
chapter 3 activity packet solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Monday, September
22nd. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the examples and lecture activities in this packet. You are
responsible for completing all portions of this packet, including lecture activities not discussed in
class, and completing the definitions included in the packet. Solutions will be posted to the course
website after the assignment due date.

Definition 3.1. A vector space (over the real numbers) is any set of vectors V in Rn that
satisfies all of the following properties:

1. V is nonempty;

2. V is closed under vector addition: for all v⃗, w⃗ ∈ V we have v⃗ + w⃗ ∈ V ;

3. V is closed under scalar multiplication: for all v⃗ ∈ V and c ∈ R we have cv⃗ ∈ V .

Lecture Activity 3.1. Determine which of the following sets are vector subspaces of the given
ambient space and which are not. Justify your answer.

P1. The subsets of R2 drawn below (note that the set S2 in the second image is meant to extend
infinitely in all directions)

u⃗

S1
v⃗

−v⃗

S2

S3
w⃗

−w⃗

S4

Solution. We can see geometrically that S3 is a vector space. To see that sets S1,S2 and S4

are not vector spaces, let u⃗, v⃗ and w⃗ be the vectors drawn on the images above. We have:

� u⃗ ∈ S1 but 2u⃗ ̸∈ S1, and so S1 is not closed under scalar multiplication;

� v⃗,−v⃗ ∈ S2 but v⃗ + (−v⃗) = 0v⃗ ̸∈ S2 and so S2 is not closed under vector addition;

� w⃗ ∈ S4 but −w⃗ ̸∈ S4 and so S4 is not closed under scalar multiplication.

1



P2. The subset U of R2 defined by U =

{(
x
1

)
: x ∈ R

}
Solution. This set is not a vector space. For example, observe that(

1
1

)
,

(
2
1

)
∈ U

but we have (
1
1

)
+

(
2
1

)
=

(
3
2

)
̸∈ U .

P3. The subset V of R2 defined by V =

{(
2x
0

)
: x ∈ R

}
Solution. This set is a vector space. First, observe that

(
0
0

)
∈ V, and so V is nonempty,

as needed. Next, take any vectors v⃗, w⃗ ∈ V and scalar c ∈ R. Then we can write

v⃗ =

(
2a
0

)
, w⃗ =

(
2b
0

)
,

for some a, b ∈ R. This gives

v⃗ + w⃗ =

(
2a
0

)
+

(
2b
0

)
=

(
2(a+ b)

0

)
=

(
2x
0

)
, where x = a+ b

and so u⃗ + w⃗ ∈ V and V is closed under vector addition. Now to check closer under scalar
multiplication, we have

cv⃗ =

(
2ac
0

)
∈ V,

as needed. Hence, V is a vector space.



P4. The subset W of R3 defined by W =


 x− y
x+ y + 2z

y + z

 : x, y, z ∈ R


First note that W is non-empty, since 0⃗ ∈ W (where we take x = y = z = 0). Now let
u⃗, v⃗ ∈ W and let c ∈ R be a scalar. Then for some u1, u2, u3, v1, v2, v3 ∈ R, we have

u⃗ =

 u1 − u2
u1 + u2 + 2u3

u2 + u3

 , v⃗ =

 v1 − v2
v1 + v2 + v3

v2 + v3

 .

Now

u⃗+ v⃗ =

 u1 − u2
u1 + u2 + 2u3

u2 + u3

+

 v1 − v2
v1 + v2 + 2v3

v2 + v3


=

 u1 − u2 + v1 − v2
u1 + u2 + 2u3 + v1 + v2 + 2v3

u2 + u3 + v2 + v3


=

 (u1 + v1)− (u2 + v2)
(u1 + v1) + (u2 + v2) + 2(u3 + v3)

(u2 + v2) + (u3 + v3)


=

 x− y
x+ y + 2z

y + z

 ,

where x = u1 + v1, y = u2 + v2, z = u3 + v3. So u⃗ + v⃗ ∈ W and W is closed under vector
addition. Now to check closure under scalar multiplication,

cu⃗ = c

 u1 − u2
u1 + u2 + 2u3

u2 + u3


=

 c(u1 − u2)
c(u1 + u2 + 2u3)

c(u2 + u3)


=

 cu1 − cu2
cu1 + cu2 + 2cu3

cu2 + cu3


=

 x− y
x+ y + 2z

y + z

 ,

where x = cu1, y = cu2, z = cu3 and so cu⃗ ∈ W, as needed. Hence, W is a vector space.



Proposition 3.2. The span of any set of vectors in Rn is a vector subspace of Rn.

Proof. Suppose that V = Span (v⃗1, v⃗2, . . . , v⃗m) for vectors v⃗1, v⃗2, . . . , v⃗m in Rn.

Complete the proof: show that V is a vector space.

Observe that 0⃗ ∈ V since we can write

0⃗ = 0v⃗1 + · · ·+ 0v⃗m,

and so V is not empty. Next, take any v⃗, w⃗ in V . Then we can write

v⃗ = a1v⃗1 + · · ·+ amv⃗m

w⃗ = b1v⃗1 + · · ·+ bmv⃗m

for scalars ai, bi ∈ R and so

v⃗ + w⃗ = (a1 + b1)v⃗1 + · · ·+ (am + bm)v⃗m ∈ Span(v⃗1, . . . , v⃗m).

Hence, v⃗ + w⃗ ∈ V and so V is closed under vector addition. Finally, for any scalar c ∈ R we have

cv⃗ = (ca1)v⃗1 + · · ·+ (cam)v⃗m ∈ Span(v⃗1, . . . , v⃗m).

Hence, cv⃗ ∈ V and so V is closed under scalar multiplication. Therefore, V is a vector space.

To see that V is a subset of Rn, note v⃗1, . . . , v⃗m ∈ Rn. Furthermore, by definition we know that
Rn is closed under scalar multiplication and so c1v⃗1, . . . , cnv⃗n ∈ Rn. Again by definition we know
that Rn is closed under vector addition and so

v⃗ = c1v⃗1 + · · ·+ cmv⃗m ∈ Rn

for all v⃗ ∈ V and so V ⊆ Rn.



Definition 3.4. Let V be a vector subspace of Rn. A spanning set (also known as a generating
set) for V is . . .

any subset B of V so that V = Span(B).

Lecture Activity 3.2. Show that the following sets are vector spaces by finding a generating set.
Compare with your work in Lecture Activity 3.1

P1. V =

{(
2x
0

)
: x ∈ R

}
Solution. Observe that we can write

V =

{
x

(
2
0

)
: x ∈ R

}
= Span

((
2
0

))
.

So, by Proposition 3.2, V is a vector space.

P2. W =


 x− y
x+ y + 2z

y + z

 : x, y, z ∈ R



Solution. Observe that we can write

W =


 x− y
x+ y + 2z

y + z

 : x, y, z ∈ R


=


x
x
0

+

−y
y
y

+

 0
2z
z

 : x, y, z ∈ R


=

x

1
1
0

+ y

−1
1
1

+ z

0
2
1

 : x, y, z ∈ R


= Span

1
1
0

 ,

−1
1
1

 ,

0
2
1


So, by Proposition 3.2, W is a vector space.



Definition 3.5. A subset B of a vector space V is called a basis if . . .

1. B is a spanning set for V , and

2. B is linearly independent.

Lecture Activity 3.3. Determine which of the following sets are bases for R3.

B1 =


1
1
1

 ,

0
1
1

 ,

1
2
2


Solution. Note that 1

2
2

 =

1
1
1

+

0
1
1

 ,

and so the vectors in B1 are linearly dependent. So, B1 is not a basis for R3.

B2 =


1
0
0

 ,

0
1
0


Solution. Since the vector 0

0
1

 /∈ Span

1
0
0

 ,

0
1
0

 ,

it follows that B2 is not a generating set for R3, and therefore is not a basis for R3.



B3 =


1
0
0

 ,

0
1
0

 ,

0
0
1


Solution. By Proposition 2.4, we see that B3 is linearly independent. Furthermore, every vector in
R3 we be written in the form x

y
z

 = x

1
0
0

+ y

0
1
0

+ z

0
0
1


and so B3 also generates. Hence, B3 is a basis for R3.

B4 =


1
0
1

 ,

1
1
0

 ,

0
0
1


Solution. The set B4 is a basis for R3. To see this, observe that

rref

1 1 0 =
0 1 0
1 0 1

 =

1 0 0
0 1 0
0 0 1


and so B4 is linearly independent by Proposition 2.12. Now to show that the set generates, take

any vector v⃗ =

a
b
c

 in R3 and consider the vector equation

x

1
0
1

+ y

1
1
0

+ z

0
0
1

 =

a
b
c

 ,

We have

rref

1 1 0 x
0 1 0 y
1 0 1 z

 =

1 0 0 a− b
0 1 0 b
0 0 1 c− a+ b

 ,

and so this vector equation has solution x = a − b, y = b, c = c − a + b. Hence, v⃗ ∈ Span(B4) for
every vector v⃗ in R3, and so B4 is a generating set for R3.



Definition 3.8. Let V be a nonzero vector subspace of Rn. Then, the dimension of V , denoted
dimV , is . . .

the size of any basis for V .

Definition 3.9. The standard basis for Rn is the set E := {e⃗1, e⃗2, . . . , e⃗n} where e⃗i is . . .

the vector with 1 in the ith coordinate and 0 in all other coordinates. That is,

e⃗1 =


1
0
...
0

 , e⃗2 =


0
1
...
0

 , . . . , e⃗n =


0
0
...
1

 .

Lecture Activity 3.4. Show that the standard basis is a basis for Rn. Conclude that dim(Rn) = n.

Solution. The matrix

(
e⃗1 e⃗2 · · · e⃗n

)
=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is already in reduced row echelon form and has a pivot in every column, and so by Proposition
2.4, E = {e⃗1, e⃗2, . . . , e⃗n} is a linearly independent set. Furthermore, we defined vectors by their
standard coordinates (see Definition 2.3). So, for any v⃗ ∈ Rn we can write

v⃗ =


x1
x2
...
xn

 = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n,

for x1, x2, . . . , xn ∈ R. Hence, v⃗ ∈ Span(E) and so E generates Rn. Thus, E is a basis for Rn

containing n elements, and so dim(Rn) = n.



Lecture Activity 3.5. In this problem we’ll find a basis for the vector space W from Lecture
Activities 3.1 and 3.2, defined by

W =


 x− y
x+ y + 2z

y + z

 : x, y, z ∈ R

 .

P1. Use your work from Lecture Activity 3.2 to observe that we can write W = Span(u⃗, v⃗, w⃗).

Solution. From Lecture Activity 3.2 we can set

u⃗ =

1
1
0

 , v⃗ =

−1
1
1

 , w⃗ =

0
2
1

 .

P2. Let A =
(
u⃗ v⃗ w⃗

)
and observe that

rref(A) =

1 0 1
0 1 1
0 0 0

 .

Use this calculation to show that w⃗ ∈ Span(u⃗, v⃗).

Solution. Consider the vector equation

xu⃗+ yv⃗ = w⃗. (3.1)

Since rref
(
u⃗ v⃗ w⃗

)
does not have a pivot in the last column, then by Rouché-Capelli, we

know that this vector equation has a solution. In particular, we use rref(A) to solve x = y = 1
which gives

w⃗ = u⃗+ v⃗.



P3. Use P2 to show that Span(u⃗, v⃗, w⃗) = Span(u⃗, v⃗).

Solution. Note that this problem is asking us to prove set equality, so we need to show that
two statements are true: Span(u⃗, v⃗, w⃗) ⊆ Span(u⃗, v⃗) and Span(u⃗, v⃗) ⊆ Span(u⃗, v⃗, w⃗).

For the first set inclusion, take any x⃗ ∈ Span(u⃗, v⃗, w⃗). Then there are real numbers a, b, c so
that x⃗ = au⃗+ bv⃗ + cw⃗. But, recalling that w⃗ = u⃗+ v⃗ gives

x⃗ = au⃗+ bv⃗ + c(u⃗+ v⃗) = (a+ c)u⃗+ (b+ c)v⃗ ∈ Span(u⃗, v⃗).

Hence, Span(u⃗, v⃗, w⃗) ⊆ Span(u⃗, v⃗), as needed.

For the opposite set inclusion, take any y⃗ ∈ Span(u⃗, v⃗). Then, there are real numbers d, e so
that

y⃗ = du⃗+ ev⃗ = du⃗+ ev⃗ + 0w⃗ ∈ Span(u⃗, v⃗, w⃗).

Hence, Span(u⃗, v⃗) ⊆ Span(u⃗, v⃗, w⃗) and so the desired set equality follows.

P4. Use your work in the previous parts to find a basis for W . Then, find the dimension of W .

Solution. By P1 and P3, we have that W = Span(u⃗, v⃗, w⃗) = Span(u⃗, v⃗), and so {u⃗, v⃗} is a
generating set for W . Furthermore, since rref

(
u⃗ v⃗ w⃗

)
has a pivot in the first two columns,

then rref
(
u⃗ v⃗

)
has a pivot in every column. Hence, by Proposition 2.12, the set {u⃗, v⃗} is

linearly independent. Therefore, {u⃗, v⃗} is a basis for W and so dim(W ) = 2.



Lemma 3.10. Let A be an m× n matrix of the form

A =
(
v⃗1 v⃗2 · · · v⃗n

)
where the v⃗i are vectors in Rm. If the nth column of rref(A) does not have a pivot, then the vector
v⃗n is in Span(v⃗1, v⃗2, . . . , v⃗n−1).

Prove Lemma 3.10.

Proof. Our argument will follow similarly to our work from P2 of Lecture Activity 3.5

Consider the vector equation

x1v⃗1 ++x2v⃗2 + · · ·+ xn−1v⃗n−1 = v⃗n. (3.2)

Note that A =
(
v⃗1 · · · v⃗n

)
is the augmented matrix of the corresponding system of linear

equations. Since there is no pivot in the nth column of rref(A), then by Rouché-Capelli we know
this system is consistent. That is, there exists (at least one) real number solution (c1, . . . , cn−1)
to Equation 3.2, which gives

v⃗n = c1v⃗1 + · · ·+ cn−1v⃗n−1 ∈ Span(v⃗1, . . . , v⃗n−1),

as needed.



Lecture Activity 3.6. Find a basis for the following vector spaces, and state their dimension.

P1. V = Span

 2
1
−1

 ,

 1
0
−1

 ,

0
1
1


Solution. We have

rref

 2 1 0
1 0 1
−1 −1 1

 =

1 0 1
0 1 −2
0 0 0

 ,

which has pivots in columns 1 and 2, but no pivot in column 3. Hence, by Theorem 3.11, V
has basis 

 2
1
−1

 ,

 1
0
−1


and hence dim(V ) = 2.

P2. W = Span



1
0
2
1

 ,


3
0
6
3

 ,


1
1
1
1

 ,


7
2
12
7




Solution. We have

rref


1 3 1 7
0 0 1 2
2 6 1 12
1 3 1 7

 =


1 3 0 5
0 0 1 2
0 0 0 0
0 0 0 0

 ,

which has pivots in columns 1 and 3, but no pivot in columns 2 or 4. Hence, by Theorem
3.11, W has basis 


1
0
2
1

 ,


7
1
1
1




and hence dim(W ) = 2.
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