
chapter 2 activity packet solutions

Instructions. This packet is due on Quercus no later than 11:59pm on Monday, September
15th. Please complete your work directly on this packet. We will spend time together during
lecture working on most or all of the examples and lecture activities in this packet. You are
responsible for completing all portions of this packet, including lecture activities not discussed in
class, and completing the definitions included in the packet. Solutions will be posted to the course
website after the assignment due date.

Lecture Activity 2.1. Let’s look at how to calculate total displacement.

P1. Suppose that someone gave you the following directions: (1) from your starting point, walk
two blocks east and one block north, then (2) walk one block east and three blocks north.
Find the standard coordinate representation of your total displacement.

Solution. Our total displacement vector is given by

(
2 + 1
1 + 3

)
=

(
3
4

)
. That is, in total we’ve

walked 1 block west and 4 blocks north.

P2. On the graph below, sketch the path you would take by following the directions from P1. On
the same graph, sketch the total displacement vector you found in P1.

v⃗

w⃗

v⃗ + w⃗

P3. Suppose that someone gave you the following directions: (1) from your starting point, walk v1
blocks east and v2 blocks north, then (2) walk w1 blocks east and w2 blocks north. Find the
standard coordinate representation of your total displacement. In this problem, v1, v2, w1, w2

are unknown real numbers.

Solution. Our total displacement vector is given by

(
v1 + w1

v2 + w2

)
. That is, in total we’ve walked

v1 + w1 block west and v2 + w2 blocks north.
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Lecture Activity 2.2 (Flight Navigation I). You are piloting an airplane equipped with two fixed-
direction thrusters that assist in maneuvering. Each thruster provides thrust in a specific, constant
direction and can be fired forward or in reverse for any number of seconds. In this scenario, we
assume the airplane is already at cruising altitude, and the two thrusters only affect horizontal
position.

• Firing Thruster A for one second in the forward direction moves the airplane 17 meters
East and 7 meters North; firing Thrusters A for one second in the backward direction moves
the airplane 17 meters West and 7 meters South.

• Firing Thruster B for one second in the forward direction moves the airplane 5 meters East
and 18 meters North; firing Thruster B for one second in the backward direction moves the
airplane 5 meters West and 18 meters South.

In this problem, we explore what these thruster directions imply about the airplane’s maneuver-
ability at its current fixed altitude.

P1. Suppose you’re instructed to reach a waypoint located 235 meters East and 33 meters North
of your current position. Can you reach the waypoint using only Thruster A or only Thruster
B? If yes, determine how many seconds you need to fire the thruster to reach the waypoint.
If not, explain why not.

Solution. No, it is not possible. Note that the vectors

a⃗ =

(
17
7

)
and b⃗ =

(
5
18

)
represent the displacement by firing Thruster A and Thruster B for one second, respectively.
If we could reach the desired waypoint using only Thruster A, we would need to be able the
solve the vector equation

x

(
17
7

)
=

(
235
33

)
⇒ 17x = 235 and 7x = 33

which gives two different values for x, and so is not possible. Similarly, if we could reach
the desired waypoint using only Thruster B, we would need to be able to solve the vector
equation

y

(
5
18

)
=

(
235
33

)
⇒ 5y = 235 and 18y = 33

which again gives two different values for y, and so is not possible.



P2. Can you reach the waypoint from P1 using a combination of both thrusters? If yes, determine
how many seconds you need to fire each thruster to reach the waypoint. If not, explain why
not.

Solution. If we fire Thruster A for x seconds and Thruster B for y seconds (letting negative
seconds denote firing the thruster in the backward direction), our total displacement is given
by

x

(
17
7

)
+ y

(
5
18

)
.

To reach the desired waypoint, we need to solve the vector equation

x

(
17
7

)
+ y

(
5
18

)
=

(
235
33

)
which can be rewritten in the form(

17x+ 5y
7x+ 18y

)
=

(
235
33

)
.

Since a vector is uniquely determined by its standard coordinates, solutions to our vector
equation are precisely solutions to the following system of linear equations{

17x+ 5y = 235

7x+ 18y = 33.

We row reduce the augmented matrix of this system(
17 5 235
7 18 33

)
∼

(
1 0 15
0 1 4

)
.

So, yes we can reach the waypoint using both of our Thrusters. To do so, we would need
to use Thruster A in the forward direction for 15 seconds, and Thruster B in the backward
direction for 4 seconds.



P3. Can you reach every possible waypoint at your current elevation (i.e., in the same horizontal
plane) using a combination of Thrusters A and B? Explain your answer.

Solution. Yes, we can reach all possible waypoints at our current elevation. To see this,
consider an arbitrary waypoint that’s c meters East and d meters North of our current loca-
tion (letting negative meters denote distance in the opposite direction). As in the previous
problem, we need to consider the vector equation

x

(
17
7

)
+ y

(
5
18

)
=

(
c
d

)
.

This has the same solution set as the system of linear equations with augmented matrix(
17 5 c
7 18 d

)
,

which has reduced row echelon form (
1 0 ∗
0 1 ∗

)
,

where ∗ denote some real numbers that depend on c and d (note that these could be calculated
explicitly, but we can answer our question without this information). Observe that, no matter
the values of c and d, this matrix does not have a pivot in the last column, and so by Rouché-
Capelli, this system always has a solution.



Lecture Activity 2.3. Find the augmented matrix for the system of linear equations that has the
same solution set as the following vector equations. Then, find all solutions to the vector equation.

P1. x

(
1
2

)
+ y

(
−1/2
5

)
=

(
3
4

)
Solution. This vector equation has the same solution set as the system of linear equations
with augmented matrix (

1 −1/2 3
2 5 4

)
which has reduced row echelon form (

1 0 17/6
0 1 −1/3

)

and so this vector equation has solution x = 17/6, y = −1/3 .

P2. x

1
1
1

+ y

3
4
1

 =

2
5
1


Solution. This vector equation has the same solution set as the system of linear equations
with augmented matrix 1 3 2

1 4 5
1 1 1


which has reduced row echelon form 1 0 0

0 1 0
0 0 1

 .

Since there’s a pivot in the last column, this system has no solutions. Hence, our vector

equation has no solutions .



P3. x

(
2
1

)
+ y

(
5
3

)
+ z

(
−1
0

)
=

(
4
2

)
Solution. This system of linear equations has the same solution set as the system of linear
equations with augmented matrix (

2 5 −1 4
1 3 0 2

)
which has reduced row echelon form (

1 0 −3 2
0 1 1 0

)
.

The system is consistent with variable z being free. We can parameterize our basic variables
as following

x− 3z = 2 ⇒ x = 2 + 3z, and y + z = 0 ⇒ y = −z.

Hence, the solution set to our vector equation is given by

{(2 + 3z,−z, z) : z ∈ R} .

Definition 2.8. A linear combination of vectors v⃗1, v⃗2, . . . , v⃗n in Rm is a vector of the form

.
w⃗ = c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n

where the c1, c2, . . . , cn are scalars called the coefficients of the linear combination.

Definition 2.9. The span of vectors v⃗1, v⃗2, . . . , v⃗n in Rm is the set

.
Span(v⃗1, . . . , v⃗n) = {c1v⃗1 + · · ·+ cnv⃗n | c1, c2, . . . , cn ∈ R}.

That is Span(v⃗1, . . . , v⃗n) is the set of all linear combinations of vectors v⃗1, . . . , v⃗n.



Lecture Activity 2.4 (Flight Navigation II). You are piloting an airplane equipped with four
fixed-direction thrusters that assist in maneuvering. Each thruster provides thrust in a specific,
constant direction and can be fired forward or in reverse for any number of seconds.

• Firing Thruster A for one second in the forward direction moves the airplane 10 meters
East, 9 meters North, and 2 meters Up. Firing Thruster A for one second in the backward
direction has the opposite effect; that is, moves the airplane 10 meters West, 9 meters South,
and 2 meters Down.

• Firing Thruster B for one second in the forward direction moves the airplane 4 meters East,
7 meters North, and 1 meters Up. Firing B in reverse has the opposite effect.

• Firing Thruster C for one second in the forward direction moves the airplane 0 meters East,
2 meter North, and 3 meter Up. Firing C in reverse has the opposite effect.

• Firing Thruster D for one second in the forward direction moves the airplane 2 meter East,
5 meters South, and 0 meters Up. Firing D in reverse has the opposite effect.

In this problem, we will explore what these thruster directions imply about the airplane’s maneu-
verability in 3 dimensional space.

P1. Show that you can reach any waypoint using all four thrusters.

Solution. Note that the following vectors represent the airplane’s displacement after firing
Thurster A, B, C, and D for 1 second, respectively

a⃗ =

10
9
2

 , b⃗ =

4
7
1

 , c⃗ =

0
2
3

 , and d⃗ =

 2
−5
0

 .

We want show that Span(⃗a, b⃗, c⃗, d⃗) contains every vector in R3. Consider a waypoint that’s
located at displacement f⃗ from our current location, where f⃗ is an arbitrary vector in R3.
The vector equation

xa⃗+ y⃗b+ zc⃗+ wd⃗ = f⃗

has the same solution set as the system of linear equations10 4 0 2 ∗
9 7 2 −5 ∗
2 1 3 0 ∗


where ∗ denotes the unknown real number coordinates of the vector f⃗ . This matrix has
reduced row echelon form 1 0 0 1 ∗∗

0 1 0 −2 ∗∗
0 0 1 0 ∗∗


where ∗∗ denotes some unknown real numbers. Since this matrix does not have a pivot in
the last column, no matter what vector f⃗ we chose, the system always has a solution. Hence,
every vector in R3 can be reached as a linear combination of vectors a⃗, b⃗, c⃗, d⃗.



P2. Show that you can reach any waypoint using only Thrusters A, B and C.

Solution. We can solve this problem similarly to P1, but we present a different solution to
make an important observation. Using our work from P1, we can see that

d⃗ = a⃗− 2⃗b. (2.1)

Consider a waypoint that’s located at displacement f⃗ from our current location. Using our
work in P1 we know that f⃗ is in Span(⃗a, b⃗, c⃗, d⃗) and so there exist real numbers x, y, z, w so
that

f⃗ = xa⃗+ y⃗b+ zc⃗+ wd⃗.

Substituting Equation (2.1) in for d⃗ in the equation above gives

f⃗ = xa⃗+ y⃗b+ zc⃗+ w(a− 2⃗b)

and rearranging gives
f⃗ = (x+ w)⃗a+ (y − 2w)⃗b+ zc⃗.

Hence, f⃗ is in Span(⃗a, b⃗, c⃗), and so we can reach any vector in R3 as a linear combination of
vectors a⃗, b⃗, c⃗.

Note: The key observation in our work above was that since d⃗ was already in Span(⃗a, b⃗, c⃗),
it didn’t “contribute” anything new to our maneuverability in space.

P3. Do you think it’s possible to reach any waypoint using only two Thrusters?

Solution. No, it is not possible. Let’s provide reasoning for Thrusters A and B and note that
the argument for the other pairs of Thrusters follow identically. Consider a waypoint that’s
located at displacement f⃗ from our current location, where f⃗ is an arbitrary vector in R3.
The vector equation

xa⃗+ y⃗b = f⃗

has augmented matrix
(
a⃗ b⃗ f⃗

)
. Observe that we can find a vector f⃗ so that this matrix is

row equivalent to a matrix of the form1 0 ∗
0 1 ∗
0 0 nonzero

 .

Hence, the reduced row echelon form of this matrix will have a pivot in the last column, and
hence f⃗ will not be a linear combination of a⃗ and b⃗.



Definition 2.10. A set of vectors {v⃗1, v⃗2, . . . , v⃗n} in Rm is called linearly dependent if . . .

.
at least one of the vectors is a linear combination of the others. That is, for at least one
i ∈ {1, . . . , n} we have

v⃗i ∈ Span(v⃗1, v⃗2, . . . , v⃗i−1, v⃗i+1, . . . , v⃗n).

Otherwise, the vectors are called linearly independent.

Lecture Activity 2.5. Use the definition of linear dependence to determine which of the sets are
linearly dependent and which are linearly independent. For the sets that are linearly dependent,
demonstrate how to write one of the vectors as a linear combination of the others.

P1. S =


−1

4
0

 ,

 1
2
−3

 ,

−1
0
2

 ,


Solution. Observe that −1

4
0

 = 2

 1
2
−3

+ 3

−1
0
2


and so the set S is linearly dependent.



P2. T =


1
1
0

 ,

−1
2
0

 ,

3
1
2

.

Solution. First, we ask whether

1
1
0

 ?
∈ Span

−1
2
0

 ,

3
1
2

. The vector equation

x

−1
2
0

+ y

3
1
2

 =

1
1
0


has the same solution set as the system of linear equations with augmented matrix−1 3 1

2 1 1
0 2 0

 ∼

1 0 0
0 1 0
0 0 1



and so this system is inconsistent. Hence,

1
1
0

 ̸∈ Span

−1
2
0

 ,

3
1
2

.

Arguing similarly, we see that −1
2
0

 ̸∈ Span

1
1
0

 ,

3
1
2


and 3

1
2

 ̸∈ Span

1
1
0

 ,

−1
2
0

 .

So, no vector is in the span of the other two, and so this system is linearly independent.



Theorem 2.11. A set of vectors {v⃗1, v⃗2, . . . , v⃗n} in Rm is linearly dependent if and only if the
vector equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗

has a “nontrivial” solution; that is, a solution other than (x1, x2, . . . , xn) = (0, 0, . . . , 0).

Proof. Suppose that the set {v⃗1, v⃗2, . . . , v⃗n} is linearly dependent. By relabeling, we may assume
that v⃗1 ∈ Span(v⃗2, . . . , v⃗n). So, there are real numbers c2, . . . , cn so that

v⃗1 = c2v⃗2 + · · ·+ cnv⃗n.

Complete the proof: show that the system has a nontrivial solution.

Subtracting both sides by v⃗1 gives

−v⃗1 + c2v⃗2 + · · ·+ cnv⃗n = 0⃗.

Hence, the vector equation
x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗

has (x1, . . . , xn) = (−1, c2, . . . , cn) as a solution. Since x1 = −1 ̸= 0, this solution is nontrivial, as
needed.

Conversely, suppose that the vector equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗

has a nontrivial solution (c1, c2, . . . , cn). Then, one of the ci is nonzero. By relabeling, we may
assume that c1 ̸= 0.

Complete the proof: show that the set {v⃗1, . . . , v⃗n} is linearly dependent.

This gives
c1v⃗1 = −c2v⃗2 − · · · − cnv⃗n

and so dividing on both sides by c1 (which we can do since we know c1 is nonzero) gives

v⃗1 = −c2
c1
v⃗2 − · · · − cn

c1
v⃗n ∈ Span(v⃗2, . . . , v⃗n).

Hence, v⃗1 ∈ Span(v⃗2, . . . , v⃗n), and so the set {v⃗1, v⃗2, . . . , v⃗n} is linearly dependent.



Lecture Activity 2.6. Use Theorem 2.11 to determine which of the following sets are linearly
dependent and which are linearly independent.

P1. S =


 1

2
−3

 ,

−1
4
0

 ,

−1
0
2


Solution. The vector equation

x

 1
2
−3

+ y

−1
4
0

+ z

−1
0
2

 =

0
0
0


has the same solution set as the system of linear equations with augmented matrix 1 −1 −1 0

2 4 0 0
−3 0 2 0

 ∼

1 0 −2/3 0
0 1 1/3 0
0 0 0 0

 .

Observe that this system is consistent and the rref of the coefficient matrix has a column
without a pivot. So, by Rouché-Capelli this system has infinitely many solutions. Hence, one
of those solutions must be nontrivial, and so this set is linearly dependent.

P2. T =


1
1
0

 ,

3
1
2

 ,

−1
2
0


Solution. The vector equation

x

1
1
0

+ y

3
1
2

+ z

−1
2
0

 =

0
0
0


has the same solution set as the augmented matrix1 3 −1 0

1 1 2 0
0 2 0 0

 ∼

1 0 0 0
0 1 0 0
0 0 1 0

 ,

and so the only solution to the vector equation above is the trivial solution (x, y, z) = (0, 0, 0).
Hence, the set S is linearly independent.



P3. U =



1
0
0
0

 ,


1
0
1
0

 ,


0
0
1
1

 ,


1
−1
0
0




Solution. The vector equation

x


1
0
0
0

+ y


1
0
1
0

+ z


0
0
1
1

+ w


1
−1
0
0

 =


0
0
0
0


has the same solution set as the system of linear equations with augmented matrix

1 1 0 1 0
0 0 0 −1 0
0 1 1 0 0
0 0 1 0 0

 ∼


1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 .

Observe that this system is consistent and the rref of the coefficient matrix has a column
without a pivot. So, by Rouché-Capelli this system has infinitely many solutions. Hence, one
of those solutions must be nontrivial, and so this set is linearly dependent.



Proposition 2.12. A set of vectors {v⃗1, v⃗2, . . . , v⃗n} in Rm is linearly independent if and only if the
reduced row echelon form of the matrix

(
v⃗1 v⃗2 · · · v⃗n

)
has a pivot in every column.

Proof. Suppose that the set {v⃗1, v⃗2, . . . , v⃗n} is linearly independent. Then, by Theorem 2.11 the
vector equation x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗ only has the trivial solution.

Complete the proof: use Rouché-Capelli to show that the reduced row echelon form
of the matrix

(
v⃗1 · · · v⃗n

)
has a pivot in every column.

This equation has the same solution set as the system of linear equations with augmented matrix(
v⃗1 v⃗2 · · · v⃗n 0⃗

)
.

Note that this equation always has the trivial solution (x1, x2, . . . , xn) = (0, 0, . . . , 0), and so the
system is consistent. Hence, by Rouché-Capelli, the reduced row echelon form of the matrix(

v⃗1 v⃗2 · · · v⃗n
)

must have a pivot in every column, as needed.

Conversely, suppose that the reduced row echelon form of the matrix
(
v⃗1 v⃗2 · · · v⃗n

)
has a pivot

in every column. Then, by Rouché-Capelli, the system of linear equations with augmented matrix(
v⃗1 v⃗2 · · · v⃗n 0⃗

)
only has one solution.

Complete the proof: use Theorem 2.11 to conclude that the set {v⃗1, v⃗2, . . . , v⃗n} is
linearly independent.

Since (0, 0, . . . , 0) is always a solution to this equation, it must be the only solution. So, the vector
equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗

only has the trivial solution. Therefore, by Theorem 2.11, the set {v⃗1, . . . , v⃗n} is linearly indepen-
dent.
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