
chapter 4 activity packet solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Monday, September
29th. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the activities in this packet. You are responsible for completing
all portions of this packet, including lecture activities not discussed in class, and completing the
definitions included in the packet. Solutions will be posted to the course website after the assignment
due date.

Definition 4.1. Let A be an m×n matrix with column vectors A =
(
v⃗1 v⃗2 · · · v⃗n

)
. Then, for

a vector x⃗ in Rn the matrix-vector product of A and x⃗ is the vector in Rm defined by . . .

Ax⃗ := x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n.

Lecture Activity 4.1. Consider the matrices

A =

 1 2
0 1
−1 1

 and B =

(
3 −1 1
2 0 1

)
.

P1. Calculate the matrix-vector product Ax⃗ where x⃗ =

(
2
1

)
.

Solution. We have

Ax⃗ =

 1 2
0 1
−1 1

(
2
1

)
= 2

 1
0
−1

+ 1

2
1
1

 =

 4
1
−1



P2. Calculate the matrix-vector product By⃗ where y⃗ =

1
2
3

 .

Solution. We have

By⃗ =

(
3 −1 1
2 0 1

)1
2
3

 = 1

(
3
2

)
+ 2

(
−1
0

)
+ 3

(
1
1

)
=

(
4
5

)

1



P3. Let x⃗ and y⃗ be as in the previous problems. Explain why the matrix-vector products Ay⃗ and
Bx⃗ are not defined.

Solution. Note that Definition 4.1 requires we multiply each component of y⃗ by one of the
columns of A. Since y⃗ has three components but A only has two columns, this is not possible.
Similarly, observe that Definition 4.1 requires we multiply each column of B by one of the
components of x⃗. Since B has three columns but x⃗ has only two components, this is not
possible.

P4. Let z⃗ be a vector in R2. How many components does the vector Az⃗ have?

Solution. Let z⃗ =

(
z1
z2

)
. Then we have

Az⃗ = z1

 1
0
−1

+ z2

2
1
1

 ,

which is a linear combination of vectors in R3. Hence, Az⃗ is a vector in R3.

P5. Let w⃗ be a vector in R3. How many components does the vector Bw⃗ have?

Solution. Let w⃗ =

w1

w2

w3

. Then we have

Bw⃗ = w1

(
3
2

)
+ w2

(
−1
0

)
+ w3

(
1
1

)
which is a linear combination of vectors in R2. Hence, Bw⃗ is a vector in R2.



Definition 4.2. Let A be an m × n matrix. Then, the matrix transformation associated to
A is the function . . .

TA : Rn → Rm defined by TA(x⃗) := Ax⃗.

Lecture Activity 4.2. In the images below, we’ve plotted where the indicated function sends the
standard coordinate grid for R2. What do you notice?

TA where A =

(
2 1
1 2

)

TB where B =

(√
2 −

√
2√

2
√
2

)

TC where C =

(
1 1
1 1

)

F

((
x
y

))
=

(
x+ sin(y)

y

)

G

((
x
y

))
=

(
x+ y2

y

)

H

((
x
y

))
=

(
x+ |y|

y

)

Solution. Observe that the functions on the left are all matrix transformations, and the lines from
the standard coordinate grids remain as lines under our transformation. The functions on the right
transforms the lines of the standard coordinate grid into curved lines or kinked lines.



Definition 4.4. A function F : Rn → Rm is called linear if it satisfies the following two properties
for all vectors v⃗, w⃗ ∈ Rn and scalars c ∈ R . . .

1. F (v⃗ + w⃗) = F (v⃗) + F (w⃗), and

2. F (cv⃗) = cF (v⃗)

Lecture Activity 4.3. Determine which of the following are linear transformations. Give a formal
justification for your answer by showing that the function does or does not satisfy the conditions
of Definition 4.4.

P1. F : R2 → R2 defined by

F

((
x
y

))
=

(
x2

y2

)
Solution. This function is not linear. For example, we have

F

((
1
0

)
+

(
1
0

))
= F

((
2
0

))
=

(
4
0

)
,

but

F

((
1
0

))
+ F

((
1
0

))
=

(
1
0

)
+

(
1
0

)
=

(
2
0

)
,

and so

F

((
1
0

)
+

(
1
0

))
̸= F

((
1
0

))
+ F

((
1
0

))
.

Thus, F is not linear.



P2. G : R2 → R2 defined by

G

((
x
y

))
=

(
x+ y
x

)
.

Solution. We claim that G is linear. To see this, take any vectors

(
x1
y1

)
,

(
x2
y2

)
∈ R2.

Then,

G

((
x1
y1

)
+

(
x2
y2

))
= G

((
x1 + x2
y1 + y2

))
=

(
(x1 + x2) + (y1 + y2)

x1 + x2

)
=

(
x1 + y1

x1

)
+

(
x2 + y2

x2

)
= G

((
x1
y1

))
+G

((
x2
y2

))
.

Now, for any scalar c ∈ R we have

G

(
c

(
x1
y1

))
= G

((
cx1
cy1

))
=

(
cx1 + cy1

cx1

)
= c

(
x1 + y1

x1

)
= cG

((
x1
y1

))
as needed.



P3. TA : R2 → R2 where A =
(
v⃗1 v⃗2

)
is any 2× 2 matrix.

Solution. We claim that TA is linear. To see this, take any vectors

(
x1
y1

)
,

(
x2
y2

)
∈ R2. Then,

TA

((
x1
y1

)
+

(
x2
y2

))
= TA

((
x1 + x2
y1 + y2

))
= A

(
x1 + x2
y1 + y2

)
= (x1 + x2)v⃗1 + (y1 + y2)v⃗2

= (x1v⃗1 + y1v⃗2) + (x2v⃗1 + y2v⃗2)

= A

(
x1
y1

)
+A

(
x2
y2

)
= TA

((
x1
y1

))
+ TA

((
x2
y2

))
.

Now, for any scalar c ∈ R we have

TA

(
c

(
x1
y1

))
= TA

((
cx1
cy1

))
= A

(
cx1
cy1

)
= cx1v⃗1 + cy1v⃗2

= c(x1v⃗1 + y1v⃗2)

= cA

(
x1
y1

)
= cTA

((
x1
y1

))
,

as needed



Lecture Activity 4.4. Suppose that F : R2 → R2 is a linear transformation satisfying

F

((
1
0

))
=

(
1
−1

)
and F

((
0
1

))
=

(
1
2

)
.

P1. Find F

((
1
1

))
and F

((
2
3

))
.

Solution. Observe that(
1
1

)
=

(
1
0

)
+

(
0
1

)
, and

(
2
3

)
= 2

(
1
0

)
+ 3

(
0
1

)
.

Since F is a linear transformation, we have

F

((
1
1

))
= F

((
1
0

)
+

(
0
1

))
= F

((
1
0

))
+ F

((
0
1

))

=

(
1
−1

)
+

(
1
2

)
=

(
2
1

)
.

Similarly,

F

((
2
3

))
= F

(
2

(
1
0

)
+ 3

(
0
1

))
= 2F

((
1
0

))
+ 3F

((
0
1

))

= 2

(
1
−1

)
+ 3

(
1
2

)
=

(
5
4

)
.

P2. Find a formula for F

((
x
y

))
.

Solution. Since

(
x
y

)
= x

(
1
0

)
+ y

(
0
1

)
, and F is a linear transformation, we have

F

((
x
y

))
= F

(
x

(
1
0

)
+ y

(
0
1

))
= xF

((
1
0

))
+ yF

((
0
1

))
= x

(
1
−1

)
+ y

(
1
2

)

=

(
x+ y

−x+ 2y

)
.



P3. Find a 2× 2 matrix M so that F (x⃗) = Mx⃗ for all vectors x⃗ ∈ R2.

Solution. From the previous part, we have

F

((
x
y

))
= x

(
1
−1

)
+ y

(
1
2

)
.

Rewriting the expression on the right in matrix-vector form yields

F

((
x
y

))
=

(
1 1
−1 2

)(
x
y

)
,

and so M =

(
1 1
−1 2

)
. Observe that

M =

(
F

((
1
0

))
F

((
0
1

)))
.

That is, the columns of M are determined by where F sends the standard basis vectors.

Definition 4.9. Let F : Rn → Rm be a linear transformation. Then, the defining matrix of F
is the m× n matrix M satisfying

F (x⃗) = Mx⃗

for all vectors x⃗ in Rn, and is denoted by M = MF .



Lecture Activity 4.5. Let F : R2 → R2 be the transformation which rotates every vector θ◦

counterclockwise about the origin.

P1. Use geometric reasoning to argue that F is a linear transformation.

Solution. Since F only rotates the plane, we can see that all lines will remain as lines and
the origin remains fixed.

P2. Find the defining matrix MF when θ = 90◦.

Solution. We see that F : e⃗1 7→
(
0
1

)
and F : e⃗2 7→

(
−1
0

)
and so

MF =

(
0 −1
1 0

)
.

P3. Find the defining matrix MF for any value of θ. Note that your matrix will depend on the
unknown angle θ.

Solution. We see that F : e⃗1 7→
(
cos θ
sin θ

)
and F : e⃗2 7→

(
cos(θ + 90◦)
sin(θ + 90◦)

)
=

(
− sin θ
cos θ

)
. So,

MF =

(
cos θ − sin θ
sin θ cos θ

)
.



Definition 4.13. A function f : X → Y is called one-to-one (or injective) if the following
property holds . . .

for every y ∈ Y , there is at most one input x ∈ X so that f(x) = y.

Lecture Activity 4.6. Determine which of the following functions are injective. Give a formal
justification for your answer by showing that the function does or does not satisfy the conditions
of Definition 4.13.

P1. TA : R2 → R2 where

A =

(
1 0
0 1

)
.

Solution. Take any vector y⃗ =

(
a
b

)
∈ R2. Note that the matrix-vector equation Ax⃗ = y⃗ has

the same solution set as the system of linear equations with augmented matrix(
1 0 a
0 1 b

)
.

By Rouché-Capelli, this system has exactly one solution. Hence, there is at most one value

x⃗ ∈ R2 so that TA(x⃗) = y⃗, and so TA is injective .



P2. TB : R3 → R2 where

B =

(
1 0 0
0 1 1

)
.

Solution. We have

TB

 0
1
−1

 =

(
0
0

)
and TB

 0
2
−2

 =

(
0
0

)
.

Hence, there is more than one solution to the equation TB(x⃗) = 0⃗, and so TB is not injective .

P3. TD : R2 → R3 where

D =

1 0
0 1
0 0

 .

Solution. Take any vector y⃗ =

a
b
c

 ∈ R3. Note that the matrix-vector equation Dx⃗ = y⃗ has

the same solution set as the system of linear equations with augmented matrix1 0 a
0 1 b
0 0 c

 .

By Rouché-Capelli, this system either has no solutions (if c ̸= 0) or has exactly one solution
(when c = 0). Hence, there is at most one value x⃗ ∈ R2 so that TD(x⃗) = y⃗, and so TD

is injective .



Theorem 4.14. A linear transformation F is injective if and only if every column of rref(MF ) has
a pivot.

Proof. Let M = MF be the defining matrix of a linear transformation F : Rn → Rm. By definition
of the defining matrix, for any y⃗ ∈ Rm, the set of vectors x⃗ ∈ Rn satisfying

F (x⃗) = y⃗

is precisely the set of vectors satisfying the matrix-vector equation Mx⃗ = y⃗.

Use Rouché-Capelli to complete the proof.

Observe that the matrix-vector equation Mx⃗ = y⃗ has the same solution set as the system of linear
equations with augmented matrix (

M y⃗
)
.

By Rouché-Capelli, rref
(
M y⃗

)
has a pivot in the last column if and only if the system has no

solutions. Otherwise, the system has exactly one solution if and only if rref(M) has a pivot in
every column.

Therefore, the system has at most one solution if and only if rref(M) has a pivot in every column,
as needed.



Definition 4.16. A function f : X → Y is called onto (or surjective) if the following property
holds . . .

for every y ∈ Y , there is at least one input x ∈ X so that f(x) = y.

Lecture Activity 4.7. Determine which of the following functions are surjective. Give a formal
justification for your answer by showing that the function does or does not satisfy the conditions
of Definition 4.16.

P1. TA : R2 → R2 where

A =

(
1 0
0 1

)
.

Solution. Take any vector y⃗ =

(
a
b

)
∈ R2. Note that the matrix-vector equation Ax⃗ = y⃗ has

the same solution set as the system of linear equations with augmented matrix(
1 0 a
0 1 b

)
.

By Rouché-Capelli, this system has exactly one solution. Hence, there is at least one value

x⃗ ∈ R2 so that TA(x⃗) = y⃗, and so TA is surjective .



P2. TB : R3 → R2 where

B =

(
1 0 0
0 1 1

)
.

Solution. Take any vector y⃗ =

(
a
b

)
∈ R3. Note that the matrix-vector equation Bx⃗ = y⃗ has

the same solution set as the system of linear equations with augmented matrix(
1 0 0 a
0 1 1 b

)
.

By Rouché-Capelli, this system has infinitely many solutions. Hence, there is at least one

value x⃗ ∈ R2 so that TA(x⃗) = y⃗, and so TA is surjective .

P3. TD : R2 → R3 where

D =

1 0
0 1
0 0

 .

Solution. Consider the vector y⃗ =

0
0
1

. Note that the matrix-vector equation Dx⃗ = y⃗ has

the same solution set as the augmented matrix1 0 0
0 1 0
0 0 1

 .

By Rouché-Capelli, this system does not have a solution. Hence, there does not exist an input

x⃗ ∈ R3 so that TD(x⃗) = y⃗), and so TD is not surjective .



Lecture Activity 4.8. Use Theorems 4.14 and 4.17 to determine which of the following functions
are injective, surjective, or neither.

P1. F : R2 → R3,

(
x
y

)
7→

x
y
0


Solution. Observe that F has defining matrix

MF =

1 0
0 1
0 0

 .

This matrix is in reduced row echelon form, and has a pivot in every column but not every

row. Hence, F is injective but not surjective .

P2. G : R3 → R3,

x
y
z

 7→

x− y
y + z
x+ z


Solution. Observe that G has defining matrix

MG =

1 −1 0
0 1 1
1 0 1


and we have

rref(MG) =

1 0 1
0 1 1
0 0 0

 .

This matrix does not have a pivot in the third column, and does not have a pivot in the third

row. Hence, G is neither injective nor surjective .



P3. H : R3 → R3,

x
y
z

 7→

x− y
y + z
z


Solution. Observe that H has defining matrix

MH =

1 −1 0
0 1 1
0 0 1


and we have

rref(MH) =

1 0 0
0 1 0
0 0 1

 .

This matrix has a pivot in every column and every row. Hence,H is both injective and surjective .
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