
chapter 5 activity packet solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Monday, October
6th. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the activities in this packet. You are responsible for completing
all portions of this packet, including lecture activities not discussed in class, and completing the
definitions included in the packet. Solutions will be posted to the course website after the assignment
due date.

Definition 4.18. A function f : X → Y is called bijective if . . .

f is both injective and surjective.

Lecture Activity 4.9. Show that a linear tranformation F : Rn → Rm can be bijective if and
only if n = m.

Proof. Let M = MF be the defining matrix for F , and note that M is an m × n matrix. By
Theorem 4.14 and Theorem 4.17, rref(M) must have a pivot in every row and every column. Since
a matrix can have at most one pivot in every row, and a matrix in reduced row echelon form can
have at most one pivot in every column, we see that m = n.

Definition 4.19. Let V be a subspace of Rn and W a subspace of Rm. An isomorphism between
V and W is . . .

any linear bijective map F : V → W .

If an isomorphism exists between two vector spaces, we say these spaces are isomorphic, and we
write V ∼= W .
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Definition 5.2. Let F : Rn → Rm be a linear transformation.

1. The kernel of F is the subset ker(F ) ⊆ Rn defined by

ker(F ) := {x⃗ ∈ Rn | F (x⃗) = 0⃗}.

2. The image of F is the subset im(F ) ⊆ Rm defined by

im(F ) := {F (x⃗) | x⃗ ∈ Rn}.

Lecture Activity 5.1. Let F = TC where C is our matrix from Lecture Activity 4.3

C =

(
1 1
1 1

)
.

P1. Find a vector x⃗ ∈ ker(F ).

Solution. We need to find a solution to the matrix-vector equation(
1 1
1 1

)(
x
y

)
=

(
0
0

)

which has solution

(
1
−1

)
, for example, and so

(
1
−1

)
∈ ker(F ).

P2. Find a vector y⃗ ∈ im(F ).

Solution. We have

F

((
1
2

))
=

(
1 1
1 1

)(
1
2

)
=

(
3
3

)
,

and so

(
3
3

)
∈ im(F ).



P3. Find a vector v⃗ so that ker(F ) = Span(v⃗). Conclude that ker(F ) is a vector space.

Note that ker(F ) consists of all solutions to the matrix-vector equation(
1 1
1 1

)(
x
y

)
=

(
0
0

)
,

which has the same solution set as the system of linear equations with augmented matrix(
1 1 0
1 1 0

)
∼

(
1 1 0
0 0 0

)
.

Hence, solving for our basic variable x in terms of our free variable y, we get

ker(F ) =

{(
−y
y

)
: y ∈ R

}
=

{
y

(
−1
1

)
: y ∈ R

}
= Span

((
−1
1

))
.

Since we’ve written ker(F ) as a span, ker(F ) is a vector space by Proposition 3.2.

P4. Find a vector w⃗ so that im(F ) = Span(w⃗). Conclude that im(F ) is a vector space.

We have

im(F ) =

{
F

((
x
y

))
:

(
x
y

)
∈ R2

}
, by definition of im(F )

=

{(
1 1
1 1

)(
x
y

)
: x, y ∈ R

}
, since F = TC

=

{
x

(
1
1

)
+ y

(
1
1

)
: x, y ∈ R

}
, by definition of the matrix-vector product

= Span

((
1
1

)
,

(
1
1

))
, by definition of span

= Span

((
1
1

))
, deleting the redundant vector.

Since we’ve written im(F ) as a span, im(F ) is a vector space by Proposition 3.2.



Definition 5.4. Let F : Rn → Rm be a linear transformation.

1. The rank of F is . . .

the dimension of im(F ),

and is denoted by rank(F ).

2. The nullity of F is . . .

the dimension of ker(F ),

and is denoted by nullity(F ).

Lecture Activity 5.2. Let F : R3 → R2 be given by

F

x
y
z

 =

(
x+ y
x+ z

)
.

P1. Calculate rank(F ).

Solution. Observe that F has defining matrix

MF =

(
1 1 0
1 0 1

)
,

and so working similarly to Lecture Activity 5.1, we have

im(F ) =

F

x
y
z

 :

x
y
z

 ∈ R3

 , by definition of im(F )

=


(
1 1 0
1 0 1

)x
y
z

 : x, y, z ∈ R

 , since MF is the defining matrix of F

=

{
x

(
1
1

)
+ y

(
1
0

)
+ z

(
0
1

)
: x, y, z ∈ R

}
, by definition of the matrix-vector product

= Span

((
1
1

)
,

(
1
0

)
,

(
0
1

))
. by definition of span.

This gives a generating set for im(F ), and so now we can use our strategy from Section 3.3
to find a basis. Since

rref(MF ) =

(
1 0 1
0 1 −1

)
has two pivots, then by Theorem 3.11 we know that rank(F ) = dim im(F ) = 2.



P2. Calculate nullity(F ).

Solution. Since MF =

(
1 1 0
1 0 1

)
, then working similarly to Lecture Activity 5.1, we need to

find all solutions to the matrix-vector equation

(
1 1 0
1 0 1

)x
y
z

 =

(
0
0

)
,

which has the same solution set as the system of linear equations with augmented matrix(
1 1 0 0
1 0 1 0

)
which has reduced row echelon form (

1 0 1 0
0 1 −1 0

)
.

So, our solutions must satisfy x + z = 0 and y − z = 0. Parameterizing our basic variables
x, y in terms of our free variable z gives

ker(F ) =


−z

z
z

 : z ∈ R

z

−1
1
1

 : z ∈ R


= Span

−1
1
1

 .

Hence, we found a generating set for ker(F ) with a single element, and so this set must be a
basis (noting that single element sets are always linearly independent). Thus, nullity(F ) =
dimker(F ) = 1.



Definition 5.5. Let A be an m × n matrix with column vectors A =
(
v⃗1 · · · v⃗n

)
. Then, the

column space of A is the subspace of Rm given by . . .

Col(A) := Span(v⃗1, . . . , v⃗n).

The null space of A is the subspace of Rn given by

Nul(A) := {x⃗ ∈ Rm | Ax⃗ = 0⃗}.

Proposition 5.6. Let F : Rn → Rm be a linear transformation with defining matrix MF . Then,
ker(F ) = Nul(MF ) and im(F ) = Col(MF ).

Proof. Let F have defining matrix M = MF .

Complete the proof: show that ker(F ) = Nul(M)

We have

ker(F ) =
{
x⃗ ∈ Rn : F (x⃗) = 0⃗

}
, by definition of ker(F )

=
{
x⃗ ∈ Rn : Mx⃗ = 0⃗

}
, since M is the defining matrix of F

= Nul(M), by definition of Nul(M).



Next, suppose that M has column vectors M =
(
v⃗1 · · · v⃗n

)
.

Complete the proof: show that im(F ) = Col(M)

im(F ) =

F


x1

...
xn


 :

x1
...
xn

 ∈ Rn

 , by definition of im(F )

=

M

x1
...
xn

 : x1, . . . , xn ∈ R

 , since M is the defining matrix of F

=

(
v⃗1 · · · v⃗n

)x1
...
xn

 : x1, . . . , xn ∈ R

 , since M =
(
v⃗1 · · · v⃗n

)
= {x1v⃗1 + · · ·+ xnv⃗n : x1, . . . , xn ∈ R} , by definition of the matrix-vector product

= Span (v⃗1, . . . , v⃗n) , by definition of span

= Col(M), by definition of the column space.

Definition 5.7. Let A be a matrix.

1. The nullity of A is . . .

the dimension of Nul(A),

and is denoted by nullity(A).

2. The rank of A is . . .

the dimension of Col(A),

and is denoted by rank(A).



Lecture Activity 5.3. Calculate the rank and nullity of

A =

1 −1 0
0 0 1
2 1 1



Solution. We have that rref(A) =

1 0 0
0 1 0
0 0 1

, and so the column vectors of A are linearly inde-

pendent, and hence form a basis for Col(A). Hence, rank(A) = dimCol(A) = 3. To calculate the
nullity, note that the matrix-vector equation Ax⃗ = 0⃗ has the same solution set as the system of
linear equations with augmented matrix 1 −1 0 0

0 0 1 0
2 1 1 0


which has reduced row echelon form 1 0 0 0

0 1 0 0
0 0 1 0

 .

Hence, the only solution to Ax⃗ = 0⃗ is x⃗ = 0⃗ and so Nul(A) = {⃗0} is the trivial space. Hence,
nullity(A) = dim(Nul(A)) = 0.



Lecture Activity 5.4. Let A and B be 3× n matrices.

P1. Suppose that A has exactly two pivot columns, which are located in columns 1 and 3. Show
that rank(A) = 2 and nullity(A) = 1.

Solution. Let A =
(
v⃗1 v⃗2 v⃗3

)
. Since rref(A) has a pivot in the first and third column,

then by Theorem 3.11 we know that {v⃗1, v⃗3} forms a basis for Col(A). Hence, rank(A) =
dim(Col(A)) = 2. Next, note thatx

y
z

 ∈ Nul(A) ⇔
(
v⃗1 v⃗2 v⃗3

)x
y
z


⇔ xv⃗1 + yv⃗2 + zv⃗3 = 0⃗

Since the second column of A does not have a pivot, we know that the variable y is free in
the vector equation above. So, we can parameterize our basic variables x and z in terms of
our free variable y, say that x = ay and z = by for some a, b ∈ R. Then

Nul(A) =


ay

y
by

 : y ∈ R


=

y

a
1
b

 : y ∈ R


= Span

a
1
b

 .

Since we found a generating set for Nul(A) with a single element, this set must be a basis
(noting that any set containing a single element is linearly independent). So, nullity(A) =
dim(Nul(A)) = 1.



P2. Suppose that B has exactly one pivot column, which is located in column 1. Show that
rank(B) = 1 and nullity(B) = 2.

Solution. Let B =
(
v⃗1 v⃗2 v⃗3

)
. Since rref(B) has a pivot in the first column, then by

Theorem 3.11 we know that {v⃗1} forms a basis for Col(B). Hence, rank(B) = dim(Col(B)) =
1. Next, note that x

y
z

 ∈ Nul(A) ⇔
(
v⃗1 v⃗2 v⃗3

)x
y
z


⇔ xv⃗1 + yv⃗2 + zv⃗3 = 0⃗

Since the second and third columns of A do not have pivots, we know that the variables y
and z are free in the vector equation above. So, we can parameterize our basic variable x in
terms of our free variables y and z, say that x = ay + bz for some a, b ∈ R. Then

Nul(B) =


ay + bz

y
z

 : y, z ∈ R


=


ay

y
0

+

bz
0
z

 : y, z ∈ R


=

y

a
1
0

+ z

b
0
1

 : y, z ∈ R


= Span

a
1
0

 ,

b
0
1

 .

Note that a b
1 0
0 1

 ∼

0 0
1 0
0 1

 ∼

1 0
0 1
0 0


and so the set 

a
1
0

 ,

b
0
1


is linearly independent by Proposition 2.12. Hence, this set forms a basis, and so nullity(B) =
dim(Nul(B)) = 2.



Definition 5.10. A system of linear equations is called homogeneous if . . .

the constant coefficients are all equal to zero.

Lecture Activity 5.5. Consider the system of linear equations
x+ 2y + 4z = 0

x+ y − z = 0

y + 5z = 0

P1. Find a matrix C so that the vector form of the solution set to this system is equal to Nul(C).

Solution. This system of linear equations has the same solution set as the matrix-vector
equation 1 2 4

1 1 −1
0 1 5

x
y
z

 =

0
0
0

 .

So, by definition, this system has solution set equal to Nul(C) where

C =

1 2 4
1 1 −1
0 1 5



P2. Calculate nullity(C).

Solution. We have

rref(C) =

1 0 −6
0 1 5
0 0 0

 ,

and so by Theorem 5.8, nullity(C) = 1.

P3. Recall from Section 1.7 that the solution set to this system is equal to the set of intersection
points of planes in R3. Given your work in the previous parts, do these planes intersect at a
point, a line, or a plane in R3?

Solution. Since the solution set is equal to Nul(C) by P1, which is a one-dimensional space
by P2, these planes intersect at a line.



Theorem 5.12. The vector representation for the solution set to a consistent system of linear
equations in n variables with coefficient matrix C is equal to

p⃗+Nul(C) := {p⃗+ v⃗ | v⃗ ∈ Nul(C)}

where p⃗ is any particular vector solution to the system of linear equations.

Proof. Suppose that our system of linear equations has coefficient matrix C and particular solution
p⃗. Then, the system has the same solution set as the matrix-vector equation Cx⃗ = b⃗ for a vector
b⃗ ∈ Rn. Let s⃗ be any solution to this matrix-vector equation.

Complete the proof: show that s⃗− p⃗ is a solution to Cx⃗ = 0.

Since s⃗ and p⃗ are solutions to the matrix-vector equation Cx⃗ = 0 we have Cs⃗ = 0⃗ and Cp⃗ = 0⃗. So,

C(s⃗− p⃗) = Cs⃗− Cp⃗ = 0⃗,

as needed.

Since the solution set of Cx⃗ = 0⃗ is equal to Nul(C), then by above we can write s⃗− p⃗ ∈ Nul(C).

Complete the proof: conclude that the solution s⃗ is in p⃗+Nul(C).

Since s⃗− p⃗ ∈ Nul(C) then we can write
s⃗− p⃗ = v⃗

for some v⃗ ∈ Nul(C). Adding p⃗ to both sides gives s⃗ = p⃗+ v⃗ ∈ p⃗+Nul(C).

Conversely, take any p⃗+ v⃗ ∈ p⃗+Nul(C).

Complete the proof: show that p⃗+ v⃗ is a solution to Cx⃗ = b⃗.

Since p⃗ is a solution to Cx⃗ = b⃗ we have Cp⃗ = b⃗. Furthermore, since v⃗ ∈ Nul(C) we have Cv⃗ = 0⃗.
So,

C(p⃗+ v⃗) = Cp⃗+ Cv⃗ = b⃗+ 0⃗ = b⃗,

as needed.



Lecture Activity 5.6. Determine whether the solution set for each of the following systems is
empty, a point, a line, or a plane in R3.

P1.


x+ 2y + 4z = 1

x+ y − z = 2

y + 5z = −1

Solution. We have

rref

1 2 4 1
1 1 −1 2
0 1 5 −1

 =

1 0 −6 3
0 1 5 −1
0 0 0 0


and so the system is consistent. Furthermore, if we let C denote the coefficient matrix, we
see that nullity(C) is 1-dimensional. By Theorem 5.12 we know that the solution set is equal
to p⃗+Nul(C) for some fixed vector p⃗, and so the solution set describes a line in R3.

P2.


x+ 2y + 2z = 5

x+ y + z = 0

3x+ 3z = 1

Solution. We have

rref

1 2 2 5
1 1 1 0
3 0 3 1

 =

1 0 0 −5
0 1 0 −1

3
0 0 1 16

3

 .

and so the system is consistent. Furthermore, if we let C denote the coefficient matrix, we
see that nullity(C) is 0-dimensional. By Theorem 5.12 we know that the solution set is equal
to p⃗+Nul(C) for some fixed vector p⃗, and so the solution set describes a point in R3.

P3.


x+ 2y + 4z = 1

x+ y − z = 2

y + 5z = 1

Solution. We have

rref

1 2 4 1
1 1 −1 2
0 1 5 1

 =

1 0 −6 0
0 1 5 0
0 0 0 1

 ,

which has a pivot in the last column, and so this system is inconsistent. Hence, the solution
set is empty.
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