CHAPTER 5 ACTIVITY PACKET solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Monday, October
6th. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the activities in this packet. You are responsible for completing
all portions of this packet, including lecture activities not discussed in class, and completing the
definitions included in the packet. Solutions will be posted to the course website after the assignment
due date.

Definition 4.18. A function f: X — Y is called BIJECTIVE if ...

f is both injective and surjective.

Lecture Activity 4.9. Show that a linear tranformation F' : R® — R™ can be bijective if and
only if n = m.

Proof. Let M = Mp be the defining matrix for F, and note that M is an m X n matrix. By
Theorem 4.14 and Theorem 4.17, rref(M) must have a pivot in every row and every column. Since
a matrix can have at most one pivot in every row, and a matrix in reduced row echelon form can
have at most one pivot in every column, we see that m = n. O

Definition 4.19. Let V be a subspace of R"” and W a subspace of R™. An ISOMORPHISM between
Vand Wis ...

any linear bijective map F' : V — W.

If an isomorphism exists between two vector spaces, we say these spaces are ISOMORPHIC, and we
write V = W.



Definition 5.2. Let F': R®™ — R™ be a linear transformation.

1.

2.

The KERNEL of F' is the subset ker(F') C R™ defined by

ker(F) := {Z € R" | F(%) = 0}.

The IMAGE of F' is the subset im(F') C R™ defined by

im(F) .= {F(Z) | ¥ € R"}.

Lecture Activity 5.1. Let F' = T where C' is our matrix from Lecture Activity 4.3

P1.

P2.

11
o (1 1) |
Find a vector & € ker(F).

Solution. We need to find a solution to the matrix-vector equation

(1) ()=

11> € ker(F).

which has solution (_1 >, for example, and so (

1

Find a vector ¢ € im(F).
Solution. We have
A Z (1D (Y (3
2 S\l 1 2)  \3)’

and so (g) € im(F).



P3. Find a vector ¥ so that ker(F') = Span(?). Conclude that ker(F') is a vector space.
Note that ker(F") consists of all solutions to the matrix-vector equation
1 1\ (z\ (0O
1 1) \y) \0)’
which has the same solution set as the system of linear equations with augmented matrix
1 110 1 10
1 110 0 0{0/°
Hence, solving for our basic variable = in terms of our free variable y, we get
) (7Y).
ker(F') = {( > .yGR}
Y
-1
() e
-1
o ((5)

Since we’ve written ker(F’) as a span, ker(F') is a vector space by Proposition 3.2.

P4. Find a vector & so that im(F') = Span(w). Conclude that im(F') is a vector space.

: <:y6> € RQ} , by definition of im(F')
) :x,yGR}, since F' =T¢
1 1 o .
=<z ( > +y <1> 1x,Y € R} , by definition of the matrix-vector product

<1> ) <1)> , by definition of span

<1>) , deleting the redundant vector.

Since we've written im(F') as a span, im(F') is a vector space by Proposition 3.2.



Definition 5.4. Let F': R™ — R™ be a linear transformation.

1. The RANK of F'is ...

the dimension of im(F),

and is denoted by rank(F).

2. The NULLITY of F'is ...

the dimension of ker(F),

and is denoted by nullity(F).
Lecture Activity 5.2. Let F : R?> — R? be given by
v +
F Y = <x y) .
Tr+z
z
P1. Calculate rank(F).

Solution. Observe that F' has defining matrix

110
MF_<1 0 1)’

and so working similarly to Lecture Activity 5.1, we have

x x
im(F)=<F Y |y | €R®}, by definition of im(F)
z z

x

11 . .

= <1 0 (1)) y| :xz,y,2 € R}, since Mp is the defining matrix of I
z

0

= Span ((D , (é) , (?)) . by definition of span.

This gives a generating set for im(F'), and so now we can use our strategy from Section 3.3

to find a basis. Since
1 0 1
rref(Mp) = <0 1 1)

has two pivots, then by Theorem 3.11 we know that rank(F') = dimim(F) = 2.

= {x <1> +y (1> + z (?) tx,Y, 2 € ]R} , by definition of the matrix-vector product



P2. Calculate nullity(F).
110

1 0 1
find all solutions to the matrix-vector equation

11 0\(") (o
1o 1)\Y] Vo)
z
which has the same solution set as the system of linear equations with augmented matrix

1 1 010
1 0 11]0
1 0 1|0
01 —-1]0/)°

So, our solutions must satisfy = + z = 0 and y — z = 0. Parameterizing our basic variables
x,y in terms of our free variable z gives

Solution. Since Mp = ( ), then working similarly to Lecture Activity 5.1, we need to

which has reduced row echelon form

—z
ker(F') = z |:zeR
z
-1
z| 1 z€eR
1
-1
= Span 1
1

Hence, we found a generating set for ker(F') with a single element, and so this set must be a
basis (noting that single element sets are always linearly independent). Thus, nullity(F) =
dimker(F) = 1.



Definition 5.5. Let A be an m X n matrix with column vectors A = (171 17”) . Then, the
COLUMN SPACE of A is the subspace of R given by ...

Col(A) := Span(v,. .., U).

The NULL SPACE of A is the subspace of R™ given by

Nul(A) := {# € R™ | A% = (}.

Proposition 5.6. Let ' : R” — R™ be a linear transformation with defining matrix Mp. Then,
ker(F') = Nul(Mp) and im(F') = Col(Mp).

Proof. Let F have defining matrix M = MFp.

Complete the proof: show that ker(F) = Nul(M)

We have
ker(F) = {:E' eER": F(¥) = 6} , by definition of ker(F')
= {a? eR": MZ =0}, since M is the defining matrix of F
= Nul(M), by definition of Nul(M).




Next, suppose that M has column vectors M = (271 Un).

Complete the proof: show that im(F') = Col(M)

T €1
im(F)=qF : | | € R" 3, by definition of im(F')
Tp Tp
1
=M\ | :z,...,2y R}, since M is the defining matrix of F
L,
x1
= (171 17n) S,z €R ,sinceM:(ﬁl 17n)
Tn
={x1%1 + -+ xpUy : x1,...,2, € R}, by definition of the matrix-vector product

= Span (71, ..., 9,), by definition of span
= Col(M), by definition of the column space.

Definition 5.7. Let A be a matrix.

1. The NULLITY of A is ...

the dimension of Nul(A),

and is denoted by nullity(A).

2. The RANK of A is ...

the dimension of Col(A),

and is denoted by rank(A).



Lecture Activity 5.3. Calculate the rank and nullity of

100
Solution. We have that rref(4) = |0 1 0|, and so the column vectors of A are linearly inde-
0 01
pendent, and hence form a basis for Col(A). Hence, rank(A) = dim Col(A) = 3. To calculate the
nullity, note that the matrix-vector equation AZ = 0 has the same solution set as the system of
linear equations with augmented matrix

—~

1 -1 0|0

0 0 110

2 1 110
which has reduced row echelon form

1 0 0]0

01 0|0

0 0 1|0

Hence, the only solution to AZ = 0 is # = 0 and so Nul(4) = {0} is the trivial space. Hence,
nullity(A) = dim(Nul(A)) = 0.



Lecture Activity 5.4. Let A and B be 3 x n matrices.

P1. Suppose that A has exactly two pivot columns, which are located in columns 1 and 3. Show
that rank(A) = 2 and nullity(A4) = 1.

Solution. Let A = (171 Ug 173). Since rref(A) has a pivot in the first and third column,
then by Theorem 3.11 we know that {¥, 73} forms a basis for Col(A). Hence, rank(A) =
dim(Col(A)) = 2. Next, note that

X
T S Nul(A) = (171 Us 173)
z

INEE SO

<:>x171+yl72—|—2’173:6

Since the second column of A does not have a pivot, we know that the variable y is free in
the vector equation above. So, we can parameterize our basic variables x and z in terms of
our free variable y, say that x = ay and z = by for some a,b € R. Then

ay
Nul(A4) = y|:yeR
by
a
=<yll]:yeR
b
a
= Span 1
b

Since we found a generating set for Nul(A) with a single element, this set must be a basis
(noting that any set containing a single element is linearly independent). So, nullity(A4) =
dim(Nul(4)) = 1.



P2. Suppose that B has exactly one pivot column, which is located in column 1. Show that
rank(B) = 1 and nullity(B) = 2.

Solution. Let B = (¥ @ @3). Since rref(B) has a pivot in the first column, then by
Theorem 3.11 we know that {7} forms a basis for Col(B). Hence, rank(B) = dim(Col(B)) =
1. Next, note that

X X
T S NUI(A) = (171 ) 173) Y
z z

<:>x171—|—y172—|—2173:6

Since the second and third columns of A do not have pivots, we know that the variables y
and z are free in the vector equation above. So, we can parameterize our basic variable x in
terms of our free variables y and z, say that = ay + bz for some a,b € R. Then

ay + bz
Nul(B) = Y ty,z €R
z
ay bz
= y |+ ty,z € R
0

Note that

and so the set

a b
11,10
0 1

is linearly independent by Proposition 2.12. Hence, this set forms a basis, and so nullity(B) =
dim(Nul(B)) = 2.



Definition 5.10. A system of linear equations is called HOMOGENEOUS if ...

the constant coefficients are all equal to zero.

Lecture Activity 5.5. Consider the system of linear equations

P1.

P2.

P3.

x+2y+42=20
r+y—z=0
y+52=0

Find a matrix C so that the vector form of the solution set to this system is equal to Nul(C).

Solution. This system of linear equations has the same solution set as the matrix-vector
equation

12 4\ [z 0
11 -1|]y]=|o
01 5 z 0

So, by definition, this system has solution set equal to Nul(C') where

4
-1

1
C=11
0 5

— =N

Calculate nullity(C).

Solution. We have

1
rref(C) = | 0
0

and so by Theorem 5.8, nullity(C) = 1.

Recall from Section 1.7 that the solution set to this system is equal to the set of intersection
points of planes in R3. Given your work in the previous parts, do these planes intersect at a
point, a line, or a plane in R3?

Solution. Since the solution set is equal to Nul(C') by P1, which is a one-dimensional space
by P2, these planes intersect at a line.




Theorem 5.12. The vector representation for the solution set to a consistent system of linear
equations in n variables with coefficient matrix C' is equal to

P+ Nul(C) :={p+ 7| v e Nul(C)}
where p'is any particular vector solution to the system of linear equations.

Proof. Suppose that our system of linear equations has coefficient matrix C' and particular solution
p. Then, the system has the same solution set as the matrix-vector equation C'Z = b for a vector
b € R™. Let § be any solution to this matrix-vector equation.

Complete the proof: show that §— ¢ is a solution to C% = 0.
Since § and § are solutions to the matrix-vector equation CZ = 0 we have C§= 0 and Cp = 0. So,

C(5—p)=0C5—-Cp=0,

as needed.

Since the solution set of CZ = 0 is equal to Nul(C), then by above we can write § — § € Nul(C).

Complete the proof: conclude that the solution § is in p'+ Nul(C).

Since §— p'€ Nul(C) then we can write

—

S—p=1v

for some ¥ € Nul(C). Adding p’to both sides gives § = p'+ ¢ € p'+ Nul(C).

Conversely, take any p'+ ¢ € g+ Nul(C).

Complete the proof: show that p+ ¢ is a solution to C7Z = b.

Since p'is a solution to CZ¥ = b we have Cp = b. Furthermore, since ¥ € Nul(C') we have Cv = 0.
So,

1

S

C(E+7)=Cp+Ci=b+0=

)

as needed.




Lecture Activity 5.6. Determine whether the solution set for each of the following systems is
empty, a point, a line, or a plane in R3.

r4+2y+42=1
P1. T+y—z2=2

y+5z=-1
Solution. We have
1 2 4 1 1 0 -6 3
rref [1 1 -1 2 =0 1 5 |-1
01 5 |-1 00 O 0

and so the system is consistent. Furthermore, if we let C' denote the coefficient matrix, we
see that nullity(C') is 1-dimensional. By Theorem 5.12 we know that the solution set is equal
to p+ Nul(C) for some fixed vector f, and so the solution set describes a line in R3.

r+2y+22=5
P2. x+y+z2=0

3z +3z=1
Solution. We have
1 2 25 1 00]-5
rref [1 1 1(0=(0 1 0]-3
30 3|1 00 1|4%

and so the system is consistent. Furthermore, if we let C' denote the coefficient matrix, we
see that nullity(C') is O-dimensional. By Theorem 5.12 we know that the solution set is equal
to p+ Nul(C) for some fixed vector 5, and so the solution set describes a point in R3.

r+2y+4z=1
P3. r+y—z2=2

y+oz=1
Solution. We have
1 2 4 |1 1 0 —-610
rref ({1 1 —-1(2] =101 5 |0],
01 5|1 00 0|1

which has a pivot in the last column, and so this system is inconsistent. Hence, the solution
set is empty.
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