
\left(\begin{array}{cccc}
0 & \cdots & & c \phi_{n} \\
\phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \phi_{n-1} & 0
\end{array}\right)
$$

goes to the same point p in $\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}\left(Q^{A}\right)$ as $c \rightarrow 0$, regardless of ϕ_{n}.

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a vector bundle

Note that

$$
\left(\begin{array}{cccc}
0 & \cdots & & c \phi_{n} \\
\phi_{1} & \ddots & & \\
& \ddots & & \\
0 & & \phi_{n-1} & 0
\end{array}\right)
$$

goes to the same point p in $\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}\left(Q^{A}\right)$ as $c \rightarrow 0$, regardless of ϕ_{n}.
That is, we have a fibration by $\mathbb{C}^{d_{1}-d_{n}+t+1}$.

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a vector bundle

Using the fact that

$$
\frac{\mathbb{C}^{a+1} \backslash\{0\} \times \mathbb{C}}{\mathbb{C}^{*}} \cong \mathcal{O}_{\mathbb{P}^{a}}(-1)
$$

$\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q)$ as a vector bundle

Using the fact that

$$
\frac{\mathbb{C}^{a+1} \backslash\{0\} \times \mathbb{C}}{\mathbb{C}^{*}} \cong \mathcal{O}_{\mathbb{P}^{a}}(-1)
$$

and the description

$$
\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q) \cong \frac{\prod_{i=1}^{n-1}\left(\mathbb{C}^{d_{i+1}-d_{i}+t+1} \backslash\{0\}\right) \times \mathbb{C}^{d_{1}-d_{n}+t+1}}{\left(\mathbb{C}^{*}\right)^{n-1}}
$$

we can realize this fibration as a holomorphic vector bundle embedded in $\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(r, d)$.

Table of Contents

(1) Background \& motivation

(2) Cyclic quiver varieties for arbitrary genus
(3) Cyclic quiver varieties on \mathbb{P}^{1}
(4) $(k, 1)$ cyclic quiver varieties on \mathbb{P}^{1}

$(k, 1)$ Cyclic quiver varieties on \mathbb{P}^{1}

Let Q be the quiver

$(k, 1)$ Cyclic quiver varieties on \mathbb{P}^{1}

Let Q be the quiver

$$
Q=\bullet_{k, d_{1}} \bullet_{1, d_{2}}
$$

Assume the first bundle splits into line bundles of mutually distinct degrees.

$(k, 1)$ Cyclic quiver varieties on \mathbb{P}^{1}

The moduli space decomposes as

$$
\mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}(Q ; \mathbf{a}) \cong \mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}\left(Q_{1}\right) \times \prod_{i=2}^{k} \mathcal{M}_{\mathbb{P}^{1}, \mathcal{O}(t)}\left(Q_{i}^{-\sum_{j=1}^{i-1}\left(a_{j}-a_{i}+1\right)}\right)
$$

The End

Thank you!

