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Preface

Broadly speaking, number theory studies the additive and multiplicative properties
of the integers. It is one of the oldest areas of mathematics, and has many appli-
cations, especially in computer science. In this introductory course, we’ll explore
some of the fundamental topics of number theory. Topics will include:

• Divisibility and linear Diophantine equations, which will help us explore how
addition and multiplication interact;

• Prime numbers and the fundamental theorem of arithmetic, where we’ll ex-
plore the multiplicative “building blocks” of the integers;

• Modular arithmetic, where we’ll see how the division algorithm can “fold up”
the number line;

This course is appropriate for high school students at all levels, and is written with
two goals: (1) for students to gain a conceptual understanding of some of the core
topics from elementary number theory, and (2) to give students exposure to writing
and reading mathematical proofs.

How to Use This Workbook

Mathematics is best learned by doing. Even the most talented musicians and ath-
letes cannot play a piece of music or perform an athletic skill by just watching
someone else do it – learning any skill requires practice. This workbook is designed
to keep you active throughout the learning process, so that you can leave the course
with a skillful understanding of the course material. Note that this workbook is
yours to keep – feel free to write in it as you wish, and note that there are several
pages for notes and scratch work in the back.

To best learn from this workbook, students should:

v



vi Preface

(1) Read through the exposition in each section, and complete the embedded
Reading Exercises;

(2) Take time to really understand what the definitions and propositions are say-
ing, don’t just skim over them;

(3) Complete all or most of the Core Problems at the end of each chapter;

(4) Choose a few of the Additional Challenge Problems at the end of each
chapter to dive into.

Course Logistics and Expectations

In general, we will meet Monday, Wednesday, and Friday 10:30am-12pm in Wean
Hall (WEH) 4623. During our meeting times, I will answer questions and give
a short exposition to motivate the day’s material. For the rest of class, you will
be working in small groups to progress through this workbook. I will be cycling
through the room to answer your questions and to see how you’re doing with ma-
terial, and we will periodically stop as a class to discuss your progress.

Each week, you will also be given a short assignment, which will include some goal
setting, personal reflection, and space to submit a completed problem that you are
proud of. I will take attendance each day, and expect you to arrive in class on time
and to work kindly and collaboratively with your group mates.

List of Notation

The following list of notation will appear throughout the text.

Z the set of integers

∈ is an element of

a | b a divides b

a ∤ b a does not divide b

gcd(a, b) greatest common divisor of a and b

a ≡ b(modn) a is congruent to b modulo n



Chapter 1

Divisibility

1.1. The Set of Integers

In this course, we’ll mainly be concerned with the integers. Recall that an integer
is any whole number, zero, or any negative whole number. If we were to list the
collection of integers, this would look like

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

Reading Exercise 1.1. Write down five integers which are not listed above. Then,
write down five numbers which are not integers.

In math, it’s often convenient to study a collection of objects by considering them
as elements of a set.

Definition 1.1. A set is any collection of objects. The objects a set contains are
called its elements. If a is an element of a set S, we write “a ∈ S”.

Reading Exercise 1.2. Consider the following set

S = {2, 3, ◦,−π,△}
List all of the elements of the set S. Give three examples of elements that are not
contained in the set S.

1



2 1. Divisibility

Notation 1.2. The set of integers is denoted by Z. That is,
Z = {. . . ,−3,−2, 1, 0, 1, 2, 3, . . . }.

Note that, since Z contains infinitely many elements, we cannot list them all like
we did in Exercise 1.2. However, our use of ellipses in the notation above indicates
to our reader that we’d continue on listing elements in the fashion we started.

Reading Exercise 1.3. Using notation similar to above, write the set of all even
integers.

1.2. The Formal Definition of Divisibility

Reading Exercise 1.4. Before you read on, think about the following questions.
Don’t worry about being right or wrong here, just explore these questions using your
own intuitive understanding.

(1) Does 3 divide 14? Explain why or why not.

(2) Does 3 divide 15? Explain why or why not.

(3) In general, how can you tell whether an integer is divisible by 3?

(4) Is 10 even or odd? Explain how you know this.

(5) In general, how you can you tell whether an integer is even or odd?
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The following definitions are meant to give a method to precisely and formally
answer the questions from Exercise 1.4.

Definition 1.3. Suppose that a and b are integers. We say that a divides b, or
that b is divisible by a, if there exists an integer k so that b = ak. In this case,
we write a | b. If a does not divde b, we write a ∤ b.

Reading Exercise 1.5. Using the definition above, explain how we know that 3
divides 15.

Definition 1.4. An integer a is even if 2 | a. Recall, this means there exists an
integer k so that a = 2k.

One way to define odd integers is those integers that are not divisible by 2. How-
ever, it’s generally a bit more tricky to show that a given integer does not divide
another. We give a more convenient definition instead.

Definition 1.5. An integer b is odd if there exists an integer k so that b = 2k+1.

Reading Exercise 1.6. Using the definitions above, explain why each integer listed
below is either even or odd

−17, 102, 0

We can understand Definition 1.5 intuitively: integers of the form 2k + 1 are just
one “after” an even integer, and so they should be the integers “in between” the
evens. But we should always be cautious about intuition. Let’s see if we can dig
a bit deeper and understanding why this is in fact the definition we want for odd
integers. Let’s prove the following proposition.

Proposition 1.6. If an integer b is odd (as defined in Definition 1.5) then b is not
even (as defined in Definition 1.4). Furthermore, if b is not even then it is odd.

Note that a “proposition” is a mathematical statement which is either true or false,
and a “proof” is a mathematical argument which justifies why this statement is true.
Read through the proof below, and fill in the missing steps as you follow along.
Our goal is construct an irrefutable argument, using logic and sound mathematical
reasoning, that proves the proposition above is always true.



4 1. Divisibility

Proof. Suppose first that b is an odd integer, as given in Definition 1.5. Then,
there exists an integer k so that b = 2k + 1.

Reading Exercise 1.7. Show that if b were divisible by 2, then 1/2 would need to
be an integer.

So, it must be the case that b is not divisible by 2 (does the logic of this make sense
to you? ). Thus b is not even, as needed.

Next, suppose that b is not even.

Reading Exercise 1.8. In your own words (or by using a few examples), explain
why for any integer b we can write b = 2q + r where r = 0 or 1 and q is an integer
(think of quotients and remainders).

But if r = 0 then we would have b = 2q is even. Hence, we must have r = 1 and so
b = 2k + 1 for an integer k = q, as needed. □

In Exercise 1.8 we used a special case of the following key theorem. Note that
“theorem” is just another for “proposition”, and is usually used to indicate the
importance of a proposition.

Theorem 1.7 (The Division Algorithm.). Suppose that a and b are integers, and
that a > 0. Then, there exists unique integers q and r so that

b = qa+ r

and 0 ≤ r < a. We call q the quotient and r the remainder when dividing b by a.
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We won’t give a proof of this fact, but hopefully the concept is familiar (observe
that this is basically long division!).

Reading Exercise 1.9. For the following pairs of integers, find the quotient and
remainder when dividing b by a.

(1) b = 7, a = 2

(2) b = 23, a = −4

(3) b = 6, a = 8

Reading Exercise 1.10. Use the division algorithm to explain how we know that
3 does not divide 14.
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1.3. Greatest and Least Common Divisors

So far, we’ve related two integers by asking whether or not they divide each other.
Sometimes it’s the case that even though two integers don’t divide each other, they
still have some related divisors. We have the following definition.

Definition 1.8. Let a and b be integers. We say that an integer d is a common
divisor of a and b if d | a and d | b.

Reading Exercise 1.11. Find all common divisors of the integers 15 and 10.
Then, find all common divisors of the integers 15 and 14.

Observe that ±1 are common divisors of every pair of integers.

Definition 1.9. The greatest common divisor of integers a and b is the largest
integer d so that d is a common divisor of a and b. In this case, we use the notation
d = gcd(a, b).

Reading Exercise 1.12. Find gcd(15, 10) and gcd(15, 14).

Definition 1.10. If gcd(a, b) = 1 we say that a and b are relatively prime.

So far, the only method we have to find the greatest common divisors of two integers
is guess and check. That is, to find gcd(a, b), we generally need to list all divisors
of a and all divisors of b and then search for the largest common integer in our list.
This can get tedious quite quickly. For example, what if we wanted to find

gcd(109839, 2023)?

The following result will give us a much faster method.

Theorem 1.11. Let a and b be integers with a > 0. Using the Division Algorithm,
write

b = aq + r

for 0 ≤ r < a. Then gcd(b, a) = gcd(a, r).

Let’s first understand why this theorem is true. Then, we’ll look at how to apply
it to our problem if finding gcds.
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Proof. Let d = gcd(b, a). Then we have d | b and d | a so there exist integers k, ℓ
so that

b = dk and a = dℓ.

Now let’s use the division algorithm to divide b by a. Recall that we can write

b = aq + r

for integers r and q with 0 ≤ r < a.

Reading Exercise 1.13. Use the equalities above to show that r = d(k − ℓq).

So d | r. This tells us that d is a common divisor of a and r. To prove our claim, we
need to show that d is the greatest common divisor of a and r. To do this, suppose
that d′ is any common divisor of a and r. Then there exist integers m, n so that

a = d′m and r = d′n.

Recall that we have b = aq + r.

Reading Exercise 1.14. Use the equalities above to show that b = d′(mq + n).

Hence, d′ is a common divisor of both a and b. But recall that we assumed d was the
greatest common divisor of a and b, and so we must have d′ ≤ d. Hence, d is larger
than all other common divisors of a and r, and so d = gcd(a, r) as needed. □

Theorem 1.11 gives a way to reduce our gcd calculation. The method outlined in
the following exercise is called the Eucliden algorithm. Carefully read through
this example, and then use it to guide you through the subsequent reading exercise.

Example 1.12 (The Euclidean Algorithm). Let’s find

gcd(128, 34).

First, we use the division algorithm to divide 34 into 128. We get

128 = 34(3) + 26.
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So, by Theorem 1.11 we have

gcd(128, 34) = gcd(34, 26).

So now our problem is a bit simpler! We could go about our business as before
(find all divisors of 34, all divisors of 26, and then compare) but there’s no reason
to stop here. We can use the division algorithm again to write

34 = 26(1) + 8

and so by Theorem 1.11 we have

gcd(34, 26) = gcd(26, 8).

Once again, we use the division algorithm to write

26 = 8(3) + 2

and by Theorem 1.11 we get

gcd(26, 8) = gcd(8, 2).

We could stop here since we know that 2 | 8, but for the sake of generalizing this,
we could use the division algorithm again to write

8 = 2(4) + 0.

So, by Theorem 1.11 we get

gcd(8, 2) = gcd(2, 0) = 2.

Since equality is transitive, this gives us gcd(128, 34) = 2 .

Reading Exercise 1.15. Use the Euclidean Algorithm to find gcd(150, 14).
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The Euclidean Algorithm actually gives us something more. We’ll show the follow-
ing.

Proposition 1.13. There exist integers x and y so that

(1.1) 128x+ 34y = 2.

Equation (1.1) is an example of a linear Diophantine equation.

Definition 1.14. A linear Diophantine equation is an equation of the form

ax+ by = c,

for integers a, b and c.

Proof of Proposition 1.13. Let’s rewrite the steps of the Euclidean Algorithm
a bit more succinctly.

gcd(128, 34) 128 = 34(3) + 26

= gcd(34, 26) 34 = 26(1) + 8

= gcd(26, 8) 26 = 8(3) + 2

= gcd(8, 2) = 2 8 = 2(2) + 0

Here’s the clever observation: on the second to last step, our equation with the
division algorithm is a linear equation involving the gcd. Let’s exploit this fact.
We have

26(1) + 8(−3) = 2

This gives a solution x = 1, y = −3 to the linear Diophantine equation

26x+ 8y = 2.

The right-hand side of this looks good, but the coefficients on the left-hand side
aren’t quite what we want. But all isn’t lost! Using the third to last line in our
division algorithm step, we can write

8 = 34(1) + 26(−1).

Let’s use this new version of 8 to get

26(1) + 8(−3) = 2

⇒ 26(1) + (34(1) + 26(−1))(−3) = 2

which can be rewritten as

26(4) + 34(−3) = 2.

This gives the solution x = 4, y = −3 to the linear Diophantine equation

26x+ 34y = 2.

This is a bit closer! The right-hand side still looks good, and on the left hand
side at least one of our coefficients (34) is correct. What do we do with the pesky
coefficient of 26? Well we had one more line in the Euclidean algorithm to exploit.
Using the first line in our division algorithm step, we can write

26 = 128(1) + 34(−3).
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Let’s use this new version of 26 to get

26(4) + 34(−3) = 2

⇒ (128(1) + 34(−3))(4) + 34(−3) = 2

which we can rewrite as
128(4) + 34(−15) = 2.

And we’ve won! We now have the solution x = 4, y = −15 to the Diophantine
equation 128x+ 34y = 2.

□

Reading Exercise 1.16. Using the method outlined in the previous proof, along
with your work in Exercise 1.15, find a solution to the linear Diophantine equation

150x+ 14y = 2.

It turns out that this method generalizes. On the Core Exercises of this chapter, I
hope you convince yourself of the following.

Theorem 1.15 (Extended Euclidean Algorithm). Let a, b be integers. Then, there
exists an integer solution x, y to the Diophantine equation

ax+ by = d

if and only if gcd(a, b) divides d.
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Core Problems

P1. Use the formal definition of divisibility (Definition 1.3) to show the following

3 | 99, 13 | 1001, −5 | 500, and 22 | −1716.

P2. Find all integers (positive and negative) that divide 66.

P3. Explain how we know that 10 ∤ 5.
P4. Suppose that for integers a and b we have a > b. Is it possible for a | b? Why

or why not?

P5. Let’s explore some properties of integers divisible by 6.
(a) List five examples of integers divisible by 6. Use the notation 6 | a given

in Definition 1.3 in each of your examples.
(b) Look at your list of examples from above. Is there another integer which

divides each of your examples besides 6?
(c) Formulate a conjecture (that is, something you believe to be true) of the

form: “ if a is an integer divisible by 6, then a is divisible by (blank)”.
(d) Convince the members of your group that your conjecture from the pre-

vious part is true. Try using the formal definition of divisibility in your
justification.

P6. Next, let a and b be any integers with a | b. Do you think the following
statement is true: if d divides a then d divides b? Why or why not? Can you
convince your group members of your answer?

P7. What integers divide 1? What integers divide 0? Justify your answers.

P8. Suppose that a and b are integers with a | b and b | a. Is it always going to be
the case that a = b? Why or why not?

P9. Let a, b, and c be integers. Use the formal definition of divisibility to justify
each of the following properties.
(a) If a | b and a | c then a | (b+ c)
(b) If a | b and a | c then a | (b− c)

P10. For the following pairs of integers, use the division algorithm to find the unique
quotient and remainder when dividing b by a.
(a) b = 277, a = 4
(b) b = 33, a = 11
(c) b = −48, a = 13

P11. Recall that we saw that if an integer b is not even, then we can write it in the
form b = 2k+1 for some integer k, which justified our formal definition of odd
integers.
(a) Choose five odd integers, and write them in the form 2k+1 for an integer

k.
(b) Write the integers from the previous part in the form 2ℓ − 1 for some

integer ℓ.
(c) Do you think that all odd integers can be written in the form 2ℓ − 1 for

some integer ℓ? Why or why not?
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P12. Use the formal definition of even and odd integers to explain why each of the
following statements are always true.
(a) The sum of any two even numbers is even.
(b) The sum of any two odd numbers is odd.
(c) The sum of an even and an odd number is odd.

P13. Determine which of the following statements are true or false. A statement is
true if it holds for any choice of integers. A statement is false if there is at
least one choice of integers where the statement doesn’t hold true.
(a) True or False? For all integers a, b and c, if a | (b+ c) then a | b or a | c.
(b) True or False? For integers a, b and c, if a | bc then a | b or a | c.
(c) True or False? The sum of the squares of any two odd integers is even.

P14. Find the following greatest common divisors. Which pairs are relatively prime?
(a) gcd(18, 12)
(b) gcd(66, 22)
(c) gcd(0, 21)
(d) gcd(0, a) for any positive integer a
(e) gcd(0,−a) for any positive integer a
(f) gcd(0, 0)
(g) gcd(1, 14598)
(h) gcd(−1, 14598)
(i) gcd(1, a) for any integer a
(j) gcd(−1, a) for any integer a

P15. Suppose that a and d are positive integers with d | a. What is gcd(a, d)?

P16. Redo the example from lecture where we showed gcd(128, 34) = 2 with the
Euclidean Algorithm. Talk to your group about this process. Do you believe
the algorithm will always work? How do we know it must always terminate?

P17. Use the Euclidean Algorithm to find the following greatest common divisors.
(a) gcd(112, 92)
(b) gcd(31, 162)
(c) gcd(12, 256)
(d) gcd(243, 9)

P18. Redo the example from lecture where we reversed the Euclidean algorithm to
find an integer solution to the linear Diophantine equation

128x+ 34y = 2.

Make sure you understand every step before moving on!

P19. Use your work in P4 to find any one integer solution to the following linear
Diophantine equations. If no solutions exist, state why not.
(a) 112x+ 92y = 4
(b) 112x+ 92y = −12
(c) 112x+ 92y = 3
(d) 31x+ 162y = 1
(e) 31x+ 162y = −27



Challenge Problems 13

P20. Suppose that a and b are relatively prime. Show that every linear Diophantine
equation

ax+ by = c

has a solution.

P21. Suppose that gcd(a, b) > 1. For what values of c does the linear Diophantine
equation

ax+ by = c

have a solution? How do you know this?

P22. For integers a and b, what do you think would be a good definition for the least
common multiple of a and b? Construct and compute a few examples.

Challenge Problems

C1. Show that the product of any three consecutive integers is divisible by 6.

C2. How many integers between 100 and 1000 are divisible by 7?

C3. How many integers between 100 and 1000 are divisible by 49?

C4. Find the number of positive integers less than 1000 that are not divisible by 2
or 5.

C5. Find the number of positive integers less than 1000 that are not divisible by
2, 5 or 7.

C6. The Fibonacci sequence is the integer linear recurrence sequence given by

f0 = 0, f1 = 1

fn+2 = fn+1 + fn.

Some terms of the Fibonacci sequence are listed below

n 0 1 2 3 4 5 6
fn 0 1 1 2 3 5 8

(a) Show that fn is even if and only if n is divisible by 3.
(b) Show that fn is divisible by 3 if and only if n is divisible by 4.
(c) Show that fn is divisible by 6 if and only if n is divisible by 6.

C7. Let a, b and c be integers. If a | bc and gcd(a, b) = 1 then a | c.
C8. Let a, b and n be integers. If a | n, b | n and gcd(a, b) = 1 then ab | n.
C9. Let a, b, and n be integers. If gcd(a, n) = 1 and gcd(b, n) = 1 then gcd(ab, n) =

1.

C10. If a and b are positive integers, show that

gcd(a, b) · lcm(a, b) = ab.

C11. If a and b are positive integers, show that

lcm(a, b) = ab

if and only if a and b are relatively prime.





Chapter 2

Prime Numbers

2.1. The Fundamental Theorem of Arithmetic

Last chapter, we started exploring some of the divisibility properties of the integers.
In this chapter, we’ll see that there are special integers, called prime numbers,
which turn out to be the “building blocks” of the integers. We have the following
definition.

Definition 2.1. An integer p > 1 is prime if the only positive divisors of p are 1
and p. An integer that is not prime is called composite.

Reading Exercise 2.1. Find the first ten prime numbers.

The following theorem tells us that every integer can be understood by the prime
numbers dividing it.

Theorem 2.2 (The Fundamental Theorem of Arithmetic). Let n be a positive
integer. Then, there exist unique prime numbers p1, p2, . . . , pt and positive integers
k1, . . . , kt so that

(2.1) n = pk1
1 pk2

2 · · · pkt
t

where the primes pi are distinct and ordered so that p1 < p2 < · · · < pt. We call
Equation (2.1) the prime factorization of n.

This result can be a bit much to look at in its full generality. Let’s look at a few
examples to make sense of what’s going on here.

15



16 2. Prime Numbers

Example 2.3. We have the following prime factorizations

(1) 42 = 2 · 3 · 7
(2) 108 = 22 · 33

(3) 1485 = 33 · 5 · 11
(4) 7663 = 79 · 97

Remark 2.4. To prove the Fundamental Theorem of Arithmetic, we’d need a proof
method called mathematical induction. Since our time together is limited and this
proof method is one of the trickier ones to grasp, we’ll omit this proof, and use our
intuition to understand why this is always possible through example.

Reading Exercise 2.2. Find the prime factorization of 1020.

We have the following useful result.

Proposition 2.5. Let p be prime and a, b be any nonzero integers. If p | ab then
p | a or p | b.

Proof. There’s a clever argument for this fact using the Euclidean Algorithm.
Suppose that p | ab. If p | a then we’re done, so suppose that p ∤ a.

Reading Exercise 2.3. Show that gcd(a, p) = 1.

So, by the Extended Euclidean Algorithm (Theorem 1.15) we know that there exists
integers x, y so that

ax+ py = 1.

Multiplying on both sides by b gives

abx+ pby = b,

and since p | ab we know there exists an integer z so that pz = ab.
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Reading Exercise 2.4. Use the equations above to show that p(zx + by) = b.
Conclude that p divides b.

Hence, we’ve shown that p | a or p | b, as needed. □

Reading Exercise 2.5. Observe that Proposition 2.5 may or may not work for
composite integers. Give an example of a composite integer n and integers a, b ̸= 1
so that:

(1) n | ab but n ∤ a or n ∤ b

(2) n | ab and n | a or n | b
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2.2. Applications of the Fundamental Theorem

The fundamental theorem is named for a good reason. If you want to study the
divisibility properties of the integers, this theorem is often going to be useful.

Proposition 2.6. Suppose that a positive integer n has prime factorization

n = pk1
1 · · · pkt

t .

Then, the divisors of n are given by n = pℓ11 pℓ22 · · · pℓtt where 0 ≤ ℓi ≤ ki for all
i = 1, . . . , t.

Before we dive into the proof of this proposition, let’s look at some examples to
make sure we understand what’s going on.

Example 2.7. Consider the integer n = 12, which has prime factorization 12 =
22 · 3. By Proposition 2.6 n has the following positive divisors:

1 = 2030

2 = 2130

4 = 2230

3 = 2031

6 = 2131

12 = 2231

Reading Exercise 2.6. Use Proposition 2.6 to find all positive divisors of n = 18.
Try to decide on a method to organize your list so that you can be sure you’ve listed
every divisor!

Now, let’s look at the proof of Proposition 2.6. Take your time with this one, and
be sure to ask questions if you get stuck.

Proof. Let d be a divisor of n. First, note that if p is a prime dividing d then by P6
of the Chapter 1 Core Problems, we know that p | n. So we have p | pk1

1 pk2
2 · · · pkt

t .
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Reading Exercise 2.7. Explain how we can use Proposition 2.5 to show that
p = pi for some i.

Hence, the only primes dividing d are p1, . . . , pt. Since the prime factorization of
an integer is unique this gives

d = pℓ11 pℓ22 · · · pℓtt
for integers ℓi ≥ 0. Finally, let’s show that we must have ℓi ≤ ki.

Reading Exercise 2.8. Observe that 3 divides 135. Find an integer ℓ so that
135 = 3ℓ · r where 3 ∤ r.

As in the example above, observe that we can write d = pℓii r where pi ∤ r. Since
d | n there exists an integer k so that

n = dk.

Now, write k = pmi s where pi ∤ s and m ≥ 0 is an integer. Then we have

n = pℓii rk = pℓi+m
i rs

⇒ n = pℓi+m
i rs.

This means that in the prime factorization of n, we have at least a power of ℓi +m
on pi. But since our prime factorization are unique, this gives

ℓi ≤ ℓi +m = ki

and so ℓi ≤ ki as desired. □

As we saw in Example 2.7 and Exercise 2.6, it can be tricky to keep track of all
of the possibilities for divisors of an integer. Below we give a method to count the
number of divisors, which allows us to check that we haven’t missed any. We have
the following definition.

Definition 2.8. The divisor function σ is defined as follows. For each positive
integer n, σ(n) denotes the number of positive divisors of n.
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Reading Exercise 2.9. Using Example 2.7 and Exercise 2.6, find σ(12) and σ(18).

We have the following lemma. Note: “lemma” is another word for “proposition”,
and is typically used to indicate a proposition which helps us prove a larger result.

Lemma 2.9. The divisor function σ is multiplicative. That is, if gcd(m,n) = 1
then σ(mn) = σ(m)σ(n).

We’ll leave the proof of this lemma as a Core Exercise. We now have the following
Corollary to Proposition 2.6. Note that “corollary” is yet another word for “proposi-
tion”, and is typically used to indicate a proposition which follows as a consequence
of a previous result.

Corollary 2.10. Let n be a positive integer with prime factorization

n = pk1
1 pk2

2 · · · pkt
t .

Then, the number of primes dividing n is equal to

(k1 + 1)(k2 + 1) · · · (kt + 1).

Proof. Using Lemma 2.9 repeatedly, we get

σ(pk1
1 pk2

2 · · · pkt
t ) = σ(pk1

1 )τ(pk2
2 ) · · · τ(pkt

t ).

Reading Exercise 2.10. For a prime p, show that the divisors of pk are precisely

1, p, . . . , pk.

Hence, we have σ(pki
i ) = ki + 1, and so the result follows. □

2.3. Infinitude of the Primes

The prime numbers, while incredibly useful, are also very mysterious. Researchers
are still trying to understand questions about the prime numbers (where are they
located? how can you construct them? etc). One thing we can at least say is that
there are infinitely many prime numbers. We have the following.

Theorem 2.11. There are infinitely many prime numbers.

Proof. The following short proof famously was first document in Euclid’s Elements.
Suppose that there were only finitely many primes, call them {p1, p2, . . . , pk}. Then
consider the integer

Q = p1p2 · · · pk + 1.
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Reading Exercise 2.11. Show that pi ∤ Q for any i = 1, 2, . . . , k.

Now, either Q itself is prime, or it has a prime divisor p. In either case, we’ve
created a new prime not in our previous list {p1, . . . , pk}, and so this must not have
been an exhaustive list! Since we can do this for any attempt at a finite list of
prime, it must be the case that there are infinitely many primes. □

Core Problems

P1. Find all of the prime numbers between 1 and 30.

P2. Show that 2 is the only even prime number.

P3. Find the unique prime factorization of the following integers.
(a) 126
(b) 1617
(c) 4554

P4. Use the Fundamental Theorem of Arithmetic to find all divisors of the integers
from P3.

P5. Use the Fundamental Theorem of Arithmetic to find the greatest common
divisors of the following pairs of integers.
(a) gcd(126, 1617)
(b) gcd(1617, 4554)
(c) gcd(126, 4554)

P6. Suppose that a and b are integers with prime factorizations

a = p21 p
5
2 p3

b = p1 p
2
2 p

4
3p4.

What is gcd(a, b)?

P7. Prove Lemma 2.9. That is, show that if m and n are integers with gcd(m,n) =
1 then σ(mn) = σ(m)σ(n).
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Challenge Problems

C1. Without using a calculator, determine the number of zeros at the end of 25!,
where

25! = 25 · 24 · · · 3 · 2 · 1
is the factorial of 25. (Hint: use the Fundamental Theorem of Arithmetic).

C2. Show that there do not exist natural numbers m,n so that 7m2 = n2.

C3. Show that there do not exist natural numbers m,n so that 24m3 = n3

C4. Recall that a rational number is any number of the form a
b where a and b

are integers and b ̸= 0. Use the Fundamental Theorem of Arithmetic to show
that

√
2 is not rational.



Chapter 3

Modular Arithmetic

3.1. Clocks and Modular Congruences

Consider for a moment the minute hand of a clock. Each hour, it travels one com-
plete rotation around the clock, corresponding to exactly 60 minutes. Once the
minute hand travels back past its starting place, we restart at minute zero again.
For example, if the minute hand starts at zero and then travels for 72 minutes, it
will be at minute twelve on our clock. So in some ways, we’ve “identified” 12 with
72.

Mathematically, what we’ve done is noticed that when we divide 72 by 60, we have
a remainder of 12. That is,

72 = 60(1) + 12.

What ends up getting identified with minute 12 then? Well, every integer so that
when it’s divided by 60, we get twelve back. That is we’ll identify all integers of
the form

60q + 12

for some integer q as being “the same” as 12, since these minutes all end at the
same place on a clock. This concept will turn out to be useful in a more general
setting, and in fact captures a main feature of our discussion on the division algo-
rithm (Theorem 1.7) in Chapter 1. We have the following definition.

Definition 3.1 (Modular Congruence, preliminary). Let n be a fixed positive
integer. We say that a is congruent to r modulo n if the remainder of a when
divided by n is equal to r. In this case, we write

a ≡ r(modn).

Recall that the division algorithm tells us r is an integer with 0 ≤ r ≤ n− 1.

23
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Reading Exercise 3.1. Let n = 10. Use the definition above to explain why the
following congruences are true:

(1) 15 ≡ 5(mod 10)

(2) −2 ≡ 8(mod 10)

(3) 1 ≡ 1(mod 10)

Next, let’s derive a new way to understand the congruence, which will turn out to
be easier to work with in many cases. We’d like to extend our definition so that
congruence works like equality. In our clock example, we have that

72 ≡ 12(mod 60)

But also

132 ≡ 12(mod 60).

Since minute 72 and 132 will land at the same place on our clock (mathematically
speaking, they have the same remainder when divided by 60), it would be reasonable
for us to want to say that 72 and 132 are congruent modulo 60. This doesn’t exactly
work with our division algorithm definition of modular congruence above, but it
isn’t far off since we can write

132 = 72 + 60(1),

which looks division-algorithm-like. Equivalently,

132− 72 = 60(1) ⇔ 60 | (132− 72).

This motivates the following general definition.

Definition 3.2 (Modular Congruence, final version.). Let n be a positive integer.
We say that integers a and b are congruent modulo n if

n | (a− b).

Equivalently, a is congruent to b modulo n if there exists an integer k so that

a = nk + b.

In this case, we write

a ≡ b(modn).
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Example 3.3. Let n = 13. Use the definition above to show that the following
congruences are true:

(1) 15 ≡ 2(mod 13)

(2) 13 ≡ 0(mod 13)

(3) 40 ≡ 14(mod 13)

(4) 40 ≡ 1(mod 13)

This notation takes some time to get used to – the more you practice with it the
more natural it will become. I’d suggest working through some of the Core Exercises
to get comfortable with this new machinery before moving onto the next section.

3.2. Modular Multiplicative Inverses

The modular world carries many similar properties to the integer world. That is,
we can add, subtract, and multiply without having to think too hard (we’ll look at
this more precisely in the Core Problems). However, one of our typical operations
comes with a few difficulties: division.

Recall what division really means. To divide two numbers, say a/b, what we mean
is to multiply a by the multiplicative inverse of b, b−1 = 1/b. This is the notion
we’ll generalize.

Definition 3.4. Let a be an integer. Then the multiplicative inverse of a
modulo n, if it exists, is the integer a−1 so that

aa−1 ≡ 1(modn).
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Reading Exercise 3.2. Show that 8 is the multiplicative inverse of 5 modulo 13.

Reading Exercise 3.3. Find the multiplicative inverse of 3 modulo 13.

Observe that when a−1 exists, there exists an integer k so that

aa−1 = 1 + kn.

That is,
aa−1 − kn = 1.

So x = a−1 and y = −k is a solution to the linear Diophantine equation

ax+ by = 1.

BUT remember that the Extended Euclidean Algorithm (Theorem 1.15) states that
such a solution exists only when gcd(a, b) = 1. This gives the following.

Proposition 3.5. An integer a has a multiplicative inverse modulo n if and only
if gcd(a, n) = 1.

Reading Exercise 3.4. Let n = 14. Which of the following integers have a
multiplicative inverse modulo 14?

(1) a = 5

(2) b = 12

(3) c = 7
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Example 3.6. In this example, we’ll use the Extended Euclidean Algorithm to find
a modular multiplicative inverse. Let a = 7 and n = 25. Note that gcd(a, n) = 1
and so by the previous proposition, a has a multiplicative inverse modulo n. Let’s
first use the Euclidean Algorithm: we divide 7 into 25 to get

25 = 7(3) + 4 ⇒ gcd(25, 7) = gcd(7, 4)

7 = 4(1) + 3 ⇒ gcd(7, 4) = gcd(4, 3)

4 = 3(1) + 1 ⇒ gcd(4, 3) = gcd(3, 1) = 1.

Now, going backward we have

1 = 4 + 3(−1)

⇒ 1 = 4 + (7 + 4(−1))(−1)

= 4(2) + 7(−1)

⇒ 1 = (25 + 7(−3))(2) + 7(−1)

= 25(2) + 7(−7).

This gives
1 = 25(2) + 7(−7) ≡ 7(−7)(mod 25)

⇒ 7(−7) ≡ 1(mod 25).

So, 7−1 ≡ −7(mod 25). Typically, we’ll write the inverse as a number between 0
and n− 1. Since −7 ≡ 14(mod 25) let’s instead say

7−1 ≡ 14(mod 25) .

Reading Exercise 3.5. Use the Extended Euclidean Algorithm to find the inverse
of 3 modulo 13. Was this faster or slower than what you did in Exercise 3.3?
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Core Problems

P1. Determine which of the following congruences are true.

(a) 14 ≡ 2(mod 12)
(b) 74 ≡ −1(mod 5)
(c) 74 ≡ −1(mod 7)

(d) 544 ≡ 16(mod 13)
(e) −177 ≡ 3(mod 15)
(f) 70 ≡ 45(mod 22)

P2. Let a and b be integers with a ≡ b(modn) and c ≡ d(modn).
(a) Show that a+ c ≡ (b+ d)(modn).
(b) Show that ac ≡ bd(modn).

P3. Explain why n | a implies that a ≡ 0(modn). Conversely, explain why a ≡
0(modn) implies that n | a.

P4. Find the multiplicative inverse of the following integers for the given modulus,
if it exists. If it doesn’t exist, explain why not.
(a) a = 3 modulo n = 7
(b) a = 2 modulo n = 6
(c) a = 2 modulo n = 21
(d) a = 1 modulo n for any integer n
(e) a = −1 modulo n for any integer n
(f) a = n modulo n for any integer n

Challenge Problems

C1. In this problem, we’ll derive the following divisibility test: A positive integer
n is divisible by 3 if and only if the sum of the digits of n is divisible by 3.
That is, if a positive integer is divisible by 3, then the sum of the digits of n
is also divisible by 3. And conversely if the sum of the digits of n is divisible
by 3, then n is divisible by 3.
(a) Let’s start by checking to see if Theorem 1 holds for several examples.

(i) Observe that the following integers are divisible by 3, and the sum
of their digits is also divisible by 3

13452, 279, 1020.

(ii) Choose a few integers whose digits do not sum to an integer divisible
by 3. Check that they are not divisible by 3.

(b) Next, let’s use modular arithmetic to show that 13452 is divisible by 3
without using a calculator.

(i) Find integers a0, a1, a2, a3, a4 so that

13452 = a0 + a1 · 101 + a2 · 102 + a310
3 + a410

4.

(ii) Check that 10 ≡ 1(mod 3).
(iii) Using P2 (b), convince yourself that we also have

102 ≡ 1(mod 3) and |103 ≡ 1(mod 3).
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(iv) Use P2 and the previous part to show that

13452 ≡ (a0 + a1 + a2 + a3 + a4)mod 3.

(v) Check that a0 + a1 + a2 + a3 + a4 ≡ 0(mod 3). Conclude from the
previous part that 13452 ≡ 0(mod 3).

(vi) Using P3 to conclude that 3 | 13452.
(c) Finally, let’s show that Theorem 1 holds for any integer. Our proof will

follow similarly to the example in the previous part. Throughout, let n
be any fixed integer.

(i) Explain how we know that there are integers a0, a1, . . . , ak so that

n = a0 + a110
1 + a210

2 + · · ·+ ak10
k.

(ii) Explain how we know that 10k ≡ 1(mod 3) for any integer k.
(iii) Using P2 and the previous part, observe that

n ≡ (a0 + a1 + · · ·+ ak)(mod 3).

(iv) Suppose that 3 | n. Use the previous part to show that

n ≡ 0(mod 3).

Conclude that 3 | n.
(v) Conversely, suppose that 3 | (a0 + a1 + · · ·+ ak). Show that 3 | n.

C2. Lookup some other divisibility tests. You should be able to find them for the
following integers: 2, 3, 5, 7, 11 and 13. You don’t need to prove any of these,
but it might be satisfying to check them for a few examples.
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