Back	٢g	ro	n	d
000				

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Markoff Triples and Linear Recurrence Sequences

Elisa Bellah

University of Toronto

January 30, 2025

Connecting Special Points

Plan

2 Connection to Linear Recurrence Sequences

3 Bounding Lifts

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Recall that the Markoff triples can be organized into a tree via Γ

Analogously, the Markoff mod p points can be organized into a graph via Γ

where

$$Z_1 = \sigma_{23}R_2, Z_2 = \sigma_{23}\sigma_{12}R_1, Z_3 = R_3$$

rot_1 = \sigma_{23}R_2, rot_2 = \sigma_{13}R_1, rot_3 = \sigma_{12}R_1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Connecting Special Points

Markoff mod p graphs

Key Observation

- Strong Approximation $\Leftrightarrow G_p$ connected.
- Lifts of mod p points correspond to paths in \mathcal{G}_p from (1, 1, 1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Rotation Orders

Define *ith rotation order* of a Markoff mod p point \mathbf{x} to be

$$\operatorname{ord}_{p,i}(\mathbf{x}) := \min\{n \in \mathbb{Z}_{>1} : \operatorname{rot}_i^n(\mathbf{x}) = \mathbf{x}\},\$$

and the rotation order to be $\operatorname{ord}_{p}(\mathbf{x}) := \max_{i} \{ \operatorname{ord}_{p,i}(\mathbf{x}) \}.$

Observation.

If $\mathbf{x} = (x_1, x_2, x_3)$ is a Markoff mod p point, then $\operatorname{ord}_{p,i}(\mathbf{x})$ is equal to the order of

$$A_{x_i} := \begin{pmatrix} 0 & 1 \\ -1 & 3x_i \end{pmatrix}$$

in $GL_2(\mathbb{F}_p)$.

<u>ex:</u> $rot_1(x_1, x_2, x_3) = (x_1, x_3, 3x_1x_3 - x_2)$ and

$$\begin{pmatrix} 0 & 1 \\ -1 & 3x_1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ 3x_1x_3 - x_2 \end{pmatrix}.$$

3

Connecting Special Points

Rotations and Recurrence

Observation 1.

We have $\operatorname{rot}_1^n(x_1, x_2, x_3) = (x_1, a_n, a_{n+1})$, where $\{a_n\}$ is order two LRS with $a_0 = x_2, a_1 = x_3$ and

$$a_{n+2}=3x_1a_{n+1}-a_n.$$

and similarly for other rotations $(rot_i^n(x_1, x_2, x_3) = \sigma(x_i, a_n, a_{n+1}))$

ex:

$$\mathsf{rot}_1^n(1,1,1) = (1,f_{2n-1},f_{2n+1})$$

Rotation Orders and Pisano Periods

The Lucas sequence $u_n = u_n(P, Q)$ is the order two linear recurrence sequence with $u_0 = 0$, $u_1 = 1$ and $u_{n+2} = Pu_{n+1} - Qu_n$.

Observation 2.

The *i*th rotation order of a point (x_1, x_2, x_3) is equal to the period of the Lucas sequence $u_n = u_n(3x_i, 1)$.

Idea. Use familiar Lucas sequence identity

$$\begin{pmatrix} 3x_i & -1\\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} u_{n+1} & -u_n\\ u_n & -u_{n-1} \end{pmatrix} \Rightarrow A_{x_i}^n = \begin{pmatrix} -u_{n-1} & u_n\\ -u_n & u_{n+1} \end{pmatrix}$$

Remark. Lucas sequences have nice arithmetic properties. For example $k \mid n \Rightarrow u_k \mid u_n$.

・ロト・四ト・モート ヨー うへの

Connecting Special Points

Sizes Under Action of Rotations

Question. For Markoff mod *p* points which have an integer lift, what is the size of a smallest lift?

Proposition (B., Chen, Fuchs, Ye, 2022+)

Let $n_i \in \mathbb{Z}_{\geq 1}$ and $i_j \in \{1, 2, 3\}$. Then we have

$$\mathsf{size}(\mathsf{rot}_{i_s}^{n_s}\cdots\mathsf{rot}_{i_1}^{n_1}(1,1,1)) \leq (3\varepsilon)^{2^{s-1}(n_1+1)\cdots(n_s+1)}$$

where $\varepsilon = \frac{3+\sqrt{5}}{2}$.

Remark: Bound is not tight.

Guiding principle: To find small lifts, want short paths that minimize the number of switches between distinct rotations.

Background 000 Connection to Linear Recurrence Sequences

Bounding Lifts 0●000 Connecting Special Points

First Bound: BGS-style paths

BGS Algorithm.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Background 000 Connection to Linear Recurrence Sequences

Bounding Lifts

Connecting Special Points

First Bound: BGS-style paths

BGS Algorithm.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Connection to Linear Recurrence Sequences

Bounding Lifts

Connecting Special Points

First Bound: BGS-style paths

Proposition (B., Chen, Fuchs, Ye, 2022+)

Let $n_i \in \mathbb{Z}_{\geq 1}$ and $i_j \in \{1, 2, 3\}$. Then we have

$$size(rot_{i_{s}}^{n_{s}} \cdots rot_{i_{1}}^{n_{1}}(1, 1, 1)) \leq (3\varepsilon)^{2^{s-1}(n_{1}+1)\cdots(n_{s}+1)}$$

where $\varepsilon = \frac{3+\sqrt{5}}{2}$.

Theorem 1 (B., Chen, Fuchs, Ye, 2022+)

Let p be a prime so that $\operatorname{ord}_p(\operatorname{rot}_1^n(1,1,1)) \ge p-1$ for some n, and suppose that \mathbf{x} is Markoff mod p point with $\operatorname{ord}_p(\mathbf{x}) > p^{\varepsilon}$ for $\varepsilon > 0$ fixed. Let $\tilde{\mathbf{x}}$ be a lift of \mathbf{x} of minimal size. Then

$$\operatorname{size}(\tilde{\mathbf{x}}) < (3\varepsilon)^{2^{t+4}(2p+1)^{t+5}}$$

where $\varepsilon = (3 + \sqrt{5})/2$ and $t = \tau (p^2 - 1)$.

Second Bound: Shortest paths

Idea:

- Take the shortest path from (1,1,1) to **x** in \mathcal{G}_{p} .
- Length of this path is upper bounded by $diam(G_p)$.
- Use upper bound for diam(G_p), depends on $h(G_p)$
- Assume your short path is as bad as possible

Theorem 2 (B., Chen, Fuchs, Ye, 2022+)

Let p be a prime where Strong Approximation holds and let h(p) be the expansion constant of the Markoff mod p graph \mathcal{G}_p . For a Markoff triple \mathbf{x} , let $\tilde{\mathbf{x}}$ be a lift of \mathbf{x} of minimal size. Then

$$\operatorname{size}(\tilde{\mathbf{x}}) < (3\varepsilon)^{\left(\frac{p^3+3}{2}\right)^{20/\log\left(1+\frac{h(p)}{3}\right)}}$$

Large Pisano Periods and the Cage

Question: Is (1, 1, 1) connected to the cage?

Remark. Point **x** is in the cage if $\operatorname{ord}_{p}(\mathbf{x}) \geq p - 1$.

Observation 2.

The *i*th rotation order of a point (x_1, x_2, x_3) is equal to the period of the Lucas sequence $u_n = u_n(3x_i, 1)$. In particular,

$$\operatorname{ord}_p(1,1,1) = \pi(p)/2,$$

where $\pi(p)$ is the Pisano period of the Fibonacci sequence.

Theorem (Vince, 1978).

If
$$p \equiv \pm 2 \pmod{5}$$
 then $2^{\nu+1} \mid \pi(p)$, where $\nu = \nu_2(p+1)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Connecting Special Points $0 \bullet 00$

Large Pisano Periods and the Cage

Proposition

If p > 5 is a Mersenne prime with $p \equiv \pm 2 \pmod{5}$, then $(1,1,1) \in \mathcal{C}(p)$.

<u>Note</u>: Lower bounds on the 2-adic valuation of p + 1 give lower bounds on the order of (1, 1, 1), so you can say things like:

Proposition'

If p > 5 is a prime with $2^{\nu_2(p+1)} > p^{1/2+\delta}$, then $\operatorname{rot}_i^n(1,1,1)$ is in the cage for some $i \in \{1,2,3\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Connecting Special Points 0000

Extending Vince's Result

For a Markoff triple (x_1, x_2, x_3) , let $f(T) = T^2 - 3x_i T + 1$. Let Δ_{x_i} be the discriminant of f_{x_i} and η_{x_i} be a root of f_{x_i} .

Theorem (B., Dunn, Naidu, Wells, 2025++).

If
$$p \equiv \pm 2 \pmod{5}$$
 and $\left(\frac{\Delta_{x_i}}{p}\right) = \left(\frac{\operatorname{Tr}(\eta_{x_i})+2}{p}\right) = -1$, then
 $2^{\nu_2(p+1)} \mid \operatorname{ord}_{\mathbf{r},i}(\mathbf{x}).$

Corollary.

Let $p \equiv \pm 2 \pmod{5}$ and suppose that $\mathbf{x} = (x_1, x_2, x_3)$ is a Markoff triple with x_i satisfying the conditions above.

(1) If
$$\nu_2(p+1) > \log_2(p-1)$$
 (e.g. *p* Mersenne) then $\mathbf{x} \in \mathcal{C}(p)$
(2) If $\nu_2(p+1) > \log_2(p^{1/2+\delta})$, then $\operatorname{rot}_i^n(\mathbf{x}) \in \mathcal{C}(p)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Next Steps

- Extend Vince's result beyond 2-adic valuation.
- Look at density of primes where (1, 1, 1) is in the cage. Experimentally, seems to be around 40%. Maybe we can verify this for families of primes from previous result.
- Look at percentage of points in the cage for families of primes from previous results