CHAPTER 3 ACTIVITY PACKET solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Monday, September
22nd. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the examples and lecture activities in this packet. You are
responsible for completing all portions of this packet, including lecture activities not discussed in
class, and completing the definitions included in the packet. Solutions will be posted to the course
website after the assignment due date.

Definition 3.1. A VECTOR SPACE (over the real numbers) is any set of vectors V' in R™ that
satisfies all of the following properties:

1. V is nonempty;
2. V is closed under vector addition: for all ¥,w € V we have ¢ + @ € V;

3. V is closed under scalar multiplication: for all ¥ € V and ¢ € R we have ¢t € V.

Lecture Activity 3.1. Determine which of the following sets are vector subspaces of the given
ambient space and which are not. Justify your answer.

P1. The subsets of R? drawn below (note that the set S in the second image is meant to extend
infinitely in all directions)

Sl v 82
7 —v
83 4

Solution. We can see geometrically that Ss is a vector space. To see that sets S, Sy and Sy
are not vector spaces, let i, ¥ and @ be the vectors drawn on the images above. We have:
e U €Sy but 24 € S1, and so 87 is not closed under scalar multiplication;
o U,—U € Sy but ¥+ (—7) =00 € Sy and so Sy is not closed under vector addition;

e € Sy but —i € Sy and so Sy is not closed under scalar multiplication.



P2. The subset U of R? defined by U = { <313> tx € R}
Solution. This set is not a vector space. For example, observe that

(1) () <

but we have

P3. The subset V of R? defined by V = { <26C> ix € R}

. . . . 0 .
Solution. This set is a vector space. First, observe that < ) € V, and so V is nonempty,

0
as needed. Next, take any vectors U, w € V and scalar ¢ € R. Then we can write

5o 2a 0 — 2b
- 0 9 - 0 9
for some a,b € R. This gives

T+ = (20a + (20b>
_ (2(a(;r b))

= (26):), where x =a+b

and so @+ W € V and V is closed under vector addition. Now to check closer under scalar

multiplication, we have
. 2
cU = < gc) eV,

as needed. Hence, V is a vector space.



r—y
P4. The subset W of R? defined by W = r+y+2z|:x,y,2€R
Y+ =z

First note that W is non-empty, since 0 € W (where we take x = y = z = 0). Now let
i,7 € W and let ¢ € R be a scalar. Then for some w1, uo, usg, v1,v9,v3 € R, we have

Uy — u2 V1 — V2
U= |us +us+2uz |, 7= |v1+vy+ w3
U9 + u3 V2 + U3
Now
Uy — u2 U1 — V2
U+T=[u +us+2us | + | v1 +vo + 2v3
ug + Uz Vg + U3

uUp — U2 + v — V2

= | up + ug + 2ug + v1 + vo + 2v3

U2 + uz + v + U3

(u1 + U1) — ('LLQ + Ug)

= | (u1 +v1) + (u2 +v2) + 2(u3 + v3)
(uz + UQ) + (Ug + Ug)

r—y

=|lz+ty+2z],

y+z

where © = u; +v1,y = ug +v2,2 = ug +v3. So U+ ¥ € W and W is closed under vector
addition. Now to check closure under scalar multiplication,

U]l — U
ci=c | up +ug + 2us
Uz + u3
c(uy — ug)
= | c(ur + u2 + 2us)
c(ug + us)
Cu1 — Cuy
= | cui + cuo + 2cus
cug + cug
r—y
=l|lz+y+22|,
Y+ z

where x = cuy,y = cug, z = cuz and so ct € W, as needed. Hence, W is a vector space.



Proposition 3.2. The span of any set of vectors in R™ is a vector subspace of R".

Proof. Suppose that V' = Span (91, U2, . . ., U,) for vectors v, Ua, . .., Uy, in R™.

Complete the proof: show that V is a vector space.

Observe that 0 € V since we can write
0=00 + -+ 00,

and so V is not empty. Next, take any ¢, in V. Then we can write
U=a191 + - + amUn

wW="b101 + -+ bV
for scalars a;,b; € R and so
T+ W= (a1 +b1)01 + -+ (@m + b))V € Span(y, ..., Upy).
Hence, 7+ @ € V and so V is closed under vector addition. Finally, for any scalar ¢ € R we have

et = (car)vy + -+ + (cam) Uy € Span(vy, ..., Un).

Hence, ¢/ € V' and so V is closed under scalar multiplication. Therefore, V' is a vector space.

To see that V is a subset of R™, note ¥y, ...,7U, € R™. Furthermore, by definition we know that
R™ is closed under scalar multiplication and so ¢1v1,...,c,U, € R™. Again by definition we know
that R™ is closed under vector addition and so

U=c10 + -+ cnty € R?

for all ¥ € V and so V C R"™. O



Definition 3.4. Let V be a vector subspace of R”. A SPANNING SET (also known as a GENERATING
SET) for Vis ...

any subset B of V' so that V' = Span(B).

Lecture Activity 3.2. Show that the following sets are vector spaces by finding a generating set.
Compare with your work in Lecture Activity 3.1

v {(2) e c)

Solution. Observe that we can write

e e ()

So, by Proposition 3.2, V' is a vector space.

r—Y
P2. W = r+y+2z]:x,y,2€R
Y+ z

Solution. Observe that we can write

r—y
W = c+y+2z|:x,y,z€R
y+z
T -y 0
= z|l4+|y |+22] :z,y,2€R
0 Y z
1 -1 0
=<z|1l]+y| 1 | +2[2]:2,y,2€R
0 1 1
1 -1 0
= Span 11,0 1 ],12
0 1 1

So, by Proposition 3.2, W is a vector space.



Definition 3.5. A subset B of a vector space V is called a BASIS if ...

1. B is a spanning set for V', and

2. B is linearly independent.

Lecture Activity 3.3. Determine which of the following sets are bases for R3.

1 0 1
B = 1),11],12
1 1 2
Solution. Note that
1 1 0
21 =111 +(1],
2 1 1

and so the vectors in By are linearly dependent. So, B; is not a basis for R3.

1 0
By = 01,11
0 0
Solution. Since the vector
0 1 0
0 | ¢ Span 0,1 ,
1 0 0

it follows that By is not a generating set for R3, and therefore is not a basis for R>.



1\ /0\ /0
Bs=<lo].[1],][o
o/ \o/ \1

Solution. By Proposition 2.4, we see that B3 is linearly independent. Furthermore, every vector in
R3 we be written in the form

T 1 0 0
y|l=2|0]+y|1]+2][0
z 0 0 1

and so Bs also generates. Hence, B3 is a basis for R3.

1N\ /1\ /0
Bi=<{lo].[1],]o
1/ \o/ \u

Solution. The set B, is a basis for R3. To see this, observe that

1 0= 1 00
rref | O 0 =[0 1 O
1 1 0 0 1

O =

and so By is linearly independent by Proposition 2.12. Now to show that the set generates, take
a

any vector ¥ = | b | in R? and consider the vector equation
c

1 1 0 a
20| +y 1] +2|0]=1|0],
1 0 1
We have
1 1 0|z 1 00 a—>b
rref |0 1 Oyl =(0 1 0 b ,
1 0 1|z 0 0 1|c—a+b

and so this vector equation has solution x = a — b,y = b,c = ¢ — a + b. Hence, ¥ € Span(By) for
every vector ¥ in R3, and so By is a generating set for R3.



Definition 3.8. Let V be a nonzero vector subspace of R™. Then, the DIMENSION of V', denoted
dimV,is ...

the size of any basis for V.

Definition 3.9. The STANDARD BASIS for R” is the set £ := {é},é,...,€,} where & is ...

the vector with 1 in the ith coordinate and 0 in all other coordinates. That is,

1 0 0

0 1 0
€= = [, en=

0 0 1

Lecture Activity 3.4. Show that the standard basis is a basis for R". Conclude that dim(R") = n.

Solution. The matrix

1 0 - 0
o1 - 0
@ e a0

is already in reduced row echelon form and has a pivot in every column, and so by Proposition
2.4, & = {€1,8,...,€,} is a linearly independent set. Furthermore, we defined vectors by their
standard coordinates (see Definition 2.3). So, for any v € R" we can write

T
— 1‘2 — — —
v=| . | =T1€1 + X262 + -+ Tpep,
Tn
for x1,x9,...,2, € R. Hence, ¥ € Span(€) and so £ generates R™. Thus, £ is a basis for R"

containing n elements, and so dim(R") = n.



Lecture Activity 3.5. In this problem we’ll find a basis for the vector space W from Lecture
Activities 3.1 and 3.2, defined by

rT—=Y
W = z+y+2z]:z,y,z€R
Yy+z

P1. Use your work from Lecture Activity 3.2 to observe that we can write W = Span(u, ¢, ).

Solution. From Lecture Activity 3.2 we can set

1 —1 0
i=|1),9=(1],@=]2
0 1 1

P2. Let A= (z‘[ il u7) and observe that

1 0 1
rref(A)= (0 1 1
0 00
Use this calculation to show that @ € Span(u, ¥/).
Solution. Consider the vector equation
T + yv = 0. (3.1)

Since rref (ﬁ v tﬁ) does not have a pivot in the last column, then by Rouché-Capelli, we
know that this vector equation has a solution. In particular, we use rref(A) tosolve x =y =1
which gives

W= U+ 7.



P3.

P4.

— —

Use P2 to show that Span(u, ¥, W) = Span(, ¥)

Solution. Note that this problem is asking us to prove set equality, so we need to show that
two statements are true: Span(u, v, w) C Span(u,v) and Span(,¥) C Span(u, U, ).

For the first set inclusion, take any & € Span(, ¥, ). Then there are real numbers a, b, ¢ so
that & = atl + by + cw. But, recalling that «w = @ + v gives

Z=at+bv+c(i+ V) = (a+ )i+ (b+ ¢)¥ € Span(u, 7).

—

Hence, Span(i, U, W) C Span(i, ¥), as needed.
For the opposite set inclusion, take any i € Span(w, ). Then, there are real numbers d, e so
that

y = di+ eV = di + e + 00 € Span(u, ¥, W).

—

Hence, Span(u, v) C Span(u, ¥, W) and so the desired set equality follows.

Use your work in the previous parts to find a basis for W. Then, find the dimension of W.

Solution. By P1 and P3, we have that W = Span(«, ¥, W) = Span(#, v), and so {u, v} is a
generating set for W. Furthermore, since rref (ﬁ 0] u_i) has a pivot in the first two columns,
then rref (ﬁ 17) has a pivot in every column. Hence, by Proposition 2.12, the set {u, ¢} is
linearly independent. Therefore, {i, ¢} is a basis for W and so dim(W) = 2.



Lemma 3.10. Let A be an m x n matrix of the form
A= (171 Uy - ﬁn)

where the ¥; are vectors in R™. If the nth column of rref(A) does not have a pivot, then the vector
1771 is in Span(ﬁl, 172, ey Gn—l)-

Prove Lemma 3.10.

Proof. Our argument will follow similarly to our work from P2 of Lecture Activity 3.5

Consider the vector equation
21U + +x9Us + -+ + Tp—1Un—1 = Un- (3.2)

Note that A = (171 Un) is the augmented matrix of the corresponding system of linear
equations. Since there is no pivot in the nth column of rref(A), then by Rouché-Capelli we know
this system is consistent. That is, there exists (at least one) real number solution (ci, ..., cp—1)
to Equation 3.2, which gives

Up = €101 + -+ + Cu—1Up—1 € Span(1, ..., Up-1),

as needed. O




Lecture Activity 3.6. Find a basis for the following vector spaces, and state their dimension.

2 1 0
P1. V = Span 1]1,101],]1
-1 -1 1
Solution. We have
2 1 0 1 0 1
rref | 1 0 1] =101 =21},
-1 -1 1 00 O
which has pivots in columns 1 and 2, but no pivot in column 3. Hence, by Theorem 3.11, V'
has basis
2 1
11,10
-1 -1
and hence dim(V) = 2.
1 3 1 7
0 0 1 2
P2. W = Span ol el 11l 112
1 3 1 7
Solution. We have
131 7 1 3 05
¢ 0 01 2 0 01 2
T2 6 1 121 "o o0 0 0]
13 1 7 0000

which has pivots in columns 1 and 3, but no pivot in columns 2 or 4. Hence, by Theorem
3.11, W has basis

=N O =
— = ==

and hence dim(W) = 2.
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