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Markoff mod p graphs

Recall that the Markoff triples can be organized into a tree via Γ

Analogously, the Markoff mod p points can be organized into a
graph via Γ

where
Z1 = σ23R2,Z2 = σ23σ12R1,Z3 = R3

rot1 = σ23R2, rot2 = σ13R1, rot3 = σ12R1
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Markoff mod p graphs

Key Observation

Strong Approximation ⇔ Gp connected.

Lifts of mod p points correspond to paths in Gp from (1, 1, 1)
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Rotation Orders

Define ith rotation order of a Markoff mod p point x to be

ordp,i (x) := min{n ∈ Z>1 : rot
n
i (x) = x},

and the rotation order to be ordp(x) := maxi{ordp,i (x)}.

Observation.

If x = (x1, x2, x3) is a Markoff mod p point, then ordp,i (x) is equal
to the order of

Axi :=

(
0 1
−1 3xi

)
in GL2(Fp).

ex: rot1(x1, x2, x3) = (x1, x3, 3x1x3 − x2) and(
0 1
−1 3x1

)(
x2
x3

)
=

(
x3

3x1x3 − x2

)
.
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Rotations and Recurrence

Observation 1.

We have rotn1(x1, x2, x3) = (x1, an, an+1), where {an} is order two
LRS with a0 = x2, a1 = x3 and

an+2 = 3x1an+1 − an.

and similarly for other rotations (rotni (x1, x2, x3) = σ(xi , an, an+1))

ex:

rotn1(1, 1, 1) = (1, f2n−1, f2n+1)
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Rotation Orders and Pisano Periods

The Lucas sequence un = un(P,Q) is the order two linear
recurrence sequence with u0 = 0, u1 = 1 and un+2 = Pun+1 −Qun.

Observation 2.

The ith rotation order of a point (x1, x2, x3) is equal to the period
of the Lucas sequence un = un(3xi , 1).

Idea. Use familiar Lucas sequence identity(
3xi −1
1 0

)n

=

(
un+1 −un
un −un−1

)
⇒ An

xi
=

(
−un−1 un
−un un+1

)
Remark. Lucas sequences have nice arithmetic properties. For
example k | n ⇒ uk | un.
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Sizes Under Action of Rotations

Question. For Markoff mod p points which have an integer lift,
what is the size of a smallest lift?

Proposition (B., Chen, Fuchs, Ye, 2022+)

Let ni ∈ Z≥1 and ij ∈ {1, 2, 3}. Then we have

size(rotnsis · · · rotn1i1 (1, 1, 1)) ≤ (3ε)2
s−1(n1+1)···(ns+1),

where ε = 3+
√
5

2 .

Remark: Bound is not tight.

Guiding principle: To find small lifts, want short paths that
minimize the number of switches between distinct rotations.
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First Bound: BGS-style paths

BGS Algorithm.
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First Bound: BGS-style paths

BGS Algorithm.
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First Bound: BGS-style paths

Proposition (B., Chen, Fuchs, Ye, 2022+)

Let ni ∈ Z≥1 and ij ∈ {1, 2, 3}. Then we have

size(rotnsis · · · rotn1i1 (1, 1, 1)) ≤ (3ε)2
s−1(n1+1)···(ns+1),

where ε = 3+
√
5

2 .

Theorem 1 (B., Chen, Fuchs, Ye, 2022+)

Let p be a prime so that ordp(rot
n
1(1, 1, 1)) ≥ p − 1 for some n,

and suppose that x is Markoff mod p point with ordp(x) > pε for
ε > 0 fixed. Let x̃ be a lift of x of minimal size. Then

size(x̃) < (3ε)2
t+4(2p+1)t+5

where ε = (3 +
√
5)/2 and t = τ(p2 − 1).
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Second Bound: Shortest paths

Idea:

◦ Take the shortest path from (1, 1, 1) to x in Gp.

◦ Length of this path is upper bounded by diam(Gp).

◦ Use upper bound for diam(Gp), depends on h(Gp)

◦ Assume your short path is as bad as possible

Theorem 2 (B., Chen, Fuchs, Ye, 2022+)

Let p be a prime where Strong Approximation holds and let h(p)
be the expansion constant of the Markoff mod p graph Gp. For a
Markoff triple x, let x̃ be a lift of x of minimal size. Then

size(x̃) < (3ε)

(
p3+3

2

)20/ log

(
1+

h(p)
3

)
.
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Large Pisano Periods and the Cage

Question: Is (1, 1, 1) connected to the cage?

Remark. Point x is in the cage if ordp(x) ≥ p − 1.

Observation 2.

The ith rotation order of a point (x1, x2, x3) is equal to the period
of the Lucas sequence un = un(3xi , 1). In particular,

ordp(1, 1, 1) = π(p)/2,

where π(p) is the Pisano period of the Fibonacci sequence.

Theorem (Vince, 1978).

If p ≡ ±2(mod 5) then 2ν+1 | π(p), where ν = ν2(p + 1).



Background Connection to Linear Recurrence Sequences Bounding Lifts Connecting Special Points

Large Pisano Periods and the Cage

Proposition

If p > 5 is a Mersenne prime with p ≡ ±2(mod 5), then
(1, 1, 1) ∈ C(p).

Note: Lower bounds on the 2-adic valuation of p + 1 give lower
bounds on the order of (1, 1, 1), so you can say things like:

Proposition’

If p > 5 is a prime with 2ν2(p+1) > p1/2+δ, then rotni (1, 1, 1) is in
the cage for some i ∈ {1, 2, 3}.
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Extending Vince’s Result

For a Markoff triple (x1, x2, x3), let f (T ) = T 2 − 3xiT +1. Let ∆xi

be the discriminant of fxi and ηxi be a root of fxi .

Theorem (B., Dunn, Naidu, Wells, 2025++).

If p ≡ ±2(mod 5) and
(
∆xi
p

)
=

(
Tr(ηxi )+2

p

)
= −1, then

2ν2(p+1) | ordp,i (x).

Corollary.

Let p ≡ ±2(mod 5) and suppose that x = (x1, x2, x3) is a Markoff
triple with xi satisfying the conditions above.

(1) If ν2(p + 1) > log2(p − 1) (e.g. p Mersenne) then x ∈ C(p)
(2) If ν2(p + 1) > log2(p

1/2+δ), then rotni (x) ∈ C(p).
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Next Steps

Extend Vince’s result beyond 2-adic valuation.

Look at density of primes where (1, 1, 1) is in the cage.
Experimentally, seems to be around 40%. Maybe we can
verify this for families of primes from previous result.

Look at percentage of points in the cage for families of primes
from previous results


