
chapter 6 activity packet solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Tuesday, October
14th. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the activities in this packet. You are responsible for completing
all portions of this packet, including lecture activities not discussed in class, and completing the
definitions included in the packet. Solutions will be posted to the course website after the assignment
due date.

Lecture Activity 6.1. Let F : Rn → Rm and G : Rn → Rm be linear transformations.

P1. Show that F +G is a linear transformations.

Solution. Take any x⃗, y⃗ ∈ Rn. Then,

(F +G)(x⃗+ y⃗) = F (x⃗+ y⃗) +G(x⃗+ y⃗), by definition of function addition

= F (x⃗) +G(x⃗) + F (y⃗) +G(y⃗), since F,G are linear

= (F +G)(x⃗) + (F +G)(y⃗), by definition of function addition.

Now, for any scalar c ∈ R we have

(F +G)(cx⃗) = F (cx⃗) +G(cx⃗), by definition of function addition

= cF (x⃗) + cG(x⃗), since F,G are linear

= c (F (x⃗) +G(x⃗))

= c(F +G)(x⃗), by definition of function addition.

Hence, F +G is a linear transformation.

P2. Let F = TA and G = TB where

A =

(
1 2
3 4

)
and B =

(
−1 3
1 2

)
.

By P1, we know that F +G is linear. Find the defining matrix MF+G.

Solution. We have

(F +G)

((
1
0

))
= F

((
1
0

))
+G

((
1
0

))
=

(
1
3

)
+

(
−1
1

)
=

(
0
4

)
and

(F +G)

((
0
1

))
= F

((
0
1

))
+G

((
0
1

))
=

(
2
4

)
+

(
3
2

)
=

(
5
6

)
.

Hence, by Theorem 4.8, we have that MF+G =

(
0 5
4 6

)
.
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Definition 6.1. Let A =
(
v⃗1 · · · v⃗n

)
and B =

(
w⃗1 · · · w⃗n

)
be m × n matrices and c ∈ R be

a scalar.

1. The sum of A and B is the m× n matrix given by . . .

A+B :=
(
v⃗1 + w⃗1 · · · v⃗n + w⃗n

)
.

2. The scalar product of A with c is the m× n matrix given by . . .

cA :=
(
cv⃗1 · · · cv⃗n

)
.

Lecture Activity 6.2. Let B =

(
1 2
3 4

)
. Find the matrix A given that

2(A+ (B + 3A)) = 7A− (B +A).

Solution. Using the properties in Proposition 6.2, we have

2B + 8A = 6A−B

⇒ 2A = −3

2
B =

(
−3/2 −3
−9/2 −6

)
.



Lecture Activity 6.3. Let F : Rk → Rm and G : Rn → Rk be linear transformations with
defining matrices

A = MF and B = MG.

Recall from Chapter Exercise 4.3 that the composition of linear functions is linear. Show that the
defining matrix M = MF◦G of the composition F ◦G is given by(

Ab⃗1 Ab⃗2 · · · Ab⃗m

)
where B =

(⃗
b1 b⃗2 · · · v⃗n

)
.

Solution. Taken any x⃗ =

x1
...
xn

 ∈ Rm. Then,

(F ◦G)(x⃗)−A(Bx⃗)

= A(x1⃗b1 + x2⃗b2 + · · ·+ xnb⃗n)

= x1Ab⃗1 + x2Ab⃗2 + · · ·+ xnAb⃗n

=
(
Ab⃗1 Ab⃗2 · · · Ab⃗n

)
x1
x2
...
xn


=

(
Ab⃗1 Ab⃗2 · · · Ab⃗n

)
x⃗.

So, MF◦G =
(
Ab⃗1 Ab⃗2 · · · Ab⃗n

)
.

Definition 6.3. Let A be an m× k matrix and B =
(⃗
b1 · · · b⃗n

)
be a k × n matrix. Then, the

matrix product of A and B is the m× n matrix . . .

AB =
(
Ab⃗1 · · · Ab⃗n

)
.

As we saw in Lecture Activity 6.3, note that TAB = TA ◦ TB.



Lecture Activity 6.4. Let

A =

(
1 0 1 −1
0 2 3 1

)
, B =


0 −1
3 0
1 0
−1 4

 and C =

1 1 2 0
0 1 4 1
0 0 −2 1

 .

Calculate all possible matrix products AB,BA,AC,CA,BC,CB. If a matrix product is not de-
fined, explain why not.

Solution. We have

AB =

(
2 −5
8 4

)
, BA =


0 −2 −3 −1
3 0 3 −3
1 0 1 −1
−1 8 11 5

 , CB =

 5 −1
6 4
−3 4


Note that AC,CA, and BC are undefined, since they have incompatible dimensions.



Lecture Activity 6.5. Let F : Rn → Rm be a linear transformation, and suppose that the inverse
function F−1 : Rm → Rn is known to exist.

P1. Use Lecture Activity 4.9 to show that m = n.

Solution. Recall that a function is invertible if and only if it’s bijective. Furthermore, in
Lecture Activity 4.9 we showed that a linear transformation F : Rn → Rm is invertible if and
only if m = n. Since F−1 is supposed to exist, we must have m = n.

P2. Show that F−1 is a linear transformation.

Solution. Take any y⃗, z⃗ ∈ Rm. Since F is invertible, it must be surjective. So, there exists
vectors u⃗, v⃗ ∈ Rn so that F (u⃗) = y⃗ and F (v⃗) = z⃗. So, we have

F−1(y⃗ + z⃗) = F−1(F (u⃗) + F (v⃗))

= F−1(F (u⃗+ v⃗)), since F is linear

= u⃗+ v⃗, since F−1 is the inverse of F

= F−1(y⃗) + F−1(z⃗),

where the final equality follows because F (u⃗) = y⃗ ⇒ F−1(y⃗) = u⃗ and F (v⃗) = z⃗ ⇒ F−1(z⃗) = v⃗.
Similarly, for any c ∈ R we have

F−1(cy⃗) = F−1(cF (u⃗))

= F−1(F (cu⃗))

= cu⃗

= cF−1(y⃗),

as needed.

P3. Suppose that F has defining matrix MF = A and F−1 has defining matrix MF−1 = B. What
matrix does AB need to be equal to? What about BA?

Solution. Let e⃗1, . . . , e⃗n denote the standard basis for Rn. By definition of the matrix inverse,
we have

(F ◦ F−1)(e⃗i) = (F−1 ◦ F )(e⃗i) = e⃗i,

for all i = 1, . . . , n. So, by Theorem 4.8 (and recalling that MF = A and MF−1 = B) we must
have

AB = BA =
(
e⃗1 · · · e⃗n

)
.



Definition 6.6. The identity matrix In is . . .

the n× n matrix In =
(
e⃗1 · · · e⃗n

)
. That is,

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Definition 6.7. Let A be an n× n matrix. Then inverse of A, if it exists, is . . .

the matrix B so that AB = BA = In. In this case, we write B = A−1.

Lecture Activity 6.6. Use Theorem 6.11 to find the inverse of

A =

1 2 3
0 1 4
0 0 −1

 .

Solution We have1 2 3 1 0 0
0 1 4 0 1 0
0 0 −1 0 0 1

 ∼

1 0 −5 1 −2 0
0 1 4 0 1 0
0 0 −1 0 0 1

 via R1 − 2R2

∼

1 0 −5 1 −2 0
0 1 4 0 1 0
0 0 1 0 0 −1

 via (−1)R3

∼

1 0 0 1 −2 −5
0 1 4 0 1 0
0 0 1 0 0 −1

 via R1 + 5R3

∼

1 0 0 1 −2 −5
0 1 0 0 1 4
0 0 1 0 0 −1

 via R2 − 4R3

Hence, by Theorem 6.10 we have A−1 =

1 −2 −5
0 1 4
0 0 −1

 . Indeed, we can check that

AA−1 =

1 2 3
0 1 4
0 0 −1

1 −2 −5
0 1 4
0 0 −1

 =

1 0 0
0 1 0
0 0 1

✓



Definition 6.12. An n× n matrix is called elementary if . . .

it can be obtained by performing exactly one row operation to the identity matrix.

Lecture Activity 6.7. Consider the matrix

A =

1 2 3
4 5 6
7 8 9

 .

P1. Let E1 be the elementary matrix obtained by performing the row operation R1 ↔ R3 to I3.
Find E1, and then calculate E1A. What do you notice?

Solution. We have

E1 =

0 0 1
0 1 0
1 0 0

 and E1A =

7 8 9
4 5 6
1 2 3

 .

Observe that E1A is equal to the matrix obtained by performing the row operation R1 ↔ R3

to A.

P2. Let E2 be the elementary matrix obtained by performing the row operation 5R2 to I3. Find
E2 and then calculate E2A. What do you notice?

Solution. We have

E2 =

1 0 0
0 5 0
0 0 1

 and E2A =

 1 2 3
20 25 30
7 8 9

 .

Observe that E2A is equal to the matrix obtained by performing the row operation 5R2 to
A.

P3. Let E3 be the elementary matrix obtained by performing the row operation R1 + 2R2 to I3.
Find E3 and then calculate E3A. What do you notice?

Solution. We have

E3 =

1 2 0
0 1 0
0 0 1

 and E3A =

9 12 15
4 5 6
7 8 9

 .

Observe that E3A is equal to the matrix obtained by performing the row operation R1+2R2

to A.



Lecture Activity 6.8. Let’s see how we can capture Gauss-Jordan via matrix products. Consider
the matrix

A =

1 2 3
0 1 4
0 0 −1


from Lecture Activity 6.6.

P1. Use your work in Lecture Activity 6.6 to find elementary matrices E1, . . . , Ek so that

E1 · · ·EkA = I3.

Solution. Using our row operations from Lecture Activity 6.6, we obtain1 0 0
0 1 −4
0 0 1


︸ ︷︷ ︸

E1

1 0 5
0 1 0
0 0 1


︸ ︷︷ ︸

E2

1 0 0
0 1 0
0 0 −1


︸ ︷︷ ︸

E3

1 −2 0
0 1 0
0 0 1


︸ ︷︷ ︸

E4

1 2 3
0 1 4
0 0 −1


︸ ︷︷ ︸

A

=

1 0 0
0 1 0
0 0 1

 .

P2. Reverse your work from Lecture Activity 6.7 to show that I3 ∼ A. That is, find a sequence
of elementary operations to perform to I3 to obtain A.

Solution. Working backwards, we have1 0 0
0 1 0
0 0 1

 ∼

1 0 0
0 1 4
0 0 1

 , via R2 + 4R3

∼

1 0 −5
0 1 4
0 0 1

 , via R1 − 5R3

∼

1 0 −5
0 1 4
0 0 −1

 , via (−1)R3

∼

1 2 3
0 1 4
0 0 −1

 , via R1 + 2R2

P3. Find elementary matrices Ẽ1, . . . , Ẽk so that Ẽk · · · Ẽ1I3 = A. Conclude that A is a product
of elementary matrices.

Solution. Using our row operations above, we obtain1 2 0
0 1 0
0 0 1


︸ ︷︷ ︸

Ẽ4

1 0 0
0 1 0
0 0 −1


︸ ︷︷ ︸

Ẽ3

1 0 −5
0 1 0
0 0 1


︸ ︷︷ ︸

Ẽ2

1 0 0
0 1 4
0 0 1


︸ ︷︷ ︸

Ẽ1

1 0 0
0 1 0
0 0 1

 =

1 2 3
0 1 4
0 0 −1


︸ ︷︷ ︸

A

.

Hence, A = Ẽ4Ẽ3Ẽ2Ẽ1.



Observe that, in the activity above, Ẽi = E−1
i . Another approach would have been to apply

inverses on the left-hand side of our equation in P1 and observe that, to obtain the inverse
of an elementary matrix, we perform the “reverse” operation to the identity matrix.
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