Solution to Practice Term Test

Section B

B1 The augmented matrix of this system of linear equations is

$$A = \left(\begin{array}{ccc|c} 1 & 0 & 2 & a \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 4 & 0 \end{array}\right),$$

which is row equivalent to

$$\left(\begin{array}{cc|cc} 1 & 0 & 2 & a \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -a-2 \end{array}\right).$$

By Rouché-Capelli theorem, the system of linear equations is consistent if and only if there is no pivot in the last column of $\operatorname{rref}(A)$, and this condition is equivalent to -a-2=0. So the system is consistent if and only if a=-2.

B2

(a) Taking
$$x=1,y=0$$
, one has $\begin{pmatrix} 2x+2y\\x+y\\x+y \end{pmatrix}=\begin{pmatrix} 2\\1\\1 \end{pmatrix}\in V$. However, the scalar multiplication $-1\cdot\begin{pmatrix} 2\\1\\1 \end{pmatrix}=\begin{pmatrix} -2\\-1\\-1 \end{pmatrix}$ is not in V , as $x+y\neq -1$ for all $x,y\geq 0$, thus the set V is not a vector space.

(b) For any vector $\vec{x} \in W$, \vec{x} and $\begin{pmatrix} 1 \\ 7 \end{pmatrix}$ are linearly dependent. By Definition 2.10, one has $\vec{x} \in \operatorname{Span}(\begin{pmatrix} 1 \\ 7 \end{pmatrix})$ or $\begin{pmatrix} 1 \\ 7 \end{pmatrix} \in \operatorname{Span}(\vec{x})$.

If $\begin{pmatrix} 1 \\ 7 \end{pmatrix} \in \operatorname{Span}(\vec{x})$, then there is some nonzero scalar $c \in \mathbb{R}$ such that $\begin{pmatrix} 1 \\ 7 \end{pmatrix} = c\vec{x}$. This implies $\vec{x} = c^{-1} \begin{pmatrix} 1 \\ 7 \end{pmatrix} \in \operatorname{Span}(\begin{pmatrix} 1 \\ 7 \end{pmatrix})$, so we have $V = \operatorname{Span}(\begin{pmatrix} 1 \\ 7 \end{pmatrix})$, and it is a vector space. The set $\left\{ \begin{pmatrix} 1 \\ 7 \end{pmatrix} \right\}$ is linearly independent, thus it is a basis for V, and one has $\dim(W) = 1$.

(c) Any vector
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in U$$
 is of the form

$$\begin{pmatrix} -2y - 3z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \text{ for some } y, z \in \mathbb{R}.$$

This implies that $U = \text{Span}\begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix}$), and it is a vector space.

The matrix

$$\operatorname{rref}\left(\begin{pmatrix} -2 & -3\\ 1 & 0\\ 0 & 1 \end{pmatrix}\right) = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix}$$

has a pivot in every column. According to Proposition 2.12, the spanning set $\left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix} \right\}$ of U is linearly independent. So it is a basis for U, and we have $\dim(U) = 2$.

B3

(a) Let $\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4}$ be the standard basis for \mathbb{R}^4 . Using the equation defining F, we have

$$F(\vec{e}_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, F(\vec{e}_2) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, F(\vec{e}_3) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ and } F(\vec{e}_4) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

By Theorem 4.8, the defining matrix for F is

$$M_F = \begin{pmatrix} F(\vec{e}_1) & F(\vec{e}_2) & F(\vec{e}_3) & F(\vec{e}_4) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

(b) The reduced row echelon form of M_F is

$$\operatorname{rref}(M_F) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$

which has 3 pivot columns and 1 non-pivot column. By Theorem 5.8, we have $\operatorname{nullity}(F) = \operatorname{nullity}(M_F) = 1$.

(c) Since $\operatorname{rref}(M_F)$ has a column without pivot, F is not injective by Theorem 4.14. Since every row of $\operatorname{rref}(M_F)$ has a pivot, F is surjective by Theorem 4.17.

In conclusion, F is surjective and not injective.

B4

(a) Not enough information.

If we take both invertible matrices A and B to be $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $A + B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ is invertible with inverse matrix $\begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

If we take invertible matrices A and B to be $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ respectively, then $A+B=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is not invertible.

(b) We write B as $B = (\vec{b_1} \cdots \vec{b_n})$, then the matrix product AB equals $(A\vec{b_1} \cdots A\vec{b_n})$. Since the columns of B are linearly dependent, by Theorem 2.11 there is a non-trivial solution (c_1, \ldots, c_n) to the equation $x_1\vec{b_1} + \cdots + x_n\vec{b_n} = \vec{0}$.

We know matrix transformations are linear transformations, so

$$c_1 A \vec{b}_1 + \dots + c_n A \vec{b}_n = A \left(c_1 \vec{b}_1 + \dots + c_n \vec{b}_n \right) = A \vec{0} = \vec{0},$$

which implies that the column vectors of AB are also linearly dependent. According to Proposition 2.12, $\operatorname{rref}(AB)$ has at least one non-pivot column, so this matrix cannot be the identity matrix I_n . By the invertible matrix theorem, AB is not invertible.

- (c) Consider the vector equation $x_1T(\vec{v}_1) + \cdots + x_nT(\vec{v}_n) = \vec{0}$, which can be rewritten as $T(x_1\vec{v}_1+\cdots+x_n\vec{v}_n)=\vec{0}$. As T is injective, we have $x_1\vec{v}_1+\cdots+x_n\vec{v}_n=\vec{0}$. Because $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is a basis for \mathbb{R}^n , one has $x_1=\cdots=x_n=0$. This shows that the vector equation has no non-trivial solution, thus the column vectors $T(\vec{v}_1),\ldots,T(\vec{v}_n)$ of A are linearly independent. By Proposition 2.12, the matrix $T(\vec{v}_n)$ has a pivot in each column, so $T(\vec{v}_n)$ by the invertible matrix theorem, A is invertible.
- $\mathbf{B5}$ This matrix A has one of the following forms:

$$A = \begin{pmatrix} 0 & 1 & 0 & a & 0 \\ 0 & 0 & 1 & b & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

with at least one of a and b other than 0 or 1, or

$$A = \begin{pmatrix} 0 & 1 & c & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, c \neq 0, 1.$$

Section C

C1 Consider the vector equation

$$x_1(\vec{v}_0 + \vec{v}_1) + x_2(\vec{v}_0 + \vec{v}_2) + \dots + x_m(\vec{v}_0 + \vec{v}_m) = \vec{0}.$$

The left-hand-side equals

$$(x_1 + \dots + x_m)\vec{v_0} + x_1\vec{v_1} + \dots + x_m\vec{v_m}.$$

Because $\{\vec{v}_0, \vec{v}_1, \dots, \vec{v}_m\}$ is linearly independent, one has

$$x_1 + \cdots + x_m = 0, x_1 = 0, \ldots, x_m = 0.$$

This shows that the vector equation $x_1(\vec{v}_0 + \vec{v}_1) + x_2(\vec{v}_0 + \vec{v}_2) + \cdots + x_m(\vec{v}_0 + \vec{v}_m) = \vec{0}$ has no non-trivial solution, so $\{\vec{v}_0 + \vec{v}_1, \vec{v}_0 + \vec{v}_2, \dots, \vec{v}_0 + \vec{v}_m\}$ is linearly independent.

C2 True.

Proof. Let r be the number of pivots in $\operatorname{rref}(A)$. Each row has at most 1 pivot, so r is not larger than the number of rows, i.e. $r \leq n$. The number of non-pivot columns in $\operatorname{rref}(A)$ is m-r. By Theorem 5.8, we have

$$\operatorname{nullity}(A) = m - r > m - n > 0.$$

C3 By Theorem 4.17, the surjectivity of T_A implies that every row of rref(A) has a pivot. As a consequence, rref(A) has n pivots, thus every column of rref(A) also has a pivot. Combining this with Theorem 4.14, we obtain that T_A is also injective.

By the invertible matrix theorem, the matrix B is an invertible matrix, so the corresponding matrix transformation T_B is bijective. In particular, T_B is injective.

For any vector $\vec{x} \in \ker(F)$, we have $\vec{0} = F(\vec{x}) = T_A(T_B(\vec{x}))$. As T_A is injective, $T_B(\vec{x}) = \vec{0}$. Because T_B is also injective, we have $\vec{x} = \vec{0}$ thus $\ker(F) = \{\vec{0}\}$.