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ABSTRACT. We present the perturbation theory of the Chern-Simons gauge field theory
and prove that to second order it indeed gives knot invariants. We identify these invariants
and show that in fact we get a previously unknown integral formula for the Arf invariant of
a knot, in complete agreement with earlier non-perturbative results of Witten. We outline
our expectations for the behavior of the theory beyond two loops.
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The aim of this paper is to prove, explain the motivation, and point at possible general-
izations of the following theorem:

Theorem 1. Let X be a parametrized oriented knot in R?. (that is to say, X is a smooth
non-singular function from S to R3 that has no self intersections). Then the integrals
represented (as explained below) by the following two diagrams are convergent, and their
sum Wy is an isotopy invariant of the knot X. This invariant can be identified to be 1/24

Figure 1. The two contributing diagrams.

plus the second non trivial coefficient in the Conway polynomial of X, whose reduction mod
2 1s the well known Arf invariant of X.

an integral which can be read from its diagrammatic representation as follows:

The meaning of the two diagrams above still has to be explained. Each diagram represents

(1) The ellipses represent the knot itself. It is parametrized as X(s) and the points
X(s1),--.,X(830r4) are points on the knot that always remain in the same cyclic
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order as in the diagrams. We integrate over all such configurations of X(s),...,
X<S3 or 4):

/d8112’3 or dSl,,,.Av
Az
where Aj,, 4 is the set of all cyclically ordered 51 304 € St

(2) The dashed lines indicate the so called ‘gauge propagator’. It is proportional to a
particular choice of an inverse for the operator curl:

o (X(s1) — X(s3)"
; k AT X (s1) — X(s3)]

Summation over repeated indices is of course understood, and €;;,, denotes the totally
antisymmetric tensor in three dimensions — €, = sign (ikm) if ikm is a permutation
of {1,2,3} and €, = 0 otherwise.

(3) When a propagator (a dashed line) begins or ends on the knot, say at X (s;), its index
that corresponds to the side of the propagator that is by X(s;) is contracted with
Xi(S]_)I

X Ms1) — — — — —

i

(4) The symbol @ near a vertex with three propagators carrying indices ', j', and &’
emanating from it means that integration over the position of that vertex in R?
should be performed, and the three indices should be contracted with an 7%

1 dz "
6 /re

(5) The numerical factors in front of each diagram just indicates its weight.

Therefore, our invariant reads:

~ 1 IR TR '
We = oo /Agsl,...,4X1(81)XJ(Sz)Xk(Ss)Xl(34)€ikmEJln(

NS N

/d81,2)3 /R3 dBZ Xl(Sl)X](SQ)Xk(Sg)El] k €t il €550 1 €kl k!

19273 Jag
(X(s1) = )" (X(s2) = 2)" (X(s3) = 2)*"
[X(s1) = 2" [X(s2) = 2" |X(s3) = 2

We shall explain presently the simple idea that lies behind these complicated-looking inte-
grals, and see that using more or less the same building blocks as 1-5 above we can generate
more combinations of diagrams that we expect to yield integral representations for higher
coefficients of the Jones polynomial, and that using similar diagrammatic building blocks we
can construct integral invariants of general three-manifolds and of knots embedded in them.
These integrals appear to be divergent (just as the integrals above appear to be divergent
on first sight), and more work needs to be done in order to show that it is possible to make
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sense out of these integrals anyway, and that they indeed converge (after some corrections)
to invariants. None of this work has yet been done for the general case.

The organization of this paper is as follows. Section 2 will introduce the infinite dimen-
sional integral whose asymptotic expansion should give link and three-manifold invariants,
and briefly review the Feynman-diagram technique for obtaining this asymptotic expansion.
Section 3 describes a formal invariance proof for the invariants introduced in section 2, and
then sections 4-6 treat few of the simplest of those invariants — section 4 treats the linking
number of two knots and the self linking number of a single knot from our point of view,
while sections 5 and 6 contain the proof of the theorem 1, first proving the finiteness of W,
in section 5 and then its invariance in section 6. These proofs rely on some simple algebra
that was carried out using a computer, and the relevant computer routine is included in
the appendix. Section 7 compares our results with the earlier non-perturbative treatment
of Witten, and section 8 discusses our expectations for the behavior of the theory beyond
the few simple cases treated here. Sections 2,3 and 8 are non-rigorous and a bit speculative,
while sections 4,5 and 6 use the ideas of sections 2 and 3 to produce some rigorous results.

This paper is a modified version of a preprint I first distributed almost 4 years ago, in
April 1990. Section 9 describes in just a few words the new developments in this subject in
the years 1990-94.

During the preparation of this paper we received a paper by E. Guadagnini, M. Martellini,
and M. Mintchev, [19], in which they have conjectured the invariance of (2) and calculated
it by explicit and numerical integration for several simple knots.

1.1. Acknowledgements. [ wish to thank R. Bott and J. D. Stasheff for encouraging me
to publish this paper. I also wish to thank S. Axelrod, J.H. Conway, M. Mintchev, A. Referee,
C. Simpson and A. Soffer for discussions and suggestions they made, and my thesis advisor
E. Witten for suggesting the problem and for his many helpful comments.

2. THE BASIC IDEA

The basic idea is simple and to make it even simpler we will ignore knots for a moment
and explain it first for the case of a bare three manifold. Our invariants will be complex
numbers. To get a complex number out of a bare three manifold, that has no additional
structure on it, is hard. It is a lot easier to get numerical quantities when there is more
structure to play with. So we look at an oriented three manifold with an additional piece
of structure, generate a complex number using this additional structure, and then try to
integrate our complex number over all possible choices of such an additional structure. The
additional structure that we will pick will be a connection on a trivial pre-picked bundle
on our three manifold M3, and the complex number that we will generate, the integrand
in our program, will essentially be the exponential of the ‘Lagrangian’ — the Chern-Simons
number [14] associated with the connection A:

k 2
cs(A) —/M3 (AN dA+ZANANA),

:47r
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and so our invariant will be:
(3) W(M? k) = / DA o [iys tr(AndA+Eanana)
A

(k is an integer parameter whose importance for our purposes will be made clear shortly).

Luckily, the space of all connections A is an affine space and so there should be a canon-
ical choice for a measure on it — the Lebesgue measure. Unfortunately, A is an infinite
dimensional space and so that measure doesn’t really exist. To go around this we will use
perturbation theory techniques that were originally developed by physicists to be used in
quantum field theory. Instead of attempting to calculate the integral (3) as it is, we will
try to investigate its asymptotic behavior as k/2mi — oo. It will turn out that (assuming
that infinite dimensional Lebesgue measures do exist) to determine this asymptotic behav-
ior requires only evaluating finite dimensional integrals represented by so-called “Feynman
diagrams”, and therefore it is possible to define the asymptotic behavior of (3) to be given
by those “Feynman diagrams”, without ever giving meaning to the integral (3) itself. T will
very briefly present these techniques here. For further information consult any quantum field
theory textbook such as [29, 16, 22].

2.1. A finite dimensional analogue. To illustrate the technique of Feynman diagrams,
let us first look at a simpler finite dimensional analogue — let us try to understand the
t — oo asymptotics of:

(4) 2= [ dietGrurieHhgpatalsh),
R
(This case is in fact quite general — whenever an expression of the form [ e/ is encountered
its t — oo asymptotics is dominated by the contribution from small neighborhoods of the
critical points of the real-valued function f, and at those points f can be replaced by a
quadratic term plus a higher order correction.)
By a simple change of variables,

(5) 77 =iz,

(suppressing primes)
k

Z, =t"? dZei 3w’ gtk ol
Rn
expanding the second exponential to a series, and suppressing the odd degree terms (which
vanish upon integration on R"), we get
6 Z = t_n/2 dfel%)‘iﬂw t (7
(6) ‘ 2 (2m)ltm

k\2m
R" )7

()\Z’ijCil‘jl‘
m=0
And so the mth term in our asymptotic expansion will be given up to a multiplicative
constant by:

A dzeishiz' e ()\ijk.rixjxk>2m _
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this is a simple Gaussian integral, which we can evaluate using standard methods:

—10 —i0 —id o = i\ ated +id;at
= [(Aiﬁkﬁﬁa—@) e 1 )

J=0
—i0 —i0 —id\"™" 1.y
7 Ai' e —lEAJJiJ]‘
(7) “[( * 90 0, &]k) ‘ ] ’

J=0

where \Y is the inverse of \;;: A\;jA% = §;*. Now this expression can clearly be expanded
further, and a moment’s reflection will convince that up to combinatorial factors and powers
of 7 it is given by the sum of all “Feynman diagrams” that have exactly 2m vertices of order
three. That is to say, to evaluate (7) we calculate a sum over all graphs with 2m vertices of
order three where the contribution of each such graph is a product of \;;;,’s for each vertex
and \Y’s for each arc. So for example up to numerical factors the term with m = 1 will be:

2 i i ¢
]UI

sl sl ! !
(numl))\ijk)\yjfkf)\” P )\kk num2 z]k/\z ]/kl)\”/\kk )\Z 7’

It is not hard to see that in general 2m is also equal to the number of independent loops in
a diagram. Therefore we will also call the m’th order term in such an asymptotic expansion
‘the 2m-loop term’.

Looking back at our infinite dimensional situation we will by analogy define the W;’s to
be those sums of diagrams, in which now every vertex will correspond to integration on M3
and to a tri-linear form that comes from A A A A A, and every arc will correspond to a
Green’s function of the operator defining the quadratic part of ¢s(A). (The cautious reader
will notice that this quadratic part is not elliptic, and therefore does not have a Green’s
function. This problem will be dealt with later on).

2.2. The incorporation of knots. To incorporate a link X' = {X, 5:1 into the above
picture, we have to supplement the integrand:

(8) W(M?, X, k) / DA H Trp, Pexp </ dsX 5)A; (XV(S))> ik [ s tr(ANdA+2ANANA)

Where
TepPexp ( / din(s)Ai(X(s))) — dim R + / dsX(5)A%(X (s))R2,

(9) + dsy o X (51) X 2 (52) AL (X (51)) A% (X (59) ) ROL, RO2, 4+

12 ala” az o
51<s2
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and R is a representation of the underlying Lie-algebra. (9) is, of course, just the trace of
the holonomy of the connection A along X in the representation R, expanded in powers
of the connection A which is assumed to be almost flat. The expansion (9) shows us that
to understand the integral (8) we first have to understand integrals as in (4), only with an
additional polynomial P(Z) multiplying the integrand. Moreover, after rescaling & as in (5)
and carrying out exactly the same analysis as in (4) — (6) with an additional P(Z) multiplying
each integrand we see that in the mth order term in our revised asymptotic expansion will
be given by:

(10) S /R 4z B () (At

mi1+mo=2m

where P,,, (Z) denotes the part of P(Z) which is homogeneous of degree m; in #. Noticing
that just as before we ended up having to calculate the expectation value of a polynomial
(Pml (f)(/\ijkxi:cj:ck)m) with respect to a Gaussian measure, we can now use the same trick
and replace the above integral by a sum of ‘revised” Feynman diagrams that are also allowed
to have a single exceptional vertex of some order my, weighted by the coefficients of P, (¥).

Returning to the infinite-dimensional situation we see that the perturbative expansion
of (8) will be given by Feynman diagrams that have ‘propagators’ (arcs) corresponding to
Green’s functions of curl, internal vertices corresponding to AAAA A, and additional vertices
integrated on the link X" with coefficients as in (9). Comparing again with (10), we see that
the mth order term in the expansion of 8 is a sum of such diagrams having exactly 2m
vertices, internal or not. This is exactly the form that W, of the theorem has.

2.3. The ellipticity problem. Let us now return to a problem that was brushed aside
temporarily. The quadratic part of ¢s(A) is not elliptic, and as it stands it does not have
a Green’s function and therefore the Feynman diagrams technique is not available. The
origin of the problem is a bit deeper - cs(A) is invariant under the infinite-dimensional
infinite-volume group of gauge transformations, and hence integrating DA we integrate over
infinitely many superfluous variables and we cannot expect to get a finite integral. To resolve
this complication we will once again look at our finite dimensional analogue, assume that the
Lagrangian there, $\;;a'a? + \jpa'a’a*, is invariant under the isometrical non-degenerate
action of an [-dimensional Lie group G, and try to evaluate the integral (4) without redundant
integration over the orbits of G.

We will visit each orbit of G' just once by choosing a function F' : R® — R! that has a
unique zero on each G-orbit, and inserting a 6'(F'(Z)) into the integral. If we want the result
to be the same as the full integration and independent of F' we need to add a correction
term that corresponds to the volume of the G-orbit through ¥ and as the action of G is by
isometries this term can be calculated locally at a point & satisfying F'(¥) = 0. It is given by
the inverse ratio of the volume element of the Lie-algebra G of G and its image in R! under
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the action of G composed with F'. That is to say — we have to look at:

; i A Nt il . OF*\
Z= | dgetFur T T sl (p(z) det ().
R” 0Gy

({Gp}i_, is a set of generators for G)

We will try to find a diagrammatic representation for the asymptotic expansion of Z.
The first additional term in the integral is easy — we can just replace it by its Fourier
representation:

1
(27)t Jme

and then incorporate F*(¥)¢, as a new term in the Lagrangian. The other new term,

dl¢eiF“(f)¢a

6'(F (7)) =

det (g—g), can be dealt with in two equivalent ways. The first way is to do the usual rescaling

(5) and then to expand det (g—g) in powers of % by first separating det (g—g) into a constant
part Jy and a part Ji(Z) which is a series in %, and then using

1 1\"

(11) det (Jo + WL(J?)) = det(Jy) ; (W) Tr(A™ Ty DA™ TL(T)).

(A™ J is the mth exterior power of the matrix .J). Notice that .Jy is just a constant matrix,
while J;(Z) depends on #. It will now be possible to regard (11) as a polynomial in Z and get
a Feynman diagram expansion. It is an easy exercise in elementary algebra to show that the
polynomial (11) can itself be incorporated into the the Feynman diagrams by introducing
a new type of propagator denoted by directed dotted lines that corresponds to J, ' and a
collection of new types of vertices each connecting two dotted propagators with some dashed
propagators — depending on the exact form of J;(&). (There will also be some alteration to
the combinatorial rule of determining the numerical factor multiplying each diagram).

The other way of dealing with det (g—g) is the one commonly used in the physics literature
and the one that we will be using here. It involves the idea of anti-commutative integration.
Non-commutative integration is treated in many places (see e.g. [9, 29, 16, 22]), and I will
not explain it here in detail. Very briefly, ‘anti-commuting’ variables (called ‘ghosts’) {¢,}'\_;
and {c’}}_; are introduced together with a reasonable set of rules of integration with respect
to them, and it is shown that for any matrix J¢

/dlédlceiéa‘]abcb oc det(J).

(This is analogous and complementary to standard Gaussian integration — in which the
resulting determinant is in the denominator).
Using this, Z can finally be written as

Zo | dE (21)l / d'¢ / Qe o TN T A Xt ed o F (@) ptea(GE0))
R ™ R!
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and now we can use almost the same procedure asin (4) — (7) to get a diagrammatic expansion
for the asymptotic behavior of Z. Again it turns out that this involves introducing a new
propagator and some new vertices.

As we will see below for the case of interest for us — the Chern-Simons Lagrangian — we
will be able to choose F'in a way so that the quadratic part of the supplemented Lagrangian
will indeed be elliptic. This will be done in the next section.

3. THE CHERN-SIMONS LAGRANGIAN AND THE BRST ARGUMENT

Let M3 be an oriented three manifold, G'a compact semisimple Lie group with an invariant
integral bilinear form ¢r on its Lie algebra G and P — M? a principal G-bundle on M3. Also
A will always denote a connection on P, B a difference of two such connection - i.e. an
ad(P)valued 1-form on M3, D4 and D, covariant derivatives defined using A, and F* the
curvature of A.

The Chern-Simons Lagrangian cs(A) is defined by (see [14]):

K 2
cs(A) = E/Ma tr(ANdA+ZANANA)

where tr(A; A Ay A Ag) & $(trA; A [Ay, As]) = Str([Ar, As] A As), and so relative to some

choice of coordinates and a trivialization of P,

koo )
- g /M36]ktT(Ai(ajAk - akA]> + gAz[A], Ak])

It is invariant under infinitesimal gauge transformations in which 64 = —D4¢ o —(dc +
[, ]):

4r

Tbes = - /M3tr ((de+[A, ) AdA + A A d]A,

+2(de+[A, ) NANA) =
— —/ tr([A, ] AdA+AN[AA, ] —A N [A, de] + 2dc AANA)
M

—2/ A A ANA=

M3

- / tre A [A, [A, A]] = 0.
M3

This implies that cs(A) is invariant under gauge transformations that can be pathwise con-
nected to the identity transformation. As it turns out (see [14]), ¢s(A) is not invariant under
general gauge transformations and, in fact, in our normalization it is defined only up to a
multiple of 27. This explains our choice of the normalization — we have chosen precisely
that normalization for which the exponential in (3) is well defined.

The space A of all connections A on P is just an affine space and not a vector space in
a natural way and the functional cs(A) does not necessarily have the gauge orbit of zero as
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its only stationary gauge orbit on A — there is no well defined origin in A and cs(A) might
have more then just one stationary gauge orbit in .4. We will therefore repeat the analysis of
the previous section separately for each of the stationary gauge orbits and then sum up the
contributions from the various gauge orbits. Suppose now that A is an arbitrary stationary
point for cs, i.e.: % = 0, which means F'4 = dA + %[A, Al =dA+ANA=0,and for B an
ad(P) -valued 1-form on M? define £(B) = cs(A+B) — cs(A):

L(B) = ﬁ /Ma tr((A+B) A d(A+B) + %(A—FB) N (A+B) A (A+B)) — cs(A)

k 2

= — tr(ANdA+ -ANANA
4r /Ma r T3 )+
+ a vanishing linear term in B +

>
+ﬁ/ tr(BAdB+-BABAB+BA|A B]) — es(A)
47 J s 3

k 2
= — | tr(BAD*B+=BABAB).
47T/M3T( +3 )

Choose a trivialization of P, local coordinates {z'} and a metric g;; on M? with ¢ o det(g;;),
and get

(DAB)U = alB] — ajBl‘ + [Aza Bj]?
and
Diy = /59" D} = /59795 + /ag"[A;. .

Pick the gauge condition =D#B" =0, and get using the usual Faddeev-Popov procedure
as described in the previous section:

Etot(Bv ¢7 & é) = L + ‘Cgauge-ﬁ:ving + ‘Cghosts -
k 2
= —/ tr(BAD*B+>=BABAB)+

4 J w3 3
2 .
— | tr(¢D{ B’

+ | reDtB) +
k . .

(12) L / treDA(D'y + ad BY)c

A7 Js

¢, ¢, and ¢ are Lie-algebra valued fields — ¢ = ¢°G,, ¢ = ¢*G,, and ¢ = ¢*G, for a set of
generators {G,} of G.

3.1. A “proof” of metric independence. To show that the Lagrangian that we obtained
gives rise to a metric-independent theory in spite of the explicit appearance of a metric in
it, we will have to introduce the ‘BRST’ operator @ [8] — the odd derivation acting on the
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space of all functionals of B, ¢, ¢, ¢, defined by its action on the generators:

(13) @B, = —(D{+adB)c,
(14) Qp = 0,

(15) Qc = o,

(16) Qc = %[C,C]:%Qaffccbcc.

. def .
In (13) the expression “ad B;” stands for the operator defined by (ad B;)c= [B;,¢|, in (16)

f. are the structure constants of G, [G,, G.] = fi.G,, and [c, ¢] doesn’t vanish because of the
anti-commutativity of c.

Lemma 3.1. QL,;,(B) = 0.

Lemma 3.2. There exists A (that depends on 6g ) so that under g" — g + 6%
0 Lo = QA

Lemma 3.3. @) corresponds to a vector field of zero divergence.

Let us first use the above three lemmas to prove that
W = / DBDSDeDe eilet

is formally metric independent [35]. In fact, more will be true: whenever O is a metric
independent function of B, ¢, ¢, ¢ that satisfies QO = 0,

() & / DBD¢DcDe O(B, 6, ¢, ¢)eiCer
will be metric independent. (The case of W is when O = 1). Indeed, under g9 — ¢ + 6¢%
5O) = 6 / DBDODEDE O(B, 6, ¢, )¢’
= / DBDODEDE O(B, 6, ¢, &) “ 5L,
(17) = / DBD¢DeDe Q(O(B, b, ¢, )’ A).
In the last equality we made use of the first two lemmas. Now we just use the third lemma

and the well-known fact that the integral of a derivative taken using a divergence-free vector
field is always zero to conclude our proof.
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3.2. Proofs of lemmas 3.1-3.

Proof of lemma 3.1. The proof of QL = 0 is identical to the calculation showing gauge
invariance.

—k . .
Q['gauge-ﬁxing = /MstTng;A(D; + ad BZ>C

T
QLywws = - [ tr (0DADY +ad B)e + eDADiye + B, ),
T Jm
1 : :
~SEDADY + ad B, c]) ,
and it is easy to see that QL jquge-fizing + Q@ Lghosts = 0.

Proof of lemma 3.2. Suppose that ¢ — ¢“ + 6¢". Then §£ = 0 while

k ij 1 ij
6£gauge—ﬁa:ing = E /M3tr <¢D;4(\/§6g ]B]> - §¢D?(\/§gl]6g ]glel>>

and
6 Loposts = ﬁ [t (D (g™ (D + ad By)e)
—%ED/? (Vag:09” " (D} + ad Bl)C))
so that p .
L= | Vig'T,
with

Ty =tr ((D%)Bj +(Df'e)(D;! +ad Bj)e — %gij ((DL6)g" B+ (D{e)g™ (D} + ad Bz)c)>
and then T;; = QA;; for
Aij = tr <(D245)Bj - %gz‘j(D?E)glez>
that is:
Lot = Q (ﬁ /MB\/ﬁégijtr ((D;‘c)Bj - %gij(D,‘?c)glel>> LA,
U

Proof of lemma 3.3. To rigorously prove lemma 3.3 one first needs to understand what is
meant by the divergence of a vector field on an infinite dimensional space. But as our metric
independence “proof” is just a formal argument, it is sufficient to note that proving lemma
3.3 formally is completely trivial just by inspecting (13) — (16).

O
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The value of the above metric independence “proot” is of course not in itself — so long
as we do not give a proper definition for our infinite dimensional integrals it is far from
being rigorous — but in the hints that it gives towards finding a rigorous proof that the
Feynman diagrams expansion is metric independent. This independence appears to have
been broken in (12), but the argument in (17) can quite straightforwardly be translated to
a Feynman-diagrammatic argument just by expanding (17) in powers of 1/v/k and reading
the proofs of the above three lemmas as relations among the resulting diagrams'. Of course,
the formal invariance proof thus obtained will have to be supplemented with analytic details
concerning the convergence (or divergence) of the relevant diagrams, and with possible finite
dimensional kernels of the differential operators that we need to invert. This will be done
in detail for a simple case in this paper. Writing the formal proof in the general case is not
very hard but I could not yet supplement it with the required analytic details.

4. THE ONE-LOOP CONTRIBUTION

Having developed a general technique in the previous sections, let us now try to apply
it in few particular cases, and let us start from the simplest case — the contribution of
order 27i/k to W(flat R®, X') where X is a two-component link in R?. There is just one
flat connection on R? — the trivial one — and we don’t need to switch to the variable B.
Furthermore, we will ignore the vacuum diagrams — those diagrams that have no vertices
on the link. (As is well known, this corresponds to dividing by W(flat R?, empty link)). In
this simple case the ghosts and the interaction term A A A A A will not yet come into play,
and of the infinitely many terms in the expansion of Pexp only terms up to the second order
term will be relevant. That is to say, we just need to understand

W’ — / DAD¢ e% fR?’ tr(gijkAiajAk+¢aiAi)
A

2

IT (dim 2, + [ dsiXs () 470X, (5)) R

=1

a0 X (52) A5 (X (50)AZ (X, (51) R0 R, )

yaio” tyaz0n
51<52

This is just a simple Gaussian integral. We can regard ¢ as a (Lie algebra valued) three-
form on R?, A as a one-form, and write the quadratic form in our Gaussian integral as

1 ) . 1 A A
(@t anavora) =3 (1)1 (1))
def

for L= = dx+*d. Clearly (L7)*> = A and therefore V~, the inverse of L™, is given by
V= = L~ oG where G is the Green’s function of the (vector + scalar) Laplacian A. In the

!This was carried out in [6, sections 6 and 7]
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Euclidean case this Green’s function G is given by

tab e
G®(x,y) = p p— (% is the inverse of ¢y def tr(G.Gy))
for both the scalar and the vector cases, and so the A part of our propagator is given by
tab (x o y)k
R y_:qu — (A Ab _ i'akiz i ab_\*~ I/
a,i b, j %] (‘T7y) < z(x) ](y)> Cijk $47r|x—y| €ijk 47r|x—y|3

as anticipated in (1). The terms of order 27i/k are given by the diagrams in figure 2.

Figure 2. First order diagrams

4.1. The linking number of two knots. Let us first consider the left most diagram.
Ignoring the constant numerical coefficient that the representations R, contribute it corre-
sponds to the integral

(18) £(X1, X,) = /dsldszvgj(xl(sl),Xz(sz))X{Xg'

which is the well known Gauss integral representation for the linking number of two knots
[30]. For the sake of completeness, and also as a preparation for the next section where we
will use similar but more complicated considerations to deal with the two loop contribution,
we will review here the proof of the invariance of (18) under isotopies and show that indeed
it coincides with the linking number.

It is possible to view V;;(x,y) is as a (1,1)-form on R® x R* where (x,y) € R* x R?, i is
the one form index for the variable x, and j is the one form index for the variable y. Viewed
this way, (18) is just that form V evaluated on the cycle X; relative to its left variable and
on the cycle X, relative to its right variable:

(19) £=(X|V]Xy)

The key property required for the invariance proof is that there exists a (2,0)-form F' (that
is to say — a two variable form F' which is a two form with respect to its left argument and
a zero form with respect to its right argument) for which

(20) d"V = —d"F
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away from the diagonal, where d is the exterior derivative with respect to the left variable
and d® is the exterior derivative with respect to the right variable. Assuming such an F,
under an infinitesimal deformation of X; we will have (using Stokes’ theorem twice)

(21) SF = 6<X1|V|X2> — <The surface S spanned by the|dLv|X2> — —<S|dRF|X2> =0.

infinitesimal deformation of X1

As for the existence of F', notice that by our derivation of V, V = xdo GVt and therefore
*LdLV = xd x d o G. By the commutativity of xd and G one gets x*dl'V = G o xd * d.
Remembering that G is given by an integral kernel, one can integrate by parts G o xd x d to
get xEdEV = KBgR I qRG = (AR — qf 1 dB)G = (v — y) [ — dB <1 P+ G. Multiplying
from the left by «© we obtain away from the diagonal

dbV = —df b Bl G g,
The formula we just got for F' can be expanded to give

—(r —y)*

Fy-(w,) = e ,
7, (x y) 6J’<?47_‘_|x_y|3

and this can be used to verify (20) directly. Don’t let yourself be mislead by the apparent
equivalence of the formulae for V' and for F! The indices are arranged a little differently
and verifying (20) is a little more than just playing around with these indices — some
differentiations do have to be carried and the verification s essentially the same calculation
as the derivation in this paragraph.

Having shown that £ is indeed an isotopy invariant we can now use it to show that it

coincides with the linking number. Deform the knot so that it will be almost planar with
only ‘perpendicular crossings’. Now flip one of those crossings us shown in figure 3. Clearly,

X = X

Figure 3. Flipping a crossing

when comparing the contribution to £ from before and from after the flip we can integrate
the propagator with its endpoints only nearby the crossing. If the crossed arcs are € apart,

1 €
(22) £(before) — £(after) = — / drrig o =
This is exactly the same relation is satisfied by the linking number, and together with
£(unlinked circles) = 0 (22) proves that £ is indeed the linking number. To see that indeed

£(unlinked circles) = 0, use the already proven isotopy invariance to make sure that the two
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circles are very small relative to the separation between them and then the integral defining
£ will tend to zero.

4.2. The self-linking of a single knot. The situation with the other diagrams in figure 2
is a bit more complicated. Let £,(X;) be the ‘self-linking’ of X;:

(23) LX) (XVIX) = 5 [ dsidsVi(Xi(s), Xa(2) X{(51) X (52).
(We have suppressed here the Lie-algebra coefficient which for R being the defining repre-
sentation of G = SU(N) in CV and for tr being the usual matrix trace can easily be seen
to equal N? —1).

For three vectors A, B,C' it will be convenient to denote €;;;A’B’C*, the volume of the
parallelepiped spanned by 0, A, B, C' by det(A|B|C). Using this notation

(24)

1 det (X (51) = X (s2)| X(51) [ X (2))
£,(X) = —/dsld32 X0 —XGF .

8

This integral appears at first sight to be divergent because of the cubic term in the denomi-
nator. Nevertheless when s, and s, are close, say ¢ apart, X(s;) — X(s2) ~ ¢ and the three
vectors X (s1)—X(sq), X(s1), and X (sy) are within a cone of opening ~ e. Therefore the vol-
ume of the parallelepiped spanned by these three vectors is ~ €3 which is enough to suppress
the singularity of the denominator. Unluckily, the argument in (21) doesn’t go through —
the key relation (20) holds only away from the diagonal, and in (23) our integration domain
does intersect the diagonal.

This point has already been treated by Caalugédreanu [11, 12] (see also Pohl [27]) and later
from a physical viewpoint by Polyakov [28] (see also Tze [31]). They found that indeed (23)
is not an invariant, but yet it can be renormalized by the addition of a local term (the torsion
of X') to give an invariant. It turns out that to properly define the torsion everywhere X
needs to be ‘framed’, and therefore £, will just be an invariant of framed knots. We will
arrive at the same results using a somewhat different regularization which makes the current
calculation a bit less transparent but has a more straightforward generalization for the two-
loop case to be treated in the next sections. Let us define £, by the integral (24) that defines
£, only with the integration domain restricted to

A |s) — s3] > €.
Assume that X undergoes an infinitesimal deformation X — X + 60X X 4+ w. Asin the
invariance proof for the case of a link, (21), Stokes’ theorem was used twice it will fail twice
for this new case and 6 £, will pick up four non-zero contributions — one from each boundary
term in each of the usages of Stokes’ theorem. Denoting the evaluation of differential forms
on A, by (|| )e (compare with 19, and recall that the forms involved are forms on R? x R?
that can be evaluated on a pair of cycles in R? — one on the “left” R? and the other on the
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“right” R?) and on its two boundaries [s; — sy = &€ by ( | | )+ we will get: (S again is the
surface spanned by the infinitesimal deformation of X)

5L = <X|V|X) (S|dVIX)e + (VX )y — (w]|VIX)-
—(S|d"F|X) + (V] X)s = (w|V]X)-

(25) = (SIF[=)+ + (SIF|=) - + (wVIX) 1 — (w[VIX) .

We will try to understand the ¢ — 0 limit of £, by expanding (25) in powers of €. For s
a variable in S let X = X(s), X = X(s), w = w(s),...,
2 3

Xee=X(ste) ~ XieX+%Xi%'X

2
Xee=X(ste) ~ Xj:eX—l-%X

Using these notations, with the dummy integration variable s picked to be at the point where
w is evaluated,

det (Xiclw| X — X)
=5/

VIX)s
(wlV] S E

1 det(X:l:eX+%X|w|:l:eX+§X:l:%X)
N_/ i X — Xo P
1 / €2 det (%X + X |w|X £ %X)

T (L )

47

Therefore (notice that the terms of order % - cancel!)

Vi) - X~ 1 125 (o

~— . — det(X|w|X) + - det(X|w|X) | .
= s (i el + S (101

Similarly

/d det X|W|Xie X)
T 4r | X1 — X3

1 XJP 3X - X L e
~—[d 1+ - dt(X‘ ‘—X - >
47r/s|e|< 62|X|2>e w5 :F6X

and therefore (notice that again there is no term of order 1)
1 ds 3X - X
dmJXP A 2lXP

(S1F]=)

—(SIF[=) 4 + (S|F[-)-

det(X|w|X) + 3 det(X|w|X)> :
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This finally gives that the e — 0 limit of 6 £, is

1 ds X X
26 ok, = [ s (- det(X |w]X) + det (X |w|X
(26) - (o e ) + (101

and we can see that indeed 6£, # 0 and £, is not a knot invariant.

4.3. The appearance of framings. Yet, some further investigation of 0 £, shows that this
can be corrected quite easily. Define 7 to be 1/47 times the total torsion of the curve X —
that is to say 1/47 times the integral with respect to arc length of the local torsion 7(s) (see
[15, pp. 22]) of the curve, given by the standard formula

eI )IR()
(21) )= =" %) < K (s)P

whenever the denominator is non-zero. As I will comment below, under X — X + w one
can show that 0£, and —67 are given by exactly the same formula (26) so if one defines

£, =4Ls+7

then £, is invariant under isotopies, so long as the denominator in (27) remains non-zero.

What if that denominator is equal to zero? On the normal bundle of X there is a canon-
ically defined connection defined by the projection back to the normal bundle of the usual
differentiation along the knot of vector functions normal to it. 1/47 times the total holonomy
of that connection along the knot is some real number, well defined up to a half integer which
depends on a choice of a trivialization for the normal bundle, and whenever 7 is defined, it
will be shown below to coincide with that number. Hence £, is an invariant of framed knots
— a framing is just a trivialization of the normal bundle which can be used to render 7 and
therefore £, well-defined. This necessity of framing the knot X agrees with the results of
Witten [32], but makes £, quite useless for an unframed knot — it is a half integer which
is well-defined only up to a half integer. For a framed knot it can be shown along the same
lines as in (22) to be half the self-linking of a framed knot — half the linking number of that
knot with its framing.

To complete the discussion we need to demonstrate the two differential geometric assertions
made above. Very briefly, if n(s) is any vector not tangent to the knot X then the holonomy
discussed above can be calculated by measuring how much the projection of n to the normal
bundle fails to be parallel. It is an elementary exercise to then find that relative to the
framing given by n,

-1 )
2 = — X
(28) . 47r/ds| |det<|X|2

Setting n = X it is easy to see that (28) coincides with (27) and choosing n to be a constant
vector that is not parallel to X (s) for any value of s simplifies it the most. One can then vary
(28) under X — X + w and integrate by parts until all the derivatives of w disappear. One

{|X|2|X >§X;%IQH)X) '
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is left with a huge and unfriendly expression that with a tremendous amount of labor and
juggling with vector identities can be shown to equal (26). I could not verify this equality
without the aid of a symbolic mathematics computer program [37].

5. THE TWO-LOOP CONTRIBUTION

Let X be a parametrized knot in R3. In this section we will try to understand the two-loop
contribution W, to W(flat R?, X') — the contribution of order —4x?/k*. All the terms in
the Lagrangian L, come in to play now, and on a flat R® our W reads

Witlat R®, ) = [ DBDGDDE TepPesp ( / din(s)Ai(X(s))> il

k ij i L, —n (i ;
L= (/R (€7 4,0, Ay + 60 A;) + SeTr A4, A + /R tr 20('c + [A ,c]))

If R is a trace-free representation terms that have only one interaction point with X have
a vanishing coefficient, and therefore the only potential contribution at two-loops come
from the five diagrams in figure 4. In this figure dashed lines represent as before the

. .

gauge-propagator V', the dotted lines represent the ghost ¢c propagator which is just the
Green’s function of the Laplacian 9;0, the symbol @ represent the gauge-gauge-gauge in-
teraction —%eijktTAi [A;, Ay] and the symbol & represents the ghost-gauge-ghost interaction
—5tred;[A .

The first two diagrams are divergent because of the integration over the location of the
interaction vertices in R®. But as is readily verified and as was shown in [18] the integrands
in these diagrams are exactly the opposites of each other so if we sum them before integrating
we get zero. (We will accept at face value that A and B cancel and prove that C'+ D + E is
a topological invariant. It is very likely that the full story is a little more elaborate. In the

Figure 4. The five two-loop diagrams.



20 DROR BAR-NATAN

context of a consistent regularization that could be used to all orders, A and B are likely
to cancel only up to an imaginary multiple of the one loop contribution and thus what is
calculated here is just the real part of the two-loop contribution. See[26, 1, 13]). Also, it is
clear that if one ignores the Lie algebra coefficients of diagrams C' and D then their sum is
equal to the square of the one-loop one-knot contribution that was discussed in the previous
section. It is therefore possible to subtract from W, a multiple of (W;)? in such a way that
diagram C' will disappear. We will call the resulting quantity Ws. The coefficient of diagram
D in W, will be the difference between the coefficients of diagrams C' and D in W, and these
coefficients differ only because the Lie-Algebra indices are contracted in a slightly different
way. So if g def tr(GaGp), % is the inverse matrix of t,, and we use t,, and t* to raise and
lower Lie-algebra indices, we get:

(et D) = (et e = 74 Ry R R R, — 4 RYs Ry, ), RE,
The fact that R is a representation is just the relation f®°R? = "'t (R} RS — RJ,RY.)
and therefore

= fabCRaB’nga ?[3‘

These are exactly the Lie-algebra contractions for diagram FE. Taking into account the dif-
ferent symmetry factors for these diagrams we finally get (after dividing by the Lie algebraic
coefficient)

~ 1

as anticipated in Theorem 1.

In the case of G = SU(N) ; R = C¥ one can calculate that in W, the Lie-algebraic
coefficients of diagrams C, D, and E are (NZJQI)Q, ’N;“, and N(N? — 1) respectively, and
therefore in this case

~ 1 1 9

We = N(N2—1) (W2 N ) ) '
5.1. Finiteness of W,. It still isn’t clear that the integrals represented by the diagrams
D and E are finite. For diagram D there appears to be a singularity when three of the
integration variables are close together but exactly the same analysis that has shown that
the self-linking integral is finite shows that this integral is also finite. In diagram E there
appears to be a problem when two or three of the knot integration variables are close together
and are close to z — the variable of the vertex @ integration. Up to a constant factor, diagram
E represents the integral:

(29) E = /A(fsl,z,in(Sl)Xj(SZ)Xk(Ss)VEjk(X(Sl)v X(s2), X(S3))
where

NI T kll

def /111 ANl def
(30)‘/ijk($1,x2,x3) = 61] k En-/inﬁjj/jnﬁkk/knTl 7"k (SCI,SCQ,.T;),) = 6ijk:i”j”k:”Tl J (.Tl,SCQ,SU3)
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and

def /R3 dg,z(fﬁl - Z)i (w9 — Z)j (w3 — Z)k

Tijk(xlv'r%x?’) = 3 3 3

|z — 2|7 oy — 2|7 |2g — 2]
The integral defining T is clearly finite for every choice of distinct ;_3 in R3, but it blows
up rapidly when some of the a’s coincide. To show that in spite of this the integral (29) is

finite we need to understand the behavior of T" as two or three of its arguments coincide.
Let us first rewrite 7" in a way that will make it easier to handle. Using

a3 1
e " " Nda =

4
NG /0 “T N
we can rewrite 7' as
277r3/2 / o / dz(2) — 2) (z9 — 2)’ (x5 — 2)"e

Introducing the notation:

ik _ (3 lor—sf+a3/foa—sf?+03 *Jaa—1?)

A = Y a2 : A, = o
m ) m A
t = S A\nlm : s = S Anlr, —t

we get

T*(xy, a9, 23) = 2”3/2/ Ao / dz(zy — 2)" (29 — 2)? (3 — )ke_A(|Z—t|2+s)

—_Alz|?

277T3/2/ dPPae / dz(wy —t — 2) @y —t — 2) (25 — t — 2)Fe 1P,

This is just a Gaussian integral with respect to z, and it can be evaluated to give
64 3, e~ 1

27 Jo A3/2 24

(w1 = £)'67% + (g — 188 + (w5 — 1)"67)

+ (21 — 1) (s — 1) (a5 — t)’“] .

Changing variables from d®a to d*AdA (there are just two integrations over the \’s because
they are constrained to satisfy - A,, = 1) we pick the Jacobian 2' A7/%\/A;X\;A; and get (after
evaluating the A integral)

Ly .T—tiéjk—l—x_tjéki_i_x_tkéij
TU’C(ZIZ']_,.TQ,ZE’3> = 4/d2)\\/@l( 1 ) ( 2 82) ( 3 )

(w1 =)' (wg — ) (25 — )"

(31) +4

Clearly the integral (29) is translation invariant, and invariant under reparametrizations
of X of the form s — s+ sp. So in the investigation of its possible divergencies we can



22 DROR BAR-NATAN

assume that, say, 0 is the midpoint between s, and sz, s is farther away from s, or s3 than
the distance between these two:

1
S1 =T

;o Sy =—MT ; |77|<§7

) S3 =NT

and that X (0) = 0. In this case we can write

. Sijk Sijk
(32) TH*X X, X)) = 4/d2)\\/)\1)\2)\3 [? + 4?]

with
Sijk def (Xr N t)i(sjk + (X,,,T _ t)j5ki + (XWT _ t)k(sij,

SPE (X, (X — (X, — 1)

The problematic regions are when 7 or 7 are small, and we need to be able to estimate
integrals like those in (32) for such values of 1 and .

Lemma 5.1. Let A, B, and C be the three vertices of a triangle with sides |A — B| ~
|A—C| ~ 7, and |B — C| ~ nt with n < 1/3 (see figure 5). For positive \’s satisfying

B

NT/T

Figure 5. The triangle ABC.

A+ Ao+ A3 =1 define:

t MA+ B+ \3C

s = M|A—t]P+ X|B—t|* + \3]C -t

Finally let Ay be one of {(1 — A1), A2, A3}, Ap be one of {\1, (1 = X2), A3}, and Ac be one
Of {)\17 A27 (]— - A3>}
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In this situation there exists constants c1_s independent of n and 7 for which:

(33) / SNBSS

1 :| < C1
52 nrd

A1 C2
(34) /d%/AIA?Ag [8—2 < 3
€3 if neither of Ap or A¢ s
376 chosen to be Ay,
AsApAc €4  af exactly one of Ap, A¢ s
35 /d%/A Ao\ 7] L y 5, Ao
(35) e 3 < ntS  chosen to be A\q,
¢ if both of Ap and Ac are
76 chosen to be \y.

5.2. Proof of the finiteness of diagram FE. It is sufficient to show that (the symbol “6”
was implicitly defined in (30))

(36) Gijrar i T (X, Xy Xopr) < /7.

Let us first deal with the contribution coming from Sij k. Expanding Sij " in powers of A\q,
(37) SPF = Pk 4 N S

we can use (33) and (34) and then all that is left to prove is:

(38)  Gypay X (1) X (=) XN (r) STV = O (77 ; p=0,1.

This can be done by expanding all the terms in the above expressions once in powers of  and
once in powers of 7 and showing that the low order coefficients in each of these expansions
are zero. It is not hard to do it by hand, but as we are going to encounter some very similar
but a bit harder expansions later on we will not do it here but postpone it to the appendix
where it will be shown how all these expansions can be carried out in a uniform way using
a computer. -

The terms involving Sy’ " are dealt with in a very similar way. Clearly, each of the factors
of Séjk is made of three summands, whose coefficients exactly correspond to the various
possibilities for choosing A4, Ag, and A¢ in the lemma 5.1. Keeping (X, — t)* unexpanded
and expanding only the last two factors of S¥* in powers of )i,

(39) S;]k _ Sg,ijk + )\1521,1']'1@ + )\%Sgﬂ'ﬂg’
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and keeping in mind (35) what is left to prove is
O(n*r?) for p =0,

(40) 6ijlci’j’lc’Xi’ (T)le(_UT)Xk,(UT)Sg’Uk =3 O(nr°) forp =1,

o(7°) for p = 2.

Again, the relevant expansions will be shown to vanish to the required order in the appendix
using a computer.

5.3. Proof of lemma 5.1. We will write \y = (1—\;)f and A3 = (1—)\;)0 where 0 < 6 < 1
and § = 1—0. ¢ will denote a positive constant that is allowed to change from line to line. It
is easy to read from the geometry of figure 5 that when \; < 1/2 (equivalently, when ¢ is in
the left portion of figure 5), \;|A — t|? > c\;72, that \y| B — t|? > c\0?|B — C| > c00?n*r?
that \3|C — t|> > c06*p*72, and thus that

(41) s|/\1<% > c ()\172 + (00* + §92)n272) = cr? (9%2 + )\1) :
In the region \; > 1/2 the expressions which are integrated over d*) in (33), (34), and (35)
are bounded functions, and therefore (41) can be used to give upper bounds for the integrals

we are considering.
Taking for example (35) with Ay = (1 — A1), Agp = (1 — X2), and Ac = (1 — \3) we get

(42) /dZ)\\/)\l)\g)\g

The Ay integral can be explicitly evaluated. In fact, for a small o one has

/ad/\ 2\/X . —Va N Va arctan(¥2) ¢
e

= <
+0)° 20a+a2)?  4a?(a+a?) 4a3 as

AAABAC )\1+99)
] /de/ h 7 (661 +/\) '

and

= — -+ < —
a2+ M) 2a+a?)?  4(a+a?) 4o Q

/ad/\ VAN Vae? 5v/a Jarctan(¥2) ¢
o

and plugging these two estimates into (42) gives the required result. The other assertions of
the lemma are proved along the same lines.
O
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6. PROOF OF THEOREM 1

We will now show that W, is indeed a knot invariant — that it is not changed under
infinitesimal deformations. The proof presented here should be similar in spirit to invariance
proofs (that are yet to be found) of higher terms in the perturbative expansion — we will
first write a diagrammatic argument as expected from the results of section 3, (though our
diagrammatic argument is not derived from the results there), and then supplement it with
the required analytical details. As in the case of the analysis of the variation of the self
linking number in the previous section, in analyzing the variation of W, we will need take
derivatives of V;;, and of V;; near the diagonal where there are singularities which will prevent
a straight-forward invariance proof. To avoid these singular points define WQ)e to be given
by the same integrals D and E as W, only with the integration domain restricted by the
condition that the s’s would be at least € apart — for ¢ # j we require

(43) |si — sj] > e

We will denote these integrals by D, and E., and the finiteness of W, that was proven above
just means

~ 1 1 -
WQ’e = ZDe — 2E€ T[r) ZD — 2E = WQ.

6.1. The variation of WQ. We will now vary D, and E, under the infinitesimal defor-
mation of X given by X — X 4+ w. It will be a lot more instructive to perform those
calculations diagrammatically instead of working with the explicit formulae given for D and
E in the introduction. First, let us vary diagram D.. When X moves to X + w it sweeps an
infinitesimal surface S, and our quantity of interest 6§D, is given by the evaluation of d*V
on S which after using the key relation (20) reduces to diagrams D3 and D4 and by two
boundary terms, diagrams D1 and D2:

D,
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In these diagrams a dashed line represents as before the gauge propagator Vi; evaluated

between the two vectors marked at its ends, a dotted represents the (2,0)-form F', a d symbol

stands for exterior differentiation applied to the nearby end of the nearby propagator, and

an € between two interaction points on the knot means that these points are exactly € apart.
Similarly we can vary E.:

E.

The diagram E3 appears because (20) is true only off diagonal. Actually dXV and —d®F
differ by a x* of a é-function as was shown in the derivation of (20). Integrating by parts
and using Leibnitz’s rule we get:
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E6 5

ET <% Eg8 S - E9 S
S R e
6.2. Proof of Theorem 1. To show that W, is indeed an invariant we just need to show
that the limit as e — 0 of 6(3D, — 2E,) vanishes. That is, we need to show that

lim D1 —-D2—-D3+D4+6(FE1—E2+FE3—FE4+ E5+ E6— ET— E8+ E9) =0.

In fact, we will show that

(44) lim D1 — D2+ 6E3 =0,

(45) lim —D3+ D4+ 6(—E4 + E5) = 0,
and

(46) lin% El—-E24+FE6—E7T— ES8+ F9=0,

independently. For convenience, the symbol [ will denote integration in which the integra-
tion variables are constrained to satisfy the restrictions (43), we will write X, for X (s,), and
similarly for X,, X, and w,.

Proof of (44). Diagram D1 represents the integral

(47)  Dl= / ds1 3wl XV (X, XD X V(X0 Xo)XE 3 si=syte,
diagram D2 reads

(48) —D2= ] dsi_s — XiwhVi(Xy, X)XTVa(Xa, X2)XL 5 si=sy+e
and diagram FE'3 is given by

1 . . » .
(49) B3 =2 / ds1_ 3 XPW €™ Vi (X, X1) X7 Vi Xy, Xo) XL,
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Using
mik __ i ck k gi
Epnm€ = 5p6n - 6p 0,

we can write £3 = E3' + E3" with

1 . » .
(50) B3 =~ / ds1_s X ik Vi (X, X0) XTI Vi (X3, Xo) XL,
and

(51) B3 = — / dsy_s XEwi Vi (X, X1) X7 Vie(Xs, Xy) XL,

The nearness of s3 and s, clearly implies that the integrand in (47) converges to the integrand
of (51) and the integrand in (48) converges to the integrand of (50) as e — 0. At the region
where s; and s, are farther from s34 than some fixed but small positive constant 7', there is
no problem with commuting integration with taking the ¢ — 0 limit. Concentrating first on
comparing diagrams D1 and E3" we see that nothing particularly harmful happens if just
|s4 — so| is small — as it was shown in section 4 the integrand in this case remains finite.
Otherwise, we are looking at one of the following exceptional cases (assuming for simplicity
that s, =0, s3 = —¢, and Xy = 0):

D1 52 E3" 52
Case 1: —6
51 51
€0 0
D1 E3"
Case 2: —6
S1 S1
ED) 52
) 0

Figure 6. The two exceptional cases for D1 < E3".
Case 1: Disregarding the propagator connecting X, and X, = 0 the difference D1 — 6 E3"
reads:
(52)
/T dSIdet (w(=6) [X(s1)| X (=€) = X(s1)) B /T dSIdet (w(0) [ X (51) X(0) = X(51)) |
‘ [ X (=€) = X(s0) P ‘ [ X(0) = X(s1)P
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Expanding the integrands in (52) in powers of s; we can ignore all terms of order smaller
than 1/s; — evaluating the integrals in (52) for these terms would give a result bounded by
a constant multiple of 7" in the ¢ — 0 limit, and as 7" was chosen small we can indeed ignore
the contribution to (52) coming from these terms. There are no terms of order higher than
1/s1 in (52) and the term of order 1/s; reads:

/Tds ( 1 det (w(—6) [X (=) X(—0)) 1 det (w(0) (X(o)\X(o)))
e\

s1+¢) (X (=e)f? 251 X (0)]?
at the e — 0 limit we get
(53)
det (w(0) | X (0)| X(0)) /T ] 1 1 —log 2 det (w(0) |X(0)] X(0))
~ - S1|l —0—————| — - .
[ X(0)[? e \2site) 29 2 | X(0)[?

Reinstalling the propagator connecting X, and X, and the integration over s, we get the
only non-vanishing contribution to D1 — 6 E3".
Case 2: Here the € — 0 limit is in fact zero. To see that, one does analysis similar to the
previous case, and notices that s, is integrated over an interval of length smaller than s; and
thus remembering that the propagator connecting X, and X} is finite even near the diagonal
the sy integral is ~ s1, and this additional factor is sufficient to make the contribution coming
from this case vanish.

A similar analysis to the above shows that the only non-vanishing contribution to 6 £3'— D2

comes from the case parallel to case 1 here, and that, in fact, these contributions exactly
cancel. d

Proof of (45). Here are the integrals corresponding to the relevant diagrams:

(54) -D3 = — / dsi s X Vi (X, XO)XIXTWIF, (X1, Xs), 5 su=s3+e

(55) D4 = /d81—3X§Vkl(X3, X)X Xl Fyj - (X, Xy), ; S4 = 3+ €,
1 . . L

(56) —6B4 = - - / A1 3 X F €™V X, X1) XLy (Xy, X)X,

1 . . L
(57) 6B5 = / ds1_ 5 XE emne™Vou (Xy, Xo) XLFy (X1, Xa) Xl

Using

Ermne P = 26,7
and the nearness of s3 and s, it is clear that so long as X; and X, are far away from Xj the
integrands of (54) and of (55) converge to the integrands of (57) and of (56) respectively,
and that there is no problem with commuting integration with taking the e — 0 limit. The
cases when X; and X, are not far away from X3 can be treated in the same way as in the
previous proof. O
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Proof of (46). It will be convenient here to replace € by 2¢ and then take the e — 0 limit.
In all of the relevant diagrams two of the s’s are constrained to be exactly 2¢ apart and
the third to be farther then 2¢ from any of the previous two. It is harmless to assume that
sy = —¢, 53 =€, X(0) =0, and s; = 7 with |7| > 3e. We will denote the ratio ¢/ by 7.

With these notations one can see that the integrands corresponding to our diagrams can
be written in pairs as follows: (ignoring the overall coefficient 1/38473)

E1-E2 = Y 6w Xiw’ 5 Xb TH(X X e, Xy )

BT
B==%
E6+E9 = > emuen Xy wr X, T%X,, X 5,0, Xoyr)
B==%

—ET—E8 = Y €pnjeiniX g e X T (X, X_gyr, Xy ).

Remembering (32), (37), (39), and lemma 5.1 we see that in considering the ¢ — 0 limit
we just need to show that

li_r)% e Tb Z ( l]m]fk/X W ﬂmXﬁnT + Emmﬁzij:waXém
(58) + Emnj€ui X Mg g XE) SPUE =0
and that
(59) lim (same) - o0y

=0 J3e<|rj<T neTb

where 1" is some fixed small positive number and « and b are the exponents of 1 and 7 as in
equations (33), (34), and (35).

As in (58) 7 is bounded from below we can use € = 57 to replace the limit there by an
n — 0 limit and then all that is required is to show that the summand there is ~ 7**!. The
relevant algebra will be carried out in the appendix using a computer.

The integration domain in (59) is symmetric and therefore we can replace the integration
there with an integration over 3¢ < 7 < T, replacing the integrand with

(60

[ ijk
Z ( gk’ J'k'Xom- 7[3777'Xﬂ777 + EmquanT aTX[J’nT +€mn]q]€@X pnt —ﬁm’X ) Si],Z

T—QT

Qw
H-H

Simply integrating over 7 now shows that to conclude the invariance proot we just need to
show that (60) = O(n*7?). Again, the relevant algebra will be carried out in the appendix
using a computer. O
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6.3. Identifying WQ. The last assertion of theorem 1 is that the invariant WQ that we have
produced is (up tp a constant shift) the second non-zero coefficient in the Conway polynomial
of X. The Conway polynomial is defined by its behavior under flipping a crossing in a planar
projection, so we will try to understand how W, changes under such a flip.

-2
@Q

Figure 7. The change in W, under a flip.

Very briefly, it is clear that the difference in the value of W, before and after a flip
comes from a singularity in either of Vjj; or Vi; at the point where the flip occurs. Using
the invariance that we have just proven one can ‘straighten’ the knot near a crossing point
before flipping, and then it is easy to check in this case Vj;, contracted with the tangents
of the knot in fact vanishes near the crossing point except if one of its arguments is on the
upper branch of the crossing and the other is on the lower. V;;;, is then inversely proportional
to the distance between its two arguments, and the fact that 1/r is integrable on R? shows
that this singularity can be neglected. Similarly considering diagram D omne finds that the
only singularity that remains is the one that occurs when the two arguments of the same
propagator are arranged as propagator 1 in figure 7, and the other propagator can then be
assumed to be away from the crossing. Repeating (22) for propagator 1 and then integrating
over the location of the other propagator, marked 2 in the figure, it is clear that effectively
we are calculating the linking number of the two knots that are created if the original knot
is cut at the crossing as in the figure. It is easy to check from the definitions (see [23])
that this is exactly the same relation as the one that is satisfied by the second non-zero
coefficient in the Conway polynomial of X, and so they coincide up to a constant shift.
This constant shift is given by W, (unknotted circle). By invariance we can just calculate
Wi (the unit circle in the XY plane) and an explicit calculation shows that (see [19])

1
W, (the unit circle in the XY plane) = o

This concludes the proof of theorem 1.
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7. COMPARISON WITH WITTEN’S NON-PERTURBATIVE TREATMENT

In [32] Witten has used a very different approach resting on conformal field theory to give
a non-perturbative definition for the infinite dimensional integral (8) defining W(M?, X', k).
His definition is much more successful in that he can show how to use it to evaluate (8)
precisely for every three manifold M3 and link X in it, and not just calculate its leading
large k asymptotics for R3, but it is less elementary and very particular to the Chern-Simons
theory. There doesn’t seem to be any direct relation between his way of calculating and the
perturbative calculation shown here, and it is very interesting to compare the two view
points. Let us start by reviewing his results for a link in R3, as presented in [33]. As is
shown there, W(R3, X', k) considered as a function of & and the gauge group G = SU(N) is
in fact up to a simple change of variable the HOMFLY [17] polynomial of the link X', which
itself is a generalization of the Jones polynomial of A

Witten shows that to define W(R?, X, k) unambiguously one needs to consider framed links
instead of just links. That is to say, each component X, of the link has to be accompanied
with a prescribed ‘framing’ — a choice up to homotopy of a nowhere vanishing section F’,
of the normal bundle of X, in the language of section 4 or, more geometrically, a choice of
a ‘shadow’ for each component as in the figure 8.

Figure 8. A knot with two of its possible framings. (The arrows indicate the differences between
the two framings)

According to Witten, if the framing of link changes by a single twist, YW get multiplied by
e?™" where h is a real number determined by k£ and the representation R, corresponding
to the component of the link on which the twist was made. This is shown schematically in
figure 9.

We will only be concerned with the case where the underlying group G is SU(N) for some

positive integer N, and all the representations R, are just the defining representation of
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Negative twist Positive twist
|l < < <
Lé l < Lé)
\ | - \
672m'h ;j — : <= — egm'h >}
. = N
L réw e‘X ! <= =
| | [

Figure 9. The change in W under a single twist.
SU(N) in CV. In this case h is given by:

N2 —1

(61) = NN

The difference between any two framings of a single knot is measured using a single integer
— the number of signed twists required to change one framing to the other, and the above
relation shows that for a link with several components we can in fact consider two framings
to be equivalent if the total number of twists required to switch from one framing to the other
is zero, counting all twists on all the components of the given link. With this identification
for each link X = {X,} in R? there is a unique preferred framing — the framing { ¥} for
which the total linking number of A" is 0:

£(X) d:ef Z £(X717F’Yz) = 0
V1,72

In this framing, Witten has shown that W(R?, X', k) has the following three properties which
allows one to calculate it for any given link:

(1) For
(62) q= R
one has
, g2 — N2
(63) W(Unknotted circle in R” k) = P

(In fact, this relation can be derived from the following two by using the third relation
on the unknot whose planar projection is o)
(2) If the link X" is the unlinked union of A} and X, then

(64> W(R37X7k> = W(R37X17k>W(R37X27k)
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Figure 10. The links involved in the skein relation.

(3) Most important — the so called “skein relation” — if the three links Ly, Ly, and
L differ only inside a small ball where they look as in figure 10, then the following
relation holds:

(65) "Ly + (¢ = ¢V Lo+ ¢ ML =0
where for brevity we wrote L. for W(R?, L., k).

To compare these results with ours we first need to expand them in powers of 27i/k, and
thus we will write for a link L.

2mia.  4m?b.

k k?

From (63) and (64) it is clear that c. is just the number of components of the link L. if L.
is the unlinked union of unknotted circles. In addition, the zeroth order part of (65) reads
—N +0+4+ N =0 and as L; and L_ always have the same number of components it
means that the number of components of an arbitrary L. is given by c.. The terms of orders
2mi/k and —47?/k? in (65) give the following two relations:

(66) ap —a_ = NN — N

W(R? L., k) ~ N +

1 1
(67) b+—b_:a0+TN(NNCi—NCO)—gN(aJFﬂLa_).
i

If L1 is the same one component link as L, only with its framing twisted positively once,
expanding the relation in figure 9 in powers of 27i/k gives two additional relations:

1
(68) a=a"+ SOV 1)
2 2
tw twlN°—1 N_l(-Z PN )
69 b=1b NZ2 4 (N2 —1)).
(69) Ly vt e vl AR )

Theorem 2. The following assertions hold for links in R?:

(1) For a two component link L, ma 15 the linking number of its two components.



PERTURBATIVE CHERN-SIMONS THEORY 35

(2) For a single component knot L not necessarily with its preferred framing, ﬁ 18
half its self linking number.

(3) For a single component knot L not necessarily with its preferred framing,

= m}?e (b — %) 15 framing independent, and is in fact equal to our WQ(L).

All of these assertions are easy consequences of (66)-(69). For example:

Proof of assertion (3). To get the framing independence of b just use (68) and (69) to express
it in terms of ¢! and btw, and then notice that the resulting expression differs from that of
ptw only by the real part of an imaginary number. To show that b is equal to WQ(L) we just
need to show that they satisfy the same skein relation. But for knots L4 with their preferred
framings ax = 0 by assertion (2), and therefore using (67) one gets

= = 1 1

by —b-=—F——=Re (by —b_) = ———

¥ Nz e O ) = e

which by assertion (1) equals to the linking number of the two knots obtained by cutting L.
as in figure 7. It is easy to check that b(the unknot) = 1/24.

o

]

The above theorem is in complete agreement with the results of this paper.

8. PERTURBATION THEORY BEYOND TWO LOOPS

Following Witten [36], I will sketch here how we expect the perturbation theory of the
Chern-Simons gauge theory to behave on a general three manifold and to higher order in
1/k.

In [32, 33] Witten used very different techniques than those presented here to find a
complete non-perturbative definition of the Chern-Simons gauge theory. The part of his
solution that is relevant for making a comparison with the results proven here was reviewed
in the previous section, and that comparison showed a complete agreement between the two
approaches. The solution involves three subtleties that are hard to predict by just observing
the definition of the theory in equation (8):

(1) Links have to be framed. According to Witten’s solution W(M?3, X k) cannot be
defined as it is for a bare link A", but one also has to choose a framing for each of
the components of X and only then W(M? X', k) can be defined. Its definition will
then depend on the choice of the framing in a prescribed manner. This point was
explained in some more detail in the previous section.

(2) Three-manifolds have to be framed. According to Witten’s solution W(M?, X k)
cannot be defined as it is for a bare three-manifold M3, but one also has to choose a
framing for M? — a choice up to homotopy of a trivialization of the tangent bundle of
M?, and only then W(M?, X, k) can be defined [34, 2]. (Actually, something a little
less than a framing of M? is enough [34, 2]-it is enough, roughly speaking, to have a
framing modulo torsion.) Its definition will then depend on the choice of the framing
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in a prescribed manner. As we were working on a flat R® we have not encountered
this subtlety in this paper. We can consider this subtlety and the previous one as
cases of a broken symmetry — as framings do not at all appear in (8) it is trivialy
invariant under a change of framing and this symmetry is broken in Witten’s solution.

(3) Analyticity near k = oo is lost.? Naively one sees that as k — —k in (8), W(M?, X, k)
transforms to its complex conjugate. This property of W together with analyticity
near k = oo means that we expect the even powers in the 1/k asymptotics of W to
be real and the odd ones to be imaginary. This property is lost in Witten'’s solution
as can clearly be seen from equations (61), (62), (63) and (65). We have avoided this
difficulty in a not very satisfactory way by claiming to have calculated only the real
part of W.

All of the above mentioned subtleties seem not to appear in a naive Feynman-diagrammatic
expansion of W, and the purpose of this section is to show how these points probably do
appear in perturbation theory after all.

Formally writing down the sums of Feynman diagrams that we expect to yield higher
three-manifold and link invariants and translating them into finite dimensional integrals is
routine and easy. It is also not hard to produce a formal invariance proof for these integrals
as explained at the end of section 3, ignoring the analytical difficulties arising from the
divergence of those integrals. We will see below how resolving these analytical difficulties is
likely to explain the three subtleties listed above.

The origin of the above mentioned analytical difficulties is the singularities Greens’s func-
tions have near the diagonal. These get milder for higher order differential operators. This
suggests trying to regularize (8) by adding higher order terms to the Lagrangian preserving
as much symmetries as possible so as not to spoil the metric independence argument in sec-
tion 3. (Physicists call such a procedure Pauli-Villars regularization.) The main ingredient
of this argument is BRST invariance (lemma 3.1), and if we wish to preserve it we can only
add terms that preserve gauge invariance. The only such term of order two is the square of
the norm of the curvature of the connection A and therefore we will make the replacement

Lot + €]|Fal|*.

(In fact, to preserve the ellipticity of the quadratic part of L ejuarizes On€ also has to change
the gauge-fixing term of L, and this forces changing @) slightly. Making those changes is
easy and does not affect the rest of our reasoning, so we will ignore them.)

Let as now pretend that L,euiarizea gives rise to a finite perturbation theory. (Actually,
this is true except for the role of a few low order subdiagrams.) What will remain of the
invariance argument (17)7

Lemma 3.1 and lemma 3.3 will still hold because we have preserved gauge invariance, but
as the additional term in L,eguiarizes 15 metric dependent, lemma 3.2 will not be true any

def
L:tot - L:regularized -

2Some authors [20, 21] dispute this point, which is usually referred to as “the shift in k7. It is very likely
that in the context of the regularization suggested below no changes need to be made to the assertions in
this paper.
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more. Instead, the variation of £,eguirizes under g9 — ¢ + 6¢" will be given by
O L regularized = QN + €8]| Fa||”

and therefore in the notations of (17) we will have

(70) 8(0) = e(O8||Fal]?)

where the subscript € in ( - ). is meant to remind us that we are taking expectation values
with respect to a Lagrangian that depends on e. Of course, equation (70) (and equations
(71)-(74) as well) should be understood as an equality of perturbative asymptotic expansions,
and its proof will be based on (17) as explained in section 3. If (O), had a limit as ¢ — 0
and (O68]|F4]|*). was bounded as ¢ — 0 we could have taken this limit and it would have
been metric independent. One cannot expect this to be true. However, the divergences in
(O6||Fal|*) for € — 0 originate from a very definite type of contribution to the Feynman
diagrams, and by considering how such divergences can originate, one can obtain results that
are nearly as good as the naive results that would have held if there were no divergences. In
explaining this, we will consider the basic case O = 1.

[t is convenient to consider only the connected Feynman diagrams and as is well known [29,
16, 22| the sum of those is just log(1).. Divergences in Feynman diagrammatic contributions
to log(1). and to

2
() 5 log(1,) = S

come from a region of integration in which all integration points are separated by distances
of order e. This means that the divergences can be expanded in terms of local differential
geometric invariants — the metric, the curvature tensor, and its covariant derivatives. This
expansion is analogous to the short time expansion of the heat kernel. The most general
divergent terms are of the form

(72) log(1), = C—,OI,V + 2 R + finite terms
€ €
and
S| F4l1%)e
(73) M = g5V + 251% + 950 + finite terms.
(1), et €2 €

Here ¢1, ¢o, and c3 are constants (or more exactly functions of & only, which must be computed
order by order in perturbation theory, but do not depend on the particular three manifold
or metric). Also, V is the volume of M? R is the integral over M? of its scalar curvature,
C' is the Chern-Simons number associated with the Levi-Civita connection and 6V, 6 R, 6C
are the variations of these quantities with respect to g/ — ¢ + 6¢". The expansion (73) is
determined by the following principles. (i) The terms on the right hand side must be closed
one forms on the space of metrics (since the left hand side of the equation has this property.)
(ii) The coefficients of these closed one forms must be local functionals of the metric. What
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has been written on the right hand side of equation (73) is the most general expression with
these properties. The general principles do not determine ¢y, ¢y, and c3, which from this
point of view must simply be computed order by order in perturbation theory.

Equation (73) means that (1), does not converge as ¢ — 0 to a topological invariant.
Indeed its variation (71) not only does not vanish as ¢ — 0; it diverges in this limit. If,
however, we define?

(74) Wrenormalized - <]->renormalized d:ef exp hH(l) <10g<1>e - C_;V - ER - CBC>
€E— 6 6

then (72) shows that Wi enormaizea 1S finite while (70) and (73) shows that it is an invariant.
Here we see where the framing of M? comes in — to define C' we must first pick a trivialization
of the tangent bundle and so the invariants that we have just produced depend on a choice
of such a trivialization.

Notice that 6C, in equation (73) does not depend on the choice of a framing, but C' does.
What is entering here is clearly a sort of local cohomology of the space of metrics. The local,
closed one forms 6V, 6 R appearing in (73) can be written as variations (exterior derivatives)
of local functionals of the metric. But 6C', though itself a local functional and a closed one
form, cannot be written as the variation of a local functional. (If 6C were itself not local, it
could not arise in the intrinsic local evaluation of Feynman diagrams that leads to equation
(73).)

Similarly, in the case of a non-empty link X we do not expect that the higher order
Feynman diagrams will converge to link invariants, but instead we expect them to converge
to something whose variation with respect to a deformation of A will be equal to some
constant multiple of the variation of the total torsion of X'. (The torsion will enter just as
the Chern-Simons number C' entered in the above discussion.) The total torsion can then be
subtracted out yielding link invariants at the price of having to introduce a framing for A’
— the total torsion can be defined only given such a framing. This agrees with the results
of Witten and with the results in section 4.

Unfortunately, we were just pretending that the theory defined by L,ejuiarizea is finite.
In fact, it is not. One can figure out how badly divergent the theories defined by L;,; and
L reguiarized are by taking a diagram with a specified number of vertices and arcs, measuring the
total degree of singularity of the arcs and vertices, and subtracting the number of integrations
that the vertices induce. The result, the so-called “superficial degree of divergence” A of a

3This is consistent with what is usually called renormalization - it just corresponds to adding -3V -
2R — c3C to the original Lagrangian as the limit ¢ — 0 is taken. In fact, the above paragraph can be
summarized by saying that these three terms are the only possible local BRST invariant additions to the
Lagrangian which are of the right dimension. Notice that all three terms depend on the metric alone and
not on the fields, and therefore the n-point functions of the theory are not renormalized and thus no care
needs to be taken of the renormalization of lower order diagrams when considering the renormalization of a
fixed order in perturbation theory.
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diagram with Ep external gauge lines, E'p external ghost lines and L internal loops is

(75) A(ﬁtot) =3 - EB — %EF ; A(Lregularized> =4—-L— EB - EF

Clearly, the regularized theory is less divergent than the original one, but (75) shows that
even in the regularized theory the diagrams with a small number of loops and external lines
will be divergent and as these diagrams appear as subdiagrams in diagrams with higher
complexity we cannot just ignore them. Omne can check that even if higher terms than
¢||F4]|* are added to Ly and even when considering the reduction in the divergence that
comes from gauge invariance? one loop diagrams with one, two , or three external legs will
remain divergent in the resulting theory. Yet, we believe that the following is true:

Conjecture 1. (Witten, [36]) The analysis in (72), (73), and (74) can be justified, and the
resulting invariants Wienormatizea CoOincide with the expansion in powers of 1/k of the results
in [32, 33].

One-loop diagrams in the Chern-Simons theory have been regularized using (-function
regularization in [32] and using Pauli-Villars regularization in [1]. Both of these regulariza-
tions give partial results consistent with the above conjecture, but presently 1 don’t know
how to complete these results and use them to prove the conjecture to all orders.

9. EPILOGUE

There has been major developments in this subject in the 4 years since this paper was
first distributed in a preprint form?®.

In [3, 4] Axelrod and Singer found an additional symmetry obeyed by the Chern-Simons
path integral (3), and used it to prove that perturbation theory on bare three manifolds
(subject to some additional conditions) is indeed finite to all orders, and that the resulting
integrals are ‘almost’ independent of the choice of a metric, with the residual metric depen-
dence being proportional to 6C, as predicted in (73). A similar construction was given (but
never published in detail) by Kontsevich [24], who also states theorem 1 (without proof)
in [25].

In [6] I have noticed that the “lie-algebraic” part of Chern-Simons perturbation theory can
be “divorced” from the “integral” part, showing (modulo analytical difficulties) that there is
a perturbative invariant corresponding to each “weight system”, and in [7] I have shown that
these “weight systems” underlying Chern-Simons perturbation theory are the same as the
weight systems underlying the theory of Vassiliev invariants®, thus establishing a relationship

Qe = ¢, and therefore (¢(x)¢(y)) = 0. This together with the structure of the ¢B propagator proves
that the amputated two-point function is given by x“d* of a (1,1)-form whose convergence properties are
by one degree better. For a similar example, see e.g. [10, pp. 299-300].

SThough it seems that no one had yet published an alternative proof of theorem 1.

6The inclusion {Chern-Simons weight systems} C {Vassiliev weight systems} was already proven in [5, 6].
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between the two domains. This same relationship was later observed and vastly generalized
by Kontsevich [24, 25].

APPENDIX A. SOME ALGEBRA

We include here the short computer routine that verifies few assertions that were made
in sections 5 and 6. First, the routine itself. It is written in Mathematica™™ — a symbolic
mathematics language. For more information about this language see [37].

X[mu_] := {X1[mul,X2[mul] ,X3[mul} ; Xd[mu_] := D[X[nul,nu] /. nu -> mu
X1[0]=X2[0]1=X3[0]1=0 ; wlmu_] := {willmul, w2[mul, w3[mul}
ser[expr_] := Series[#,{var,0,ord}]& /@ expr

Xdtau = ser[Xd[a taul] ; wtau = ser[w[a taull]
Xdeps = ser[Xd[b eta taul]l ; weps = ser[w[b eta taul]
Xdnegeps = ser[Xd[-b eta tau]] ; wnegeps = ser[w[-b eta tau]]

t = lambdal X[a tau] + lambda2 X[-b eta tau] + lambda3 X[b eta tau]
z1 = X[a tau] - t ; z2 = X[-b eta tau] - t ; z3 = X[b eta tau] - t
delta = IdentityMatrix[3]
S=Table[ser [Which[
var==eta,{(z1[[i]]deltal[j,k]11+z2[[j]1]1deltal[k,il]1+z3[[k]]deltal[i,j1])
/. lambdal -> c2 eta ,
z1[[i]] (Expand[z2[[j1]1z3[[k]1]1]
/. {lambdal~2 -> c5 eta"3 , lambdal -> c4 eta"2})/eta"2},
var==tau,{(z1[[i]]ldeltal[j,k]1+z2[[jl]ldeltallk,i]1]1+z3[[k]]deltal[[i,jl])/tau,
z1[[i]112z2[[j]11=z3[[k]]/tau~3}1],
{1,3},{j,3%},{k,3}]

sign = (Signature /@ (perm = Permutations[{1,2,3}]))
eps[f_]:=Sum[sign[[p]llsign[[q]] (f@@Join[perm[[pl],perm[[q]l]1]1),{p,6},{q,6}]
six[f_]:=eps[f[#3,#1,#4,#6,#2,#5]1&] + eps[f[#6,#1,4#4,#2,#3,#5]1&]

el[type_] :=six[S[[#1,#2,#3,typel]lXdtaul[#4]]Xdnegeps[[#5]]Xdeps[[#6]11&] /. b->1
el2[type_] :=six [S[[#1,#2,#3,typel]lXdtaul[#4]]wnegeps [[#5]]Xdeps[[#6]]&]
e69[type_] :=eps [S[[#3,#5,#6,typel Jwtau[ [#1]]1Xdtau[[#2]]1Xdeps[[#4]]1&]
e78[type_] :=eps [S[[#6,#3,#5,typel ]Xdnegeps [[#1] Jwnegeps [ [#2]]1Xdtau[[#4]]&]
del[type_] :=Sum[el2[type] + e69[type] + e78[typel , {b,-1,1,2}]
The first paragraph of the routine defines X, X , w, and their expansions with respect to
the externally defined variable var to order ord at the points ar, —e = =57, and € = (3nr.
The second paragraph defines S[[i,j,k,1 or 211 to be S¥7% _ expanded with respect to the
relevant variable. s is defined differently for var=eta then for var=tau — if var=eta then (33)
and (34) mean that in S; one can make the replacement 1ambdal -> c2 eta while (35) means
that in Sy the replacement {lambdal~2 -> c5 eta”3 , lambdal -> c4 eta”2} can be made. It is
easy to see that after the latter replacement has been made the expansion for S, will begin
at 1%, and this justifies dividing it by n* and expanding everything to an order two less than
is mentioned in sections 5 and 6. If var=tau the expansions for z1, z2, and z3 begin at 7,
and thus the definitions S[[i,j,k,111= Si]k/T and S[[i,j,k,211= S;Jk/T?’. This allows us to
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expand S[[i,],k,11] (S[[i,j,k,2]1]) to an order lower by one (three) than the order required
for Si7% (S5F).

The third paragraph contains the routines that do the e.. and the 6..... contractions, and
the last paragraph defines the relevant diagrams.

We now include a Mathematica™ session produced using the above routine, for which I
have chosen the not very imaginative name “file”.

Mathematica (sun4) 1.2 (November 6, 1989) [With pre-loaded datal
by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin,
S. Omohundro, D. Ballman and J. Keiper
with I. Rivin and D. Withoff
Copyright 1988,1989 Wolfram Research Inc.
In[1] := var=eta; ord=1; << file
In[2]:= {e[1] , e[2]} /. {a->1 , eta->0}
Out[2]= {0, O}
In[3]:= {de[1] , del[2]} /. a->1

2 2
Out[3]= {0[etal , O[etal }

In[4] := var=tau; ord=1; << file
In[5]:= {Sum[e[1],{a,-1,1,2}] , Sum[e[2],{a,-1,1,2}]}

2 2
Out[5]= {0[tau] , O[taul] }

In[6]:= var=tau; ord=2; << file

In[7]:= {Sum[del1],{a,-1,1,2}] , Sum[del[2],{a,-1,1,2}1}

3 3
OQut[7]= {0[tau] , O[tau] }

Out[2] and Out[5] prove equations (38) and (40), while out[3] and 0Out[5] prove the asser-
tions at the end of the invariance proof in section 6. This concludes the proof of the main
theorem of this paper.

Comment: Obtaining these eight expansions takes few hours of CPU time on a 1989 work-
station.
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