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2 DROR BAR-NATAN6. Proof of theorem 1 256.1. The variation of ~W26.2. Proof of Theorem 16.3. Identifying ~W27. Comparison with Witten's non-perturbative treatment 328. Perturbation theory beyond two loops 359. Epilogue 39Appendix A. Some algebra 40References 411. IntroductionThe aim of this paper is to prove, explain the motivation, and point at possible general-izations of the following theorem:Theorem 1. Let X be a parametrized oriented knot in R3. (that is to say, X is a smoothnon-singular function from S1 to R3 that has no self intersections). Then the integralsrepresented (as explained below) by the following two diagrams are convergent, and theirsum ~W2 is an isotopy invariant of the knot X. This invariant can be identi�ed to be 1=24
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Figure 1. The two contributing diagrams.plus the second non trivial coe�cient in the Conway polynomial of X, whose reduction mod2 is the well known Arf invariant of X.The meaning of the two diagrams above still has to be explained. Each diagram representsan integral which can be read from its diagrammatic representation as follows:(1) The ellipses represent the knot itself. It is parametrized as X(s) and the pointsX(s1); : : : ; X(s3 or 4) are points on the knot that always remain in the same cyclic



PERTURBATIVE CHERN-SIMONS THEORY 3order as in the diagrams. We integrate over all such con�gurations of X(s1); : : : ;X(s3 or 4): Z�3ds1;2;3 or Z�4ds1;::: ;4;where �3 or 4 is the set of all cyclically ordered s1;::: ;3 or 4 2 S1.(2) The dashed lines indicate the so called `gauge propagator'. It is proportional to aparticular choice of an inverse for the operator curl:X(s1)i� � � � � � � �X(s3)k = Vik(X(s1); X(s3)) = �ikm (X(s1)�X(s3))m4� jX(s1)�X(s3)j3(1)Summation over repeated indices is of course understood, and �ikm denotes the totallyantisymmetric tensor in three dimensions | �ikm = sign (ikm) if ikm is a permutationof f1; 2; 3g and �ikm = 0 otherwise.(3) When a propagator (a dashed line) begins or ends on the knot, say at X(s1), its indexthat corresponds to the side of the propagator that is by X(s1) is contracted with_X i(s1): _X i(s1) i� � � � �(4) The symbol 
 near a vertex with three propagators carrying indices i0, j 0, and k0emanating from it means that integration over the position of that vertex in R3should be performed, and the three indices should be contracted with an �i0j0k0:�16 ZR3 dz �i0j0k0:(5) The numerical factors in front of each diagram just indicates its weight.Therefore, our invariant reads:~W2 = 164�2 Z�4ds1;::: ;4 _X i(s1) _Xj(s2) _Xk(s3) _X l(s4)�ikm�jln (X(s1)�X(s3))mjX(s1)�X(s3)j3 (X(s2)�X(s4))njX(s2)�X(s4)j3� 1192�3 Z�3ds1;2;3 ZR3 d3z _X i(s1) _Xj(s2) _Xk(s3)�i0j0k0�ii0i00�jj0j00�kk0k00(X(s1)� z)i00jX(s1)� zj3 (X(s2)� z)j00jX(s2)� zj3 (X(s3)� z)k00jX(s3)� zj3(2)We shall explain presently the simple idea that lies behind these complicated-looking inte-grals, and see that using more or less the same building blocks as 1-5 above we can generatemore combinations of diagrams that we expect to yield integral representations for highercoe�cients of the Jones polynomial, and that using similar diagrammatic building blocks wecan construct integral invariants of general three-manifolds and of knots embedded in them.These integrals appear to be divergent (just as the integrals above appear to be divergenton �rst sight), and more work needs to be done in order to show that it is possible to make



4 DROR BAR-NATANsense out of these integrals anyway, and that they indeed converge (after some corrections)to invariants. None of this work has yet been done for the general case.The organization of this paper is as follows. Section 2 will introduce the in�nite dimen-sional integral whose asymptotic expansion should give link and three-manifold invariants,and briey review the Feynman-diagram technique for obtaining this asymptotic expansion.Section 3 describes a formal invariance proof for the invariants introduced in section 2, andthen sections 4-6 treat few of the simplest of those invariants | section 4 treats the linkingnumber of two knots and the self linking number of a single knot from our point of view,while sections 5 and 6 contain the proof of the theorem 1, �rst proving the �niteness of ~W2in section 5 and then its invariance in section 6. These proofs rely on some simple algebrathat was carried out using a computer, and the relevant computer routine is included inthe appendix. Section 7 compares our results with the earlier non-perturbative treatmentof Witten, and section 8 discusses our expectations for the behavior of the theory beyondthe few simple cases treated here. Sections 2,3 and 8 are non-rigorous and a bit speculative,while sections 4,5 and 6 use the ideas of sections 2 and 3 to produce some rigorous results.This paper is a modi�ed version of a preprint I �rst distributed almost 4 years ago, inApril 1990. Section 9 describes in just a few words the new developments in this subject inthe years 1990-94.During the preparation of this paper we received a paper by E. Guadagnini, M. Martellini,and M. Mintchev, [19], in which they have conjectured the invariance of (2) and calculatedit by explicit and numerical integration for several simple knots.1.1. Acknowledgements. I wish to thank R. Bott and J. D. Stashe� for encouraging meto publish this paper. I also wish to thank S. Axelrod, J.H. Conway, M. Mintchev, A. Referee,C. Simpson and A. So�er for discussions and suggestions they made, and my thesis advisorE. Witten for suggesting the problem and for his many helpful comments.2. The basic ideaThe basic idea is simple and to make it even simpler we will ignore knots for a momentand explain it �rst for the case of a bare three manifold. Our invariants will be complexnumbers. To get a complex number out of a bare three manifold, that has no additionalstructure on it, is hard. It is a lot easier to get numerical quantities when there is morestructure to play with. So we look at an oriented three manifold with an additional pieceof structure, generate a complex number using this additional structure, and then try tointegrate our complex number over all possible choices of such an additional structure. Theadditional structure that we will pick will be a connection on a trivial pre-picked bundleon our three manifold M3, and the complex number that we will generate, the integrandin our program, will essentially be the exponential of the `Lagrangian' | the Chern-Simonsnumber [14] associated with the connection A:cs(A) = k4� ZM3 tr(A ^ dA+ 23A ^ A ^ A);



PERTURBATIVE CHERN-SIMONS THEORY 5and so our invariant will be:W(M3; k) = ZADA e ik4� RM3 tr(A^dA+ 23A^A^A):(3)(k is an integer parameter whose importance for our purposes will be made clear shortly).Luckily, the space of all connections A is an a�ne space and so there should be a canon-ical choice for a measure on it | the Lebesgue measure. Unfortunately, A is an in�nitedimensional space and so that measure doesn't really exist. To go around this we will useperturbation theory techniques that were originally developed by physicists to be used inquantum �eld theory. Instead of attempting to calculate the integral (3) as it is, we willtry to investigate its asymptotic behavior as k=2�i ! 1. It will turn out that (assumingthat in�nite dimensional Lebesgue measures do exist) to determine this asymptotic behav-ior requires only evaluating �nite dimensional integrals represented by so-called \Feynmandiagrams", and therefore it is possible to de�ne the asymptotic behavior of (3) to be givenby those \Feynman diagrams", without ever giving meaning to the integral (3) itself. I willvery briey present these techniques here. For further information consult any quantum �eldtheory textbook such as [29, 16, 22].2.1. A �nite dimensional analogue. To illustrate the technique of Feynman diagrams,let us �rst look at a simpler �nite dimensional analogue | let us try to understand thet!1 asymptotics of: Zt = ZRn d~xeit( 12�ijxixj+�ijkxixjxk):(4)(This case is in fact quite general | whenever an expression of the form R eitf is encounteredits t ! 1 asymptotics is dominated by the contribution from small neighborhoods of thecritical points of the real-valued function f , and at those points f can be replaced by aquadratic term plus a higher order correction.)By a simple change of variables, ~x! ~x0 = pt~x;(5)(suppressing primes) Zt = t�n=2 ZRn d~xei 12�ijxixje ipt�ijkxixjxkexpanding the second exponential to a series, and suppressing the odd degree terms (whichvanish upon integration on Rn), we getZt = t�n=2 ZRn d~xei 12�ijxixj 1Xm=0 (�1)m(2m)!tm (�ijkxixjxk)2m:(6)And so the mth term in our asymptotic expansion will be given up to a multiplicativeconstant by: ZRn d~xei 12�ijxixj (�ijkxixjxk)2m =



6 DROR BAR-NATANthis is a simple Gaussian integral, which we can evaluate using standard methods:= 24 �ijk�i@@Ji �i@@Jj �i@@Jk !2m ZRn d~xei 12�ijxixj+iJixi35 ~J=0/ 24 �ijk�i@@Ji �i@@Jj �i@@Jk !2m e�i 12�ijJiJj35 ~J=0 ;(7)where �ij is the inverse of �ij: �ij�jk = �i k. Now this expression can clearly be expandedfurther, and a moment's reection will convince that up to combinatorial factors and powersof i it is given by the sum of all \Feynman diagrams" that have exactly 2m vertices of orderthree. That is to say, to evaluate (7) we calculate a sum over all graphs with 2m vertices oforder three where the contribution of each such graph is a product of �ijk's for each vertexand �ij's for each arc. So for example up to numerical factors the term with m = 1 will be:j0i kj k0 i0(num1)�ijk�i0j0k0�ii0�jj0�kk0 + i kj k0 i0j0(num2)�ijk�i0j0k0�ij�kk0�i0j0 :It is not hard to see that in general 2m is also equal to the number of independent loops ina diagram. Therefore we will also call the m'th order term in such an asymptotic expansion`the 2m-loop term'.Looking back at our in�nite dimensional situation we will by analogy de�ne the Wj's tobe those sums of diagrams, in which now every vertex will correspond to integration on M3and to a tri-linear form that comes from A ^ A ^ A, and every arc will correspond to aGreen's function of the operator de�ning the quadratic part of cs(A). (The cautious readerwill notice that this quadratic part is not elliptic, and therefore does not have a Green'sfunction. This problem will be dealt with later on).2.2. The incorporation of knots. To incorporate a link X = fXg�=1 into the abovepicture, we have to supplement the integrand:W(M3;X ; k) = ZADA �Y=1TrRPexp�Z ds _X i(s)Ai(X(s))� e ik4� RM3 tr(A^dA+ 23A^A^A)(8)WhereTrRPexp�Z ds _X i(s)Ai(X(s))� = dimR + Z ds _X i(s)Aai (X(s))R�a�+ Zs1<s2 ds1;2 _X i1(s1) _X i2(s2)Aa1i1 (X(s1))Aa2i2 (X(s2))R�1a1�2R�2a2�1 + � � � ;(9)



PERTURBATIVE CHERN-SIMONS THEORY 7and R is a representation of the underlying Lie-algebra. (9) is, of course, just the trace ofthe holonomy of the connection A along X in the representation R, expanded in powersof the connection A which is assumed to be almost at. The expansion (9) shows us thatto understand the integral (8) we �rst have to understand integrals as in (4), only with anadditional polynomial P (~x) multiplying the integrand. Moreover, after rescaling ~x as in (5)and carrying out exactly the same analysis as in (4) { (6) with an additional P (~x) multiplyingeach integrand we see that in the mth order term in our revised asymptotic expansion willbe given by: Xm1+m2=2m ZRn d~xei 12�ijxixjPm1(~x)(�ijkxixjxk)m2 ;(10)where Pm1(~x) denotes the part of P (~x) which is homogeneous of degree m1 in ~x. Noticingthat just as before we ended up having to calculate the expectation value of a polynomial�Pm1(~x)(�ijkxixjxk)m2� with respect to a Gaussian measure, we can now use the same trickand replace the above integral by a sum of `revised' Feynman diagrams that are also allowedto have a single exceptional vertex of some order m1, weighted by the coe�cients of Pm1(~x).Returning to the in�nite-dimensional situation we see that the perturbative expansionof (8) will be given by Feynman diagrams that have `propagators' (arcs) corresponding toGreen's functions of curl, internal vertices corresponding to A^A^A, and additional verticesintegrated on the link X with coe�cients as in (9). Comparing again with (10), we see thatthe mth order term in the expansion of 8 is a sum of such diagrams having exactly 2mvertices, internal or not. This is exactly the form that ~W2 of the theorem has.2.3. The ellipticity problem. Let us now return to a problem that was brushed asidetemporarily. The quadratic part of cs(A) is not elliptic, and as it stands it does not havea Green's function and therefore the Feynman diagrams technique is not available. Theorigin of the problem is a bit deeper - cs(A) is invariant under the in�nite-dimensionalin�nite-volume group of gauge transformations, and hence integrating DA we integrate overin�nitely many superuous variables and we cannot expect to get a �nite integral. To resolvethis complication we will once again look at our �nite dimensional analogue, assume that theLagrangian there, 12�ijxixj + �ijkxixjxk, is invariant under the isometrical non-degenerateaction of an l-dimensional Lie groupG, and try to evaluate the integral (4) without redundantintegration over the orbits of G.We will visit each orbit of G just once by choosing a function F : Rn ! Rl that has aunique zero on each G-orbit, and inserting a �l(F (~x)) into the integral. If we want the resultto be the same as the full integration and independent of F we need to add a correctionterm that corresponds to the volume of the G-orbit through ~x and as the action of G is byisometries this term can be calculated locally at a point ~x satisfying F (~x) = 0. It is given bythe inverse ratio of the volume element of the Lie-algebra G of G and its image in Rl under



8 DROR BAR-NATANthe action of G composed with F . That is to say | we have to look at:Z = ZRn d~xeit( 12�ijxixj+�ijkxixjxk)�l(F (~x)) det @F a@Gb ! (~x):(fGbglb=1 is a set of generators for G)We will try to �nd a diagrammatic representation for the asymptotic expansion of Z.The �rst additional term in the integral is easy | we can just replace it by its Fourierrepresentation: �l(F (~x)) = 1(2�)l ZRl dl�eiFa(~x)�aand then incorporate F a(~x)�a as a new term in the Lagrangian. The other new term,det �@F@G �, can be dealt with in two equivalent ways. The �rst way is to do the usual rescaling(5) and then to expand det �@F@G � in powers of 1pt by �rst separating det �@F@G � into a constantpart J0 and a part J1(~x) which is a series in 1pt , and then usingdet J0 + 1ptJ1(~x)! = det(J0)Xm  1pt!m Tr(VmJ�10 )(VmJ1(~x)):(11)(Vm J is the mth exterior power of the matrix J). Notice that J0 is just a constant matrix,while J1(~x) depends on ~x. It will now be possible to regard (11) as a polynomial in ~x and geta Feynman diagram expansion. It is an easy exercise in elementary algebra to show that thepolynomial (11) can itself be incorporated into the the Feynman diagrams by introducinga new type of propagator denoted by directed dotted lines that corresponds to J�10 and acollection of new types of vertices each connecting two dotted propagators with some dashedpropagators | depending on the exact form of J1(~x). (There will also be some alteration tothe combinatorial rule of determining the numerical factor multiplying each diagram).The other way of dealing with det �@F@G � is the one commonly used in the physics literatureand the one that we will be using here. It involves the idea of anti-commutative integration.Non-commutative integration is treated in many places (see e.g. [9, 29, 16, 22]), and I willnot explain it here in detail. Very briey, `anti-commuting' variables (called `ghosts') f�cagla=1and fcbglb=1 are introduced together with a reasonable set of rules of integration with respectto them, and it is shown that for any matrix JabZ dl�cdlcei�caJabcb / det(J):(This is analogous and complementary to standard Gaussian integration | in which theresulting determinant is in the denominator).Using this, Z can �nally be written asZ / ZRn d~x 1(2�)l ZRl dl� Z dl�cdlcei(t( 12�ijxixj+�ijkxixjxk)+Fa(~x)�a+�ca( @Fa@Gb )cb)



PERTURBATIVE CHERN-SIMONS THEORY 9and now we can use almost the same procedure as in (4) { (7) to get a diagrammatic expansionfor the asymptotic behavior of Z. Again it turns out that this involves introducing a newpropagator and some new vertices.As we will see below for the case of interest for us | the Chern-Simons Lagrangian | wewill be able to choose F in a way so that the quadratic part of the supplemented Lagrangianwill indeed be elliptic. This will be done in the next section.3. The Chern-Simons Lagrangian and the BRST argumentLetM3 be an oriented three manifold, G a compact semisimple Lie group with an invariantintegral bilinear form tr on its Lie algebra G and P !M3 a principal G-bundle on M3. AlsoA will always denote a connection on P , B a di�erence of two such connection - i.e. anad(P ){valued 1-form on M3, DA and DA covariant derivatives de�ned using A, and FA thecurvature of A.The Chern-Simons Lagrangian cs(A) is de�ned by (see [14]):cs(A) = k4� ZM3 tr(A ^ dA+ 23A ^ A ^ A)where tr(A1 ^ A2 ^ A3) def= 12(trA1 ^ [A2; A3]) = 12 tr([A1; A2] ^ A3), and so relative to somechoice of coordinates and a trivialization of P ,= k8� ZM3�ijktr(Ai(@jAk � @kAj) + 23Ai[Aj; Ak]):It is invariant under in�nitesimal gauge transformations in which �A = �DAc def= �(dc +[A; c]): 4�k �cs = � ZM3tr ((dc+ [A; c]) ^ dA+ A ^ d[A; c]+2(dc+ [A; c]) ^ A ^ A) == � ZM3tr([A; c] ^dA+A ^ [dA; c]�A ^ [A; dc] + 2dc ^A ^A)�2 ZM3tr[A; c] ^ A ^ A == ZM3trc ^ [A; [A;A]] = 0:This implies that cs(A) is invariant under gauge transformations that can be pathwise con-nected to the identity transformation. As it turns out (see [14]), cs(A) is not invariant undergeneral gauge transformations and, in fact, in our normalization it is de�ned only up to amultiple of 2�. This explains our choice of the normalization | we have chosen preciselythat normalization for which the exponential in (3) is well de�ned.The space A of all connections A on P is just an a�ne space and not a vector space ina natural way and the functional cs(A) does not necessarily have the gauge orbit of zero as



10 DROR BAR-NATANits only stationary gauge orbit on A | there is no well de�ned origin in A and cs(A) mighthave more then just one stationary gauge orbit in A. We will therefore repeat the analysis ofthe previous section separately for each of the stationary gauge orbits and then sum up thecontributions from the various gauge orbits. Suppose now that A is an arbitrary stationarypoint for cs, i.e.: �cs�A = 0, which means FA = dA+ 12 [A;A] = dA+A ^A = 0, and for B anad(P ) -valued 1-form on M3 de�ne L(B) = cs(A+B)� cs(A):L(B) = k4� ZM3 tr((A+B) ^ d(A+B) + 23(A+B) ^ (A+B) ^ (A+B))� cs(A)= k4� ZM3 tr(A ^ dA+ 23A ^ A ^ A) ++ a vanishing linear term in B ++ k4� ZM3tr(B ^ dB + 23B ^B ^B +B ^ [A;B])� cs(A)= k4� ZM3tr(B ^DAB + 23B ^B ^B):Choose a trivialization of P , local coordinates fxig and a metric gij onM3 with g def= det(gij),and get (DAB)ij = @iBj � @jBi + [Ai; Bj];and DiA def= pggijDAj = pggij@j +pggij[Aj; �]:Pick the gauge condition k4�DAi Bi = 0, and get using the usual Faddeev-Popov procedureas described in the previous section:Ltot(B; �; c; �c) = L+ Lgauge-�xing + Lghosts == k4� ZM3tr(B ^DAB + 23B ^ B ^ B) ++ k4� ZM3tr(�DAi Bi) ++ k4� ZM3tr�cDAi (DiA + adBi)c(12)�, c, and �c are Lie-algebra valued �elds | � = �aGa, c = caGa, and �c = �caGa for a set ofgenerators fGag of G.3.1. A \proof" of metric independence. To show that the Lagrangian that we obtainedgives rise to a metric-independent theory in spite of the explicit appearance of a metric init, we will have to introduce the `BRST' operator Q [8] | the odd derivation acting on the



PERTURBATIVE CHERN-SIMONS THEORY 11space of all functionals of B; �; �c; c, de�ned by its action on the generators:QBi = �(DAi + adBi)c;(13) Q� = 0;(14) Q�c = �;(15) Qc = 12[c; c] = 12Gafabccbcc:(16)In (13) the expression \adBi" stands for the operator de�ned by (adBi)cdef= [Bi; c], in (16)fabc are the structure constants of G, [Gb;Gc] = fabcGa, and [c; c] doesn't vanish because of theanti-commutativity of c.Lemma 3.1. QLtot(B) = 0.Lemma 3.2. There exists � (that depends on �gij) so that under gij ! gij + �gij�Ltot = Q�Lemma 3.3. Q corresponds to a vector �eld of zero divergence.Let us �rst use the above three lemmas to prove thatW = Z DBD�DcD�c eiLtotis formally metric independent [35]. In fact, more will be true: whenever O is a metricindependent function of B; �; c; �c that satis�es QO = 0,hOi def= Z DBD�DcD�c O(B; �; c; �c)eiLtotwill be metric independent. (The case of W is when O � 1). Indeed, under gij ! gij + �gij�hOi = � Z DBD�DcD�c O(B; �; c; �c)eiLtot= i Z DBD�DcD�c O(B; �; c; �c)eiLtot�Ltot= i Z DBD�DcD�c Q�O(B; �; c; �c)eiLtot�� :(17)In the last equality we made use of the �rst two lemmas. Now we just use the third lemmaand the well-known fact that the integral of a derivative taken using a divergence-free vector�eld is always zero to conclude our proof.



12 DROR BAR-NATAN3.2. Proofs of lemmas 3.1-3.Proof of lemma 3.1. The proof of QL = 0 is identical to the calculation showing gaugeinvariance.QLgauge-�xing = �k4� ZM3tr�DAi (DiA + adBi)cQLghosts = k4� ZM3tr ��DAi (DiA + adBi)c+ �cDAi [DiAc+ [Bi; c]; c]�12�cDAi (DiA + adBi)[c; c]� ;and it is easy to see that QLgauge-�xing +QLghosts = 0. �Proof of lemma 3.2. Suppose that gij ! gij + �gij. Then �L = 0 while�Lgauge-�xing = k4� ZM3tr ��DAi (pg�gijBj)� 12�DAk (pggij�gijgklBl)�and �Lghosts = k4� ZM3tr ��cDAi �pg�gij(DAj + adBj)c��12�cDAk �pggij�gijgkl(DAl + adBl)c��so that �Ltot = k4� ZM3pg�gijTijwithTij = tr �(DAi �)Bj + (DAi �c)(DAj + adBj)c� 12gij �(DAk �)gklBl + (DAk �c)gkl(DAl + adBl)c��and then Tij = Q�ij for �ij = tr �(DAi �c)Bj � 12gij(DAk �c)gklBl�that is: �Ltot = Q k4� ZM3pg�gijtr �(DAi �c)Bj � 12gij(DAk �c)gklBl�! def= Q�: �Proof of lemma 3.3. To rigorously prove lemma 3.3 one �rst needs to understand what ismeant by the divergence of a vector �eld on an in�nite dimensional space. But as our metricindependence \proof" is just a formal argument, it is su�cient to note that proving lemma3.3 formally is completely trivial just by inspecting (13) { (16). �



PERTURBATIVE CHERN-SIMONS THEORY 13The value of the above metric independence \proof" is of course not in itself | so longas we do not give a proper de�nition for our in�nite dimensional integrals it is far frombeing rigorous | but in the hints that it gives towards �nding a rigorous proof that theFeynman diagrams expansion is metric independent. This independence appears to havebeen broken in (12), but the argument in (17) can quite straightforwardly be translated toa Feynman-diagrammatic argument just by expanding (17) in powers of 1=pk and readingthe proofs of the above three lemmas as relations among the resulting diagrams1. Of course,the formal invariance proof thus obtained will have to be supplemented with analytic detailsconcerning the convergence (or divergence) of the relevant diagrams, and with possible �nitedimensional kernels of the di�erential operators that we need to invert. This will be donein detail for a simple case in this paper. Writing the formal proof in the general case is notvery hard but I could not yet supplement it with the required analytic details.4. The one-loop contributionHaving developed a general technique in the previous sections, let us now try to applyit in few particular cases, and let us start from the simplest case | the contribution oforder 2�i=k to W(at R3;X ) where X is a two-component link in R3. There is just oneat connection on R3 | the trivial one | and we don't need to switch to the variable B.Furthermore, we will ignore the vacuum diagrams | those diagrams that have no verticeson the link. (As is well known, this corresponds to dividing by W(at R3; empty link)). Inthis simple case the ghosts and the interaction term A ^ A ^ A will not yet come into play,and of the in�nitely many terms in the expansion of Pexp only terms up to the second orderterm will be relevant. That is to say, we just need to understandW 0 = ZADAD� e ik4� RR3 tr(�ijkAi@jAk+�@iAi)2Y=1�dimR + Z ds _X i(s)Aai (Xg(s))R�a�+ Zs1<s2ds1;2 _X i1g (s1) _X i2 (s2)Aa1i1 (X(s1))Aa2i2 (X(s1))R�1a1�2R�2a2�1�This is just a simple Gaussian integral. We can regard � as a (Lie algebra valued) three-form on R3, A as a one-form, and write the quadratic form in our Gaussian integral as12tr ��ijkAi@jAk + �@iAi� = 12 * A� ! ; L�  A� !+for L� def= d ? + ? d. Clearly (L�)2 = � and therefore V �, the inverse of L�, is given byV � = L� �G where G is the Green's function of the (vector + scalar) Laplacian �. In the1This was carried out in [6, sections 6 and 7]



14 DROR BAR-NATANEuclidean case this Green's function G is given byGab(x; y) = tab4�jx� yj (tab is the inverse of tab def= tr(GaGb))for both the scalar and the vector cases, and so the A part of our propagator is given byxa; i� � � � � � �yb; j = V abij (x; y) = hAai (x)Abj(y)i = �ijk@kx tab4�jx� yj = �ijktab (x� y)k4�jx� yj3as anticipated in (1). The terms of order 2�i=k are given by the diagrams in �gure 2.
X

1

1
X

X2
2XFigure 2. First order diagrams4.1. The linking number of two knots. Let us �rst consider the left most diagram.Ignoring the constant numerical coe�cient that the representations R1;2 contribute it corre-sponds to the integral $(X1; X2) = Z ds1ds2Vij(X1(s1); X2(s2)) _X i1 _Xj2(18)which is the well known Gauss integral representation for the linking number of two knots[30]. For the sake of completeness, and also as a preparation for the next section where wewill use similar but more complicated considerations to deal with the two loop contribution,we will review here the proof of the invariance of (18) under isotopies and show that indeedit coincides with the linking number.It is possible to view Vij(x; y) is as a (1; 1)-form on R3 �R3 where (x; y) 2 R3 �R3, i isthe one form index for the variable x, and j is the one form index for the variable y. Viewedthis way, (18) is just that form V evaluated on the cycle X1 relative to its left variable andon the cycle X2 relative to its right variable:$ = hX1jV jX2i(19)The key property required for the invariance proof is that there exists a (2; 0)-form F (thatis to say | a two variable form F which is a two form with respect to its left argument anda zero form with respect to its right argument) for whichdLV = �dRF(20)



PERTURBATIVE CHERN-SIMONS THEORY 15away from the diagonal, where dL is the exterior derivative with respect to the left variableand dR is the exterior derivative with respect to the right variable. Assuming such an F ,under an in�nitesimal deformation of X1 we will have (using Stokes' theorem twice)�$ = �hX1jV jX2i = hThe surface S spanned by thein�nitesimal deformation of X1jdLV jX2i = �hSjdRF jX2i = 0:(21)As for the existence of F , notice that by our derivation of V , V = ?d�Gvect and therefore?LdLV = ?d ? d � G. By the commutativity of ?d and G one gets ?LdLV = G � ?d ? d.Remembering that G is given by an integral kernel, one can integrate by parts G � ?d ? d toget ?LdLV = ?RdR ?R dRG = (�R� dR ?R dR?R)G = �(x� y)I � dR ?R dR ?RG. Multiplyingfrom the left by ?L we obtain away from the diagonaldLV = �dR ?L ?RdR ?R G def= �dRF:The formula we just got for F can be expanded to giveFij;�(x; y) = �ijk�(x� y)k4�jx� yj3 ;and this can be used to verify (20) directly. Don't let yourself be mislead by the apparentequivalence of the formulae for V and for F ! The indices are arranged a little di�erentlyand verifying (20) is a little more than just playing around with these indices | somedi�erentiations do have to be carried and the veri�cation is essentially the same calculationas the derivation in this paragraph.Having shown that $ is indeed an isotopy invariant we can now use it to show that itcoincides with the linking number. Deform the knot so that it will be almost planar withonly `perpendicular crossings'. Now ip one of those crossings us shown in �gure 3. Clearly,
Figure 3. Flipping a crossingwhen comparing the contribution to $ from before and from after the ip we can integratethe propagator with its endpoints only nearby the crossing. If the crossed arcs are � apart,$(before)� $(after) = 12� Z ds1;2 �(�2 + s21 + s22)3=2 = 1:(22)This is exactly the same relation is satis�ed by the linking number, and together with$(unlinked circles) = 0 (22) proves that $ is indeed the linking number. To see that indeed$(unlinked circles) = 0, use the already proven isotopy invariance to make sure that the two



16 DROR BAR-NATANcircles are very small relative to the separation between them and then the integral de�ning$ will tend to zero.4.2. The self-linking of a single knot. The situation with the other diagrams in �gure 2is a bit more complicated. Let $s(X1) be the `self-linking' of X1:$s(X1) def= 12hX1jV jX1i = 12 Z ds1ds2Vij(X1(s1); X1(s2)) _X i1(s1) _Xj1(s2):(23)(We have suppressed here the Lie-algebra coe�cient which for R being the de�ning repre-sentation of G = SU(N) in CN and for tr being the usual matrix trace can easily be seento equal N2 � 1).For three vectors A;B;C it will be convenient to denote �ijkAiBjCk, the volume of theparallelepiped spanned by ~0; A; B; C by det(AjBjC). Using this notation$s(X) = 18� Z ds1ds2det (X(s1)�X(s2)j _X(s1) ��� _X(s2)�jX(s1)�X(s2)j3 :(24)This integral appears at �rst sight to be divergent because of the cubic term in the denomi-nator. Nevertheless when s1 and s2 are close, say � apart, X(s1)�X(s2) � � and the threevectors X(s1)�X(s2), _X(s1), and _X(s2) are within a cone of opening � �. Therefore the vol-ume of the parallelepiped spanned by these three vectors is � �3 which is enough to suppressthe singularity of the denominator. Unluckily, the argument in (21) doesn't go through |the key relation (20) holds only away from the diagonal, and in (23) our integration domaindoes intersect the diagonal.This point has already been treated by C�aalug�areanu [11, 12] (see also Pohl [27]) and laterfrom a physical viewpoint by Polyakov [28] (see also Tze [31]). They found that indeed (23)is not an invariant, but yet it can be renormalized by the addition of a local term (the torsionof X) to give an invariant. It turns out that to properly de�ne the torsion everywhere Xneeds to be `framed', and therefore $s will just be an invariant of framed knots. We willarrive at the same results using a somewhat di�erent regularization which makes the currentcalculation a bit less transparent but has a more straightforward generalization for the two-loop case to be treated in the next sections. Let us de�ne $� by the integral (24) that de�nes$s, only with the integration domain restricted to�� def= [js1 � s2j > �]:Assume that X undergoes an in�nitesimal deformation X ! X + �X def= X + !. As in theinvariance proof for the case of a link, (21), Stokes' theorem was used twice it will fail twicefor this new case and �$� will pick up four non-zero contributions | one from each boundaryterm in each of the usages of Stokes' theorem. Denoting the evaluation of di�erential formson �� by h j j i� (compare with 19, and recall that the forms involved are forms on R3�R3that can be evaluated on a pair of cycles in R3 | one on the \left" R3 and the other on the



PERTURBATIVE CHERN-SIMONS THEORY 17\right" R3) and on its two boundaries [s1 � s2 = ��] by h j j i� we will get: (S again is thesurface spanned by the in�nitesimal deformation of X)�$� = 12�hXjV jXi� = hSjdLV jXi� + h!jV jXi+ � h!jV jXi�= �hSjdRF jXi� + h!jV jXi+ � h!jV jXi�= hSjF j�i+ + hSjF j�i� + h!jV jXi+ � h!jV jXi�:(25)We will try to understand the �! 0 limit of �$� by expanding (25) in powers of �. For sa variable in S1 let X = X(s), _X = _X(s), ! = !(s); : : : ;X�� = X(s� �) � X � � _X + �22 �X � �36 ...X_X�� = _X(s� �) � _X � � �X + �22 ...XUsing these notations, with the dummy integration variable s picked to be at the point where! is evaluated, h!jV jXi� = 14� Z dsdet � _X��j!jX�� �X�jX �X��j3� 14� Z dsdet � _X � � �X + �22 ...Xj!j � � _X + �22 �X � �36 ...X�jX �X��j3� 14� Z ds�2 det �12 �X � �3 ...Xj!j _X � �2 �X�j�j�3j _Xj�3 �1� �3 _X � �X2j _Xj2 � :Therefore (notice that the terms of order 1� cancel!)h!jV jXi+ � h!jV jXi� � 14� Z dsj _Xj3  �3 _X � �X2j _Xj2 det( �Xj!j _X) + 23 det(...Xj!j _X)! :Similarly hSjF j�i� = 14� Z dsdet( _Xj!jX�� �X)jX�� �Xj3� 14� Z ds j _Xj3j�j  1� �3 _X � �X2j _Xj2 ! det� _X����! ����12 �X � �6 ...X�and therefore (notice that again there is no term of order 1� )�hSjF j�i+ + hSjF j�i� � 14� Z dsj _Xj3  �3 _X � �X2j _Xj2 det( �Xj!j _X) + 13 det(...Xj!j _X)! :



18 DROR BAR-NATANThis �nally gives that the �! 0 limit of �$� is�$s = 14� Z dsj _Xj3  �3 _X � �Xj _Xj2 det( �Xj!j _X) + det(...Xj!j _X)!(26)and we can see that indeed �$s 6= 0 and $s is not a knot invariant.4.3. The appearance of framings. Yet, some further investigation of �$s shows that thiscan be corrected quite easily. De�ne � to be 1=4� times the total torsion of the curve X |that is to say 1=4� times the integral with respect to arc length of the local torsion �(s) (see[15, pp. 22]) of the curve, given by the standard formula�(s) = �det( _X(s)j �X(s)j...X(s))j _X(s)� �X(s)j2(27)whenever the denominator is non-zero. As I will comment below, under X ! X + ! onecan show that �$s and ��� are given by exactly the same formula (26) so if one de�nes$r = $s + �then $r is invariant under isotopies, so long as the denominator in (27) remains non-zero.What if that denominator is equal to zero? On the normal bundle of X there is a canon-ically de�ned connection de�ned by the projection back to the normal bundle of the usualdi�erentiation along the knot of vector functions normal to it. 1=4� times the total holonomyof that connection along the knot is some real number, well de�ned up to a half integer whichdepends on a choice of a trivialization for the normal bundle, and whenever � is de�ned, itwill be shown below to coincide with that number. Hence $r is an invariant of framed knots| a framing is just a trivialization of the normal bundle which can be used to render � andtherefore $s well-de�ned. This necessity of framing the knot X agrees with the results ofWitten [32], but makes $r quite useless for an unframed knot | it is a half integer whichis well-de�ned only up to a half integer. For a framed knot it can be shown along the samelines as in (22) to be half the self-linking of a framed knot | half the linking number of thatknot with its framing.To complete the discussion we need to demonstrate the two di�erential geometric assertionsmade above. Very briey, if n(s) is any vector not tangent to the knot X then the holonomydiscussed above can be calculated by measuring how much the projection of n to the normalbundle fails to be parallel. It is an elementary exercise to then �nd that relative to theframing given by n, � = �14� Z dsj _Xj det _Xj _Xj2 �����n ����� j _Xj2 _n� ( _X � n) �Xj _X � nj2 ! :(28)Setting n = �X it is easy to see that (28) coincides with (27) and choosing n to be a constantvector that is not parallel to _X(s) for any value of s simpli�es it the most. One can then vary(28) under X ! X + ! and integrate by parts until all the derivatives of ! disappear. One



PERTURBATIVE CHERN-SIMONS THEORY 19is left with a huge and unfriendly expression that with a tremendous amount of labor andjuggling with vector identities can be shown to equal (26). I could not verify this equalitywithout the aid of a symbolic mathematics computer program [37].5. The two-loop contributionLet X be a parametrized knot inR3. In this section we will try to understand the two-loopcontribution W2 to W(at R3;X ) | the contribution of order �4�2=k2. All the terms inthe Lagrangian Ltot come in to play now, and on a at R3 our W readsW(at R3;X ) = Z DBD�DcD�c TrRPexp�Z ds _X i(s)Ai(X(s))� eiLtotwhereLtot = k4� �ZR3 tr(�ijkAi@jAk + �@iAi) + 13�ijktrAi[Aj; Ak] + ZR3 tr �c@i(@ic+ [Ai; c])�If R is a trace-free representation terms that have only one interaction point with X havea vanishing coe�cient, and therefore the only potential contribution at two-loops comefrom the �ve diagrams in �gure 4. In this �gure dashed lines represent as before the
ED

CBA

Figure 4. The �ve two-loop diagrams.gauge-propagator V , the dotted lines represent the ghost �cc propagator which is just theGreen's function of the Laplacian @i@i, the symbol 
 represent the gauge-gauge-gauge in-teraction �16�ijktrAi[Aj; Ak] and the symbol � represents the ghost-gauge-ghost interaction�12 tr�c@i[Ai; c].The �rst two diagrams are divergent because of the integration over the location of theinteraction vertices in R3. But as is readily veri�ed and as was shown in [18] the integrandsin these diagrams are exactly the opposites of each other so if we sum them before integratingwe get zero. (We will accept at face value that A and B cancel and prove that C +D+E isa topological invariant. It is very likely that the full story is a little more elaborate. In the



20 DROR BAR-NATANcontext of a consistent regularization that could be used to all orders, A and B are likelyto cancel only up to an imaginary multiple of the one loop contribution and thus what iscalculated here is just the real part of the two-loop contribution. See[26, 1, 13]). Also, it isclear that if one ignores the Lie algebra coe�cients of diagrams C and D then their sum isequal to the square of the one-loop one-knot contribution that was discussed in the previoussection. It is therefore possible to subtract from W2 a multiple of (W1)2 in such a way thatdiagram C will disappear. We will call the resulting quantity Ŵ2. The coe�cient of diagramD in Ŵ2 will be the di�erence between the coe�cients of diagrams C and D inW2, and thesecoe�cients di�er only because the Lie-Algebra indices are contracted in a slightly di�erentway. So if tab def= tr(GaGb), tab is the inverse matrix of tab and we use tab and tab to raise andlower Lie-algebra indices, we get:�Lie algebra con-tractions for D �� �Lie algebra con-tractions for C � = tbb0tcc0R�b0�R�c0Rb�R�c� � tbb0tcc0R�c0�R�b0Rb�R�c�The fact that R is a representation is just the relation fabcR�a = tbb0tcc0(R�b0�R�c0 �R�c0�R�b0)and therefore = fabcR�aRb�R�c�:These are exactly the Lie-algebra contractions for diagram E. Taking into account the dif-ferent symmetry factors for these diagrams we �nally get (after dividing by the Lie algebraiccoe�cient) ~W2 = 14D � 2Eas anticipated in Theorem 1.In the case of G = SU(N) ; R = CN one can calculate that in W2 the Lie-algebraiccoe�cients of diagrams C, D, and E are (N2�1)2N , �N2+1N , and N(N2 � 1) respectively, andtherefore in this case ~W2 = 1N(N2 � 1) �W2 � 12N (W1)2� :5.1. Finiteness of ~W2. It still isn't clear that the integrals represented by the diagramsD and E are �nite. For diagram D there appears to be a singularity when three of theintegration variables are close together but exactly the same analysis that has shown thatthe self-linking integral is �nite shows that this integral is also �nite. In diagram E thereappears to be a problem when two or three of the knot integration variables are close togetherand are close to z| the variable of the vertex 
 integration. Up to a constant factor, diagramE represents the integral:E = Z�3ds1;2;3 _X i(s1) _Xj(s2) _Xk(s3)Vijk(X(s1); X(s2); X(S3))(29)whereVijk(x1; x2; x3) def= �i0j0k0�ii0i00�jj0j00�kk0k00T i00j00k00(x1; x2; x3) def= 6ijki00j00k00T i00j00k00(x1; x2; x3)(30)



PERTURBATIVE CHERN-SIMONS THEORY 21and T ijk(x1; x2; x3) def= ZR3 d3z (x1 � z)ijx1 � zj3 (x2 � z)jjx2 � zj3 (x3 � z)kjx3 � zj3The integral de�ning T is clearly �nite for every choice of distinct x1�3 in R3, but it blowsup rapidly when some of the x's coincide. To show that in spite of this the integral (29) is�nite we need to understand the behavior of T as two or three of its arguments coincide.Let us �rst rewrite T in a way that will make it easier to handle. Using43p� Z 10 e��2=3Nd� = 1N3=2we can rewrite T asT ijk = 6427�3=2 Z 10 d3� ZR3 dz(x1 � z)i(x2 � z)j(x3 � z)ke���2=31 jx1�zj2+�2=32 jx2�zj2+�2=33 jx3�zj2�:Introducing the notation:A = P�2=3m ; �m = �2=3mAt = P�mxm ; s = P�mjxm � tj2we get T ijk(x1; x2; x3) = 6427�3=2 Z 10 d3� ZR3 dz(x1 � z)i(x2 � z)j(x3 � z)ke�A(jz�tj2+s)= 6427�3=2 Z 10 d3�e�As ZR3 dz(x1 � t� z)i(x2 � t� z)j(x3 � t� z)ke�Ajzj2:This is just a Gaussian integral with respect to z, and it can be evaluated to giveT ijk = 6427 Z 10 d3�e�AsA3=2 � 12A �(x1 � t)i�jk + (x2 � t)j�ki + (x3 � t)k�ij�+ (x1 � t)i(x2 � t)j(x3 � t)k� :Changing variables from d3� to d2�dA (there are just two integrations over the �'s becausethey are constrained to satisfy P�m = 1) we pick the Jacobian 278 A7=2p�1�2�3 and get (afterevaluating the A integral)T ijk(x1; x2; x3) = 4 Z d2�q�1�2�3 "(x1 � t)i�jk + (x2 � t)j�ki + (x3 � t)k�ijs2+4(x1 � t)i(x2 � t)j(x3 � t)ks3 # :(31)Clearly the integral (29) is translation invariant, and invariant under reparametrizationsof X of the form s ! s + s0. So in the investigation of its possible divergencies we can



22 DROR BAR-NATANassume that, say, 0 is the midpoint between s2 and s3, s1 is farther away from s2 or s3 thanthe distance between these two:s1 = � ; s2 = ��� ; s3 = �� ; j�j < 13 ;and that X(0) = 0. In this case we can writeT ijk(X� ; X��� ; X�� ) = 4 Z d2�q�1�2�3 "Sijk1s2 + 4Sijk2s3 #(32)with Sijk1 def= (X� � t)i�jk + (X��� � t)j�ki + (X�� � t)k�ij;Sijk2 def= (X� � t)i(X��� � t)j(X�� � t)k:The problematic regions are when � or � are small, and we need to be able to estimateintegrals like those in (32) for such values of � and � .Lemma 5.1. Let A, B, and C be the three vertices of a triangle with sides jA � Bj �jA � Cj � � , and jB � Cj � �� with � < 1=3 (see �gure 5). For positive �'s satisfying
ABC t � � � �� �� �10 12 1Figure 5. The triangle ABC.�1 + �2 + �3 = 1 de�ne: t = �1A + �2B + �3Cs = �1jA� tj2 + �2jB � tj2 + �3jC � tj2Finally let �A be one of f(1� �1); �2; �3g, �B be one of f�1; (1� �2); �3g, and �C be oneof f�1; �2; (1� �3)g.



PERTURBATIVE CHERN-SIMONS THEORY 23In this situation there exists constants c1�5 independent of � and � for which:Z d2�q�1�2�3 � 1s2 � < c1�� 4(33) Z d2�q�1�2�3 "�1s2 # < c2� 4(34) Z d2�q�1�2�3 ��A�B�Cs3 � < 8>>>>>>>>>>>><>>>>>>>>>>>>:
c3�3� 6 if neither of �B or �C ischosen to be �1,c4�� 6 if exactly one of �B, �C ischosen to be �1,c5� 6 if both of �B and �C arechosen to be �1.(35)

5.2. Proof of the �niteness of diagram E. It is su�cient to show that (the symbol \6"was implicitly de�ned in (30))6ijki0j0k0T i0j0k0(X� ; X��� ; X�� ) < c=�:(36)Let us �rst deal with the contribution coming from Sijk1 . Expanding Sijk1 in powers of �1,Sijk1 = S0;ijk1 + �1S1;ijk1(37)we can use (33) and (34) and then all that is left to prove is:6ijki0j0k0 _X i0(�) _Xj0(���) _Xk0(��)Sp;ijk1 = O(�1�p� 3) ; p = 0; 1:(38)This can be done by expanding all the terms in the above expressions once in powers of � andonce in powers of � and showing that the low order coe�cients in each of these expansionsare zero. It is not hard to do it by hand, but as we are going to encounter some very similarbut a bit harder expansions later on we will not do it here but postpone it to the appendixwhere it will be shown how all these expansions can be carried out in a uniform way usinga computer.The terms involving Sijk2 are dealt with in a very similar way. Clearly, each of the factorsof Sijk2 is made of three summands, whose coe�cients exactly correspond to the variouspossibilities for choosing �A, �B, and �C in the lemma 5.1. Keeping (X� � t)i unexpandedand expanding only the last two factors of Sijk2 in powers of �1,Sijk2 = S0;ijk2 + �1S1;ijk2 + �21S2;ijk2 ;(39)



24 DROR BAR-NATANand keeping in mind (35) what is left to prove is
6ijki0j0k0 _X i0(�) _Xj0(���) _Xk0(��)Sp;ijk2 = 8>>>>>>>><>>>>>>>>: O(�3� 5) for p = 0;O(�� 5) for p = 1;O(� 5) for p = 2:(40)

Again, the relevant expansions will be shown to vanish to the required order in the appendixusing a computer.5.3. Proof of lemma 5.1. We will write �2 = (1��1)� and �3 = (1��1)�� where 0 � � � 1and �� = 1��. c will denote a positive constant that is allowed to change from line to line. Itis easy to read from the geometry of �gure 5 that when �1 < 1=2 (equivalently, when t is inthe left portion of �gure 5), �1jA� tj2 > c�1� 2, that �2jB � tj2 > c�2��2jB � Cj > c���2�2� 2,that �3jC � tj2 > c���2�2� 2, and thus thatsj�1< 12 > c ��1� 2 + (���2 + ���2)�2� 2� = c� 2 �����2 + �1� :(41)In the region �1 > 1=2 the expressions which are integrated over d2� in (33), (34), and (35)are bounded functions, and therefore (41) can be used to give upper bounds for the integralswe are considering.Taking for example (35) with �A = (1� �1), �B = (1� �2), and �C = (1� �3) we getZ d2�q�1�2�3 ��A�B�Cs3 � < c Z 10 d� Z 120 d�1q�1���(�1 + ���)� 6 �����2 + �1�3 :(42)The �1 integral can be explicitly evaluated. In fact, for a small � one hasZ a0 d� p�(�2 + �)3 = �pa2(a+ �2)2 + pa4�2 (a + �2) + arctan(pa� )4�3 < c�3and Z a0 d� p��(�2 + �)3 = pa�22(a+ �2)2 � 5pa4 (a+ �2) + 3 arctan(pa� )4� < c�and plugging these two estimates into (42) gives the required result. The other assertions ofthe lemma are proved along the same lines. �



PERTURBATIVE CHERN-SIMONS THEORY 256. Proof of theorem 1We will now show that ~W2 is indeed a knot invariant | that it is not changed underin�nitesimal deformations. The proof presented here should be similar in spirit to invarianceproofs (that are yet to be found) of higher terms in the perturbative expansion | we will�rst write a diagrammatic argument as expected from the results of section 3, (though ourdiagrammatic argument is not derived from the results there), and then supplement it withthe required analytical details. As in the case of the analysis of the variation of the selflinking number in the previous section, in analyzing the variation of ~W2 we will need takederivatives of Vijk and of Vij near the diagonal where there are singularities which will preventa straight-forward invariance proof. To avoid these singular points de�ne ~W2;� to be givenby the same integrals D and E as ~W2, only with the integration domain restricted by thecondition that the s's would be at least � apart | for i 6= j we requirejsi � sjj > �:(43)We will denote these integrals by D� and E�, and the �niteness of ~W2 that was proven abovejust means ~W2;� = 14D� � 2E�����!�! 0 14D � 2E = ~W2:6.1. The variation of ~W2. We will now vary D� and E� under the in�nitesimal defor-mation of X given by X ! X + !. It will be a lot more instructive to perform thosecalculations diagrammatically instead of working with the explicit formulae given for D andE in the introduction. First, let us vary diagram D�. When X moves to X +! it sweeps anin�nitesimal surface S, and our quantity of interest �D� is given by the evaluation of dLVon S which after using the key relation (20) reduces to diagrams D3 and D4 and by twoboundary terms, diagrams D1 and D2:D� D1 D2_X _X _X= �� 4 4! � _X
!_X _X �

4 S d_X _X_X+4 dS _X_X_X = 4(D1�D2)+



26 DROR BAR-NATAN�4 4D4D3S S�= 4(D1�D2)+ _X _X_X � ��_XIn these diagrams a dashed line represents as before the gauge propagator Vij evaluatedbetween the two vectors marked at its ends, a dotted represents the (2; 0)-form F , a d symbolstands for exterior di�erentiation applied to the nearby end of the nearby propagator, andan � between two interaction points on the knot means that these points are exactly � apart.Similarly we can vary E�:
�E� E1 E2= 3! � _X � 3_X _X _X !� _X Sd _X+ 3

E 0 Sd _X= 3(E1� E2)+ 3 _X S3+ E3_X _XThe diagram E3 appears because (20) is true only o� diagonal. Actually dLV and �dRFdi�er by a ?L of a �-function as was shown in the derivation of (20). Integrating by partsand using Leibnitz's rule we get:E 0_X
Sd = +_X _X _X _X

S Sd d_X �
= �E4_X

S � d +E5S S_X _X _X _X _X
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+ S d E6 � �S_X_X = �E4 + E5 �
+ E7 E8 E9S S S_X + ��

�_X _X� � � �6.2. Proof of Theorem 1. To show that ~W2 is indeed an invariant we just need to showthat the limit as �! 0 of �(14D� � 2E�) vanishes. That is, we need to show thatlim�!0 D1�D2�D3 +D4 + 6(E1� E2 + E3� E4 + E5 + E6� E7� E8 + E9) = 0:In fact, we will show that lim�!0 D1�D2 + 6E3 = 0;(44) lim�!0 �D3 +D4 + 6(�E4 + E5) = 0;(45)and lim�!0 E1� E2 + E6� E7� E8 + E9 = 0;(46)independently. For convenience, the symbol R� will denote integration in which the integra-tion variables are constrained to satisfy the restrictions (43), we will write X� for X(s�), andsimilarly for _X�, �X� and !�.Proof of (44). Diagram D1 represents the integralD1 = Z� ds1�3!i3 _Xk4Vij(X3; X1) _Xj1Vkl(X4; X2) _X l2 ; s4 = s3 + �;(47)diagram D2 reads�D2 = Z� ds1�3 � _X i3!k4Vij(X3; X1) _Xj1Vkl(X4; X2) _X l2 ; s4 = s3 + �;(48)and diagram E3 is given byE3 = 16 Z� ds1�3 _Xp3!n3 �pnm�mikVij(X3; X1) _Xj1Vkl(X3; X2) _X l2:(49)



28 DROR BAR-NATANUsing �pnm�mik = �ip�kn � �kp�inwe can write E3 = E30 + E300 withE30 = 16 Z� ds1�3 _X i3!k3Vij(X3; X1) _Xj1Vkl(X3; X2) _X l2:(50)and E300 = �16 Z� ds1�3 _Xk3!i3Vij(X3; X1) _Xj1Vkl(X3; X2) _X l2::(51)The nearness of s3 and s4 clearly implies that the integrand in (47) converges to the integrandof (51) and the integrand in (48) converges to the integrand of (50) as �! 0. At the regionwhere s1 and s2 are farther from s3;4 than some �xed but small positive constant T , there isno problem with commuting integration with taking the �! 0 limit. Concentrating �rst oncomparing diagrams D1 and E300 we see that nothing particularly harmful happens if justjs4 � s2j is small | as it was shown in section 4 the integrand in this case remains �nite.Otherwise, we are looking at one of the following exceptional cases (assuming for simplicitythat s4 = 0, s3 = ��, and X4 = 0):
D1 E300
D1 E300 s1
s1 s2 �� 0 s2s1

�� s1T Ts2 s2
T T 0

0 06
6

Case 1:
Case 2:

Figure 6. The two exceptional cases for D1$ E300.Case 1: Disregarding the propagator connecting X2 and X4 = 0 the di�erence D1� 6E300reads:Z T� ds1det �!(��) ��� _X(s1)���X(��)�X(s1)�jX(��)�X(s1)j3 � Z T� ds1det �!(0) ��� _X(s1)���X(0)�X(s1)�jX(0)�X(s1)j3 :(52)



PERTURBATIVE CHERN-SIMONS THEORY 29Expanding the integrands in (52) in powers of s1 we can ignore all terms of order smallerthan 1=s1 | evaluating the integrals in (52) for these terms would give a result bounded bya constant multiple of T in the �! 0 limit, and as T was chosen small we can indeed ignorethe contribution to (52) coming from these terms. There are no terms of order higher than1=s1 in (52) and the term of order 1=s1 reads:Z T� ds10@ 12(s1 + �) det �!(��) ��� _X(��)��� �X(��)�j _X(��)j3 � 12s1 det �!(0) ��� _X(0)��� �X(0)�j _X(0)j3 1Aat the �! 0 limit we get� det �!(0) ��� _X(0)��� �X(0)�j _X(0)j3 Z T� ds1  12(s1 + �) � 12s1!! � log 22 det �!(0) ��� _X(0)��� �X(0)�j _X(0)j3 :(53)Reinstalling the propagator connecting X2 and X4 and the integration over s2 we get theonly non-vanishing contribution to D1� 6E300.Case 2: Here the �! 0 limit is in fact zero. To see that, one does analysis similar to theprevious case, and notices that s2 is integrated over an interval of length smaller than s1 andthus remembering that the propagator connecting X2 and X4 is �nite even near the diagonalthe s2 integral is � s1, and this additional factor is su�cient to make the contribution comingfrom this case vanish.A similar analysis to the above shows that the only non-vanishing contribution to 6E30�D2comes from the case parallel to case 1 here, and that, in fact, these contributions exactlycancel. �Proof of (45). Here are the integrals corresponding to the relevant diagrams:�D3 = � Z� ds1�3 _Xk4Vlk(X2; X4) _X l2 _X i1!j1Fij;�(X1; X3); ; s4 = s3 + �;(54) D4 = Z� ds1�3 _Xk3Vkl(X3; X1) _X l1 _X i2!j2Fij;�(X2; X4); ; s4 = s3 + �;(55) �6E4 = 12 � Z� ds1�3 _Xk3 �kmn�mnpVpl(X3; X1) _X l1Fij;�(X2; X3) _X i2!j2;(56) 6E5 = 12 Z� ds1�3 _Xk3 �kmn�mnpVpl(X3; X2) _X l2Fij;�(X1; X3) _X i1!j1:(57)Using �kmn�mnp = 2� pkand the nearness of s3 and s4 it is clear that so long as X1 and X2 are far away from X3 theintegrands of (54) and of (55) converge to the integrands of (57) and of (56) respectively,and that there is no problem with commuting integration with taking the �! 0 limit. Thecases when X1 and X2 are not far away from X3 can be treated in the same way as in theprevious proof. �



30 DROR BAR-NATANProof of (46). It will be convenient here to replace � by 2� and then take the � ! 0 limit.In all of the relevant diagrams two of the s's are constrained to be exactly 2� apart andthe third to be farther then 2� from any of the previous two. It is harmless to assume thats2 = ��, s3 = �, X(0) = 0, and s1 = � with j� j > 3�. We will denote the ratio �=� by �.With these notations one can see that the integrands corresponding to our diagrams canbe written in pairs as follows: (ignoring the overall coe�cient 1=384�3)E1� E2 = X�=� 6ijki0j0k0 _X i0� !j0���� _Xk0���T ijk(X� ; X���� ; X��� )E6 + E9 = X�=� �mni�ljk _Xm� !n� _X l���T ijk(X� ; X���� ; X��� )�E7� E8 = X�=� �mnj�lki _Xm����!n���� _X l�T ijk(X� ; X���� ; X��� ):Remembering (32), (37), (39), and lemma 5.1 we see that in considering the � ! 0 limitwe just need to show thatlim�!0 Zj� j>T d��a� b X�=� �6ijki0j0k0 _X i0� !j0���� _Xk0��� + �mni�ljk _Xm� !n� _X l���+ �mnj�lki _Xm����!n���� _X l��Sp;ijkq = 0(58)and that lim�!0 Z3�<j� j<T (same)�a� b d� = O(T )(59)where T is some �xed small positive number and a and b are the exponents of � and � as inequations (33), (34), and (35).As in (58) � is bounded from below we can use � = �� to replace the limit there by an� ! 0 limit and then all that is required is to show that the summand there is � �a+1. Therelevant algebra will be carried out in the appendix using a computer.The integration domain in (59) is symmetric and therefore we can replace the integrationthere with an integration over 3� < � < T , replacing the integrand withX�=��=� �6ijki0j0k0 _X i0��!j0���� _Xk0��� + �mni�ljk _Xm��!n�� _X l��� + �mnj�lki _Xm����!n���� _X l��� Sijk1;2 ����!�� :(60)Simply integrating over � now shows that to conclude the invariance proof we just need toshow that (60) = O(�a� b). Again, the relevant algebra will be carried out in the appendixusing a computer. �



PERTURBATIVE CHERN-SIMONS THEORY 316.3. Identifying ~W2. The last assertion of theorem 1 is that the invariant ~W2 that we haveproduced is (up tp a constant shift) the second non-zero coe�cient in the Conway polynomialof X. The Conway polynomial is de�ned by its behavior under ipping a crossing in a planarprojection, so we will try to understand how ~W2 changes under such a ip.
2

1 1

2 2

Figure 7. The change in ~W2 under a ip.Very briey, it is clear that the di�erence in the value of ~W2 before and after a ipcomes from a singularity in either of Vijk or Vij at the point where the ip occurs. Usingthe invariance that we have just proven one can `straighten' the knot near a crossing pointbefore ipping, and then it is easy to check in this case Vijk contracted with the tangentsof the knot in fact vanishes near the crossing point except if one of its arguments is on theupper branch of the crossing and the other is on the lower. Vijk is then inversely proportionalto the distance between its two arguments, and the fact that 1=r is integrable on R2 showsthat this singularity can be neglected. Similarly considering diagram D one �nds that theonly singularity that remains is the one that occurs when the two arguments of the samepropagator are arranged as propagator 1 in �gure 7, and the other propagator can then beassumed to be away from the crossing. Repeating (22) for propagator 1 and then integratingover the location of the other propagator, marked 2 in the �gure, it is clear that e�ectivelywe are calculating the linking number of the two knots that are created if the original knotis cut at the crossing as in the �gure. It is easy to check from the de�nitions (see [23])that this is exactly the same relation as the one that is satis�ed by the second non-zerocoe�cient in the Conway polynomial of X, and so they coincide up to a constant shift.This constant shift is given by ~W2(unknotted circle). By invariance we can just calculate~W2(the unit circle in the XY plane) and an explicit calculation shows that (see [19])~W2(the unit circle in the XY plane) = 124 :This concludes the proof of theorem 1.



32 DROR BAR-NATAN7. Comparison with Witten's non-perturbative treatmentIn [32] Witten has used a very di�erent approach resting on conformal �eld theory to givea non-perturbative de�nition for the in�nite dimensional integral (8) de�ning W(M3;X ; k).His de�nition is much more successful in that he can show how to use it to evaluate (8)precisely for every three manifold M3 and link X in it, and not just calculate its leadinglarge k asymptotics for R3, but it is less elementary and very particular to the Chern-Simonstheory. There doesn't seem to be any direct relation between his way of calculating and theperturbative calculation shown here, and it is very interesting to compare the two viewpoints. Let us start by reviewing his results for a link in R3, as presented in [33]. As isshown there, W(R3;X ; k) considered as a function of k and the gauge group G = SU(N) isin fact up to a simple change of variable the HOMFLY [17] polynomial of the link X , whichitself is a generalization of the Jones polynomial of X .Witten shows that to de�neW(R3;X ; k) unambiguously one needs to consider framed linksinstead of just links. That is to say, each component X of the link has to be accompaniedwith a prescribed `framing' | a choice up to homotopy of a nowhere vanishing section Fof the normal bundle of X in the language of section 4 or, more geometrically, a choice ofa `shadow' for each component as in the �gure 8.

X FFigure 8. A knot with two of its possible framings. (The arrows indicate the di�erences betweenthe two framings)According to Witten, if the framing of link changes by a single twist, W get multiplied bye2�ih, where h is a real number determined by k and the representation R correspondingto the component of the link on which the twist was made. This is shown schematically in�gure 9.We will only be concerned with the case where the underlying group G is SU(N) for somepositive integer N , and all the representations R are just the de�ning representation of
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F Xe�2�ihNegative twist Positive twist= = e2�ih

Figure 9. The change in W under a single twist.SU(N) in CN . In this case h is given by:h = N2 � 12N(N + k)(61)The di�erence between any two framings of a single knot is measured using a single integer| the number of signed twists required to change one framing to the other, and the aboverelation shows that for a link with several components we can in fact consider two framingsto be equivalent if the total number of twists required to switch from one framing to the otheris zero, counting all twists on all the components of the given link. With this identi�cationfor each link X = fXg in R3 there is a unique preferred framing | the framing fFg forwhich the total linking number of X is 0:$(X ) def= X1;2 $(X1 ; F2) = 0In this framing, Witten has shown thatW(R3;X ; k) has the following three properties whichallows one to calculate it for any given link:(1) For q = e 2�iN+k(62)one has W(Unknotted circle in R3; k) = qN=2 � q�N=2q1=2 � q�1=2(63)(In fact, this relation can be derived from the following two by using the third relationon the unknot whose planar projection is 1)(2) If the link X is the unlinked union of X1 and X2 thenW(R3;X ; k) =W(R3;X1; k)W(R3;X2; k)(64)
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LLL

Figure 10. The links involved in the skein relation.(3) Most important | the so called \skein relation" | if the three links L0, L+, andL� di�er only inside a small ball where they look as in �gure 10, then the followingrelation holds: �qN=2L+ + (q1=2 � q�1=2)L0 + q�N=2L� = 0(65)where for brevity we wrote L� for W(R3; L�; k).To compare these results with ours we �rst need to expand them in powers of 2�i=k, andthus we will write for a link L�W(R3; L�; k) � N c� + 2�ia�k � 4�2b�k2 :From (63) and (64) it is clear that c� is just the number of components of the link L� if L�is the unlinked union of unknotted circles. In addition, the zeroth order part of (65) reads�N c+ + 0 + N c� = 0 and as L+ and L� always have the same number of components itmeans that the number of components of an arbitrary L� is given by c�. The terms of orders2�i=k and �4�2=k2 in (65) give the following two relations:a+ � a� = NN c� �N c0 ;(66) b+ � b� = a0 + 12�iN(NN c� �N c0)� 12N(a+ + a�):(67)If Ltw is the same one component link as L, only with its framing twisted positively once,expanding the relation in �gure 9 in powers of 2�i=k gives two additional relations:a = atw + 12(N2 � 1)(68) b = btw + atwN2 � 12N + N2 � 14�N �iN2 + �2 (N2 � 1)� :(69)Theorem 2. The following assertions hold for links in R3:(1) For a two component link L, 1N(N2�1)a is the linking number of its two components.



PERTURBATIVE CHERN-SIMONS THEORY 35(2) For a single component knot L not necessarily with its preferred framing, a(N2�1) ishalf its self linking number.(3) For a single component knot L not necessarily with its preferred framing,~b def= 1N(N2�1)Re �b� a22N � is framing independent, and is in fact equal to our ~W2(L).All of these assertions are easy consequences of (66)-(69). For example:Proof of assertion (3). To get the framing independence of ~b just use (68) and (69) to expressit in terms of atw and btw, and then notice that the resulting expression di�ers from that of~btw only by the real part of an imaginary number. To show that ~b is equal to ~W2(L) we justneed to show that they satisfy the same skein relation. But for knots L� with their preferredframings a� = 0 by assertion (2), and therefore using (67) one gets~b+ � ~b� = 1N(N2 � 1)Re (b+ � b�) = 1N(N2 � 1)a0which by assertion (1) equals to the linking number of the two knots obtained by cutting L�as in �gure 7. It is easy to check that ~b(the unknot) = 1=24. �The above theorem is in complete agreement with the results of this paper.8. Perturbation theory beyond two loopsFollowing Witten [36], I will sketch here how we expect the perturbation theory of theChern-Simons gauge theory to behave on a general three manifold and to higher order in1=k.In [32, 33] Witten used very di�erent techniques than those presented here to �nd acomplete non-perturbative de�nition of the Chern-Simons gauge theory. The part of hissolution that is relevant for making a comparison with the results proven here was reviewedin the previous section, and that comparison showed a complete agreement between the twoapproaches. The solution involves three subtleties that are hard to predict by just observingthe de�nition of the theory in equation (8):(1) Links have to be framed. According to Witten's solution W(M3;X ; k) cannot bede�ned as it is for a bare link X , but one also has to choose a framing for each ofthe components of X and only then W(M3;X ; k) can be de�ned. Its de�nition willthen depend on the choice of the framing in a prescribed manner. This point wasexplained in some more detail in the previous section.(2) Three-manifolds have to be framed. According to Witten's solution W(M3;X ; k)cannot be de�ned as it is for a bare three-manifold M3, but one also has to choose aframing forM3 | a choice up to homotopy of a trivialization of the tangent bundle ofM3, and only then W(M3;X ; k) can be de�ned [34, 2]. (Actually, something a littleless than a framing of M3 is enough [34, 2]{it is enough, roughly speaking, to have aframing modulo torsion.) Its de�nition will then depend on the choice of the framing



36 DROR BAR-NATANin a prescribed manner. As we were working on a at R3 we have not encounteredthis subtlety in this paper. We can consider this subtlety and the previous one ascases of a broken symmetry | as framings do not at all appear in (8) it is trivialyinvariant under a change of framing and this symmetry is broken in Witten's solution.(3) Analyticity near k =1 is lost.2 Naively one sees that as k! �k in (8),W(M3;X ; k)transforms to its complex conjugate. This property of W together with analyticitynear k = 1 means that we expect the even powers in the 1=k asymptotics of W tobe real and the odd ones to be imaginary. This property is lost in Witten's solutionas can clearly be seen from equations (61), (62), (63) and (65). We have avoided thisdi�culty in a not very satisfactory way by claiming to have calculated only the realpart of W2.All of the above mentioned subtleties seem not to appear in a naive Feynman-diagrammaticexpansion of W, and the purpose of this section is to show how these points probably doappear in perturbation theory after all.Formally writing down the sums of Feynman diagrams that we expect to yield higherthree-manifold and link invariants and translating them into �nite dimensional integrals isroutine and easy. It is also not hard to produce a formal invariance proof for these integralsas explained at the end of section 3, ignoring the analytical di�culties arising from thedivergence of those integrals. We will see below how resolving these analytical di�culties islikely to explain the three subtleties listed above.The origin of the above mentioned analytical di�culties is the singularities Greens's func-tions have near the diagonal. These get milder for higher order di�erential operators. Thissuggests trying to regularize (8) by adding higher order terms to the Lagrangian preservingas much symmetries as possible so as not to spoil the metric independence argument in sec-tion 3. (Physicists call such a procedure Pauli-Villars regularization.) The main ingredientof this argument is BRST invariance (lemma 3.1), and if we wish to preserve it we can onlyadd terms that preserve gauge invariance. The only such term of order two is the square ofthe norm of the curvature of the connection A and therefore we will make the replacementLtot ! Lregularized def= Ltot + �jjFAjj2:(In fact, to preserve the ellipticity of the quadratic part of Lregularized one also has to changethe gauge-�xing term of Ltot and this forces changing Q slightly. Making those changes iseasy and does not a�ect the rest of our reasoning, so we will ignore them.)Let as now pretend that Lregularized gives rise to a �nite perturbation theory. (Actually,this is true except for the role of a few low order subdiagrams.) What will remain of theinvariance argument (17)?Lemma 3.1 and lemma 3.3 will still hold because we have preserved gauge invariance, butas the additional term in Lregularized is metric dependent, lemma 3.2 will not be true any2Some authors [20, 21] dispute this point, which is usually referred to as \the shift in k". It is very likelythat in the context of the regularization suggested below no changes need to be made to the assertions inthis paper.



PERTURBATIVE CHERN-SIMONS THEORY 37more. Instead, the variation of Lregularized under gij ! gij + �gij will be given by�Lregularized = Q� + ��jjFAjj2and therefore in the notations of (17) we will have�hOi� = �hO�jjFAjj2i�(70)where the subscript � in h � i� is meant to remind us that we are taking expectation valueswith respect to a Lagrangian that depends on �. Of course, equation (70) (and equations(71)-(74) as well) should be understood as an equality of perturbative asymptotic expansions,and its proof will be based on (17) as explained in section 3. If hOi� had a limit as � ! 0and hO�jjFAjj2i� was bounded as � ! 0 we could have taken this limit and it would havebeen metric independent. One cannot expect this to be true. However, the divergences inhO�jjFAjj2i� for � ! 0 originate from a very de�nite type of contribution to the Feynmandiagrams, and by considering how such divergences can originate, one can obtain results thatare nearly as good as the naive results that would have held if there were no divergences. Inexplaining this, we will consider the basic case O = 1.It is convenient to consider only the connected Feynman diagrams and as is well known [29,16, 22] the sum of those is just logh1i�. Divergences in Feynman diagrammatic contributionsto logh1i� and to � (logh1i�) = �h�jjFAjj2i�h1i�(71)come from a region of integration in which all integration points are separated by distancesof order �. This means that the divergences can be expanded in terms of local di�erentialgeometric invariants { the metric, the curvature tensor, and its covariant derivatives. Thisexpansion is analogous to the short time expansion of the heat kernel. The most generaldivergent terms are of the formlogh1i� = c1�3V + c2� R + �nite terms(72)and h�jjFAjj2i�h1i� = c1�4 �V + c2�2 �R + c3� �C + �nite terms:(73)Here c1, c2, and c3 are constants (or more exactly functions of k only, which must be computedorder by order in perturbation theory, but do not depend on the particular three manifoldor metric). Also, V is the volume of M3, R is the integral over M3 of its scalar curvature,C is the Chern-Simons number associated with the Levi-Civita connection and �V , �R, �Care the variations of these quantities with respect to gij ! gij + �gij. The expansion (73) isdetermined by the following principles. (i) The terms on the right hand side must be closedone forms on the space of metrics (since the left hand side of the equation has this property.)(ii) The coe�cients of these closed one forms must be local functionals of the metric. What



38 DROR BAR-NATANhas been written on the right hand side of equation (73) is the most general expression withthese properties. The general principles do not determine c1; c2, and c3, which from thispoint of view must simply be computed order by order in perturbation theory.Equation (73) means that h1i� does not converge as � ! 0 to a topological invariant.Indeed its variation (71) not only does not vanish as � ! 0; it diverges in this limit. If,however, we de�ne3Wrenormalized = h1irenormalized def= exp lim�!0�logh1i� � c1�3V � c2� R� c3C�(74)then (72) shows that Wrenormalized is �nite while (70) and (73) shows that it is an invariant.Here we see where the framing ofM3 comes in | to de�ne C we must �rst pick a trivializationof the tangent bundle and so the invariants that we have just produced depend on a choiceof such a trivialization.Notice that �C, in equation (73) does not depend on the choice of a framing, but C does.What is entering here is clearly a sort of local cohomology of the space of metrics. The local,closed one forms �V , �R appearing in (73) can be written as variations (exterior derivatives)of local functionals of the metric. But �C, though itself a local functional and a closed oneform, cannot be written as the variation of a local functional. (If �C were itself not local, itcould not arise in the intrinsic local evaluation of Feynman diagrams that leads to equation(73).)Similarly, in the case of a non-empty link X we do not expect that the higher orderFeynman diagrams will converge to link invariants, but instead we expect them to convergeto something whose variation with respect to a deformation of X will be equal to someconstant multiple of the variation of the total torsion of X . (The torsion will enter just asthe Chern-Simons number C entered in the above discussion.) The total torsion can then besubtracted out yielding link invariants at the price of having to introduce a framing for X| the total torsion can be de�ned only given such a framing. This agrees with the resultsof Witten and with the results in section 4.Unfortunately, we were just pretending that the theory de�ned by Lregularized is �nite.In fact, it is not. One can �gure out how badly divergent the theories de�ned by Ltot andLregularized are by taking a diagram with a speci�ed number of vertices and arcs, measuring thetotal degree of singularity of the arcs and vertices, and subtracting the number of integrationsthat the vertices induce. The result, the so-called \super�cial degree of divergence" � of a3This is consistent with what is usually called renormalization - it just corresponds to adding � c1�3 V �c2� R � c3C to the original Lagrangian as the limit � ! 0 is taken. In fact, the above paragraph can besummarized by saying that these three terms are the only possible local BRST invariant additions to theLagrangian which are of the right dimension. Notice that all three terms depend on the metric alone andnot on the �elds, and therefore the n-point functions of the theory are not renormalized and thus no careneeds to be taken of the renormalization of lower order diagrams when considering the renormalization of a�xed order in perturbation theory.



PERTURBATIVE CHERN-SIMONS THEORY 39diagram with EB external gauge lines, EF external ghost lines and L internal loops is�(Ltot) = 3� EB � 12EF ; �(Lregularized) = 4� L� EB � EF :(75)Clearly, the regularized theory is less divergent than the original one, but (75) shows thateven in the regularized theory the diagrams with a small number of loops and external lineswill be divergent and as these diagrams appear as subdiagrams in diagrams with highercomplexity we cannot just ignore them. One can check that even if higher terms than�jjFAjj2 are added to Ltot and even when considering the reduction in the divergence thatcomes from gauge invariance4 one loop diagrams with one, two , or three external legs willremain divergent in the resulting theory. Yet, we believe that the following is true:Conjecture 1. (Witten, [36]) The analysis in ( 72), ( 73), and ( 74) can be justi�ed, and theresulting invariants Wrenormalized coincide with the expansion in powers of 1=k of the resultsin [32, 33].One-loop diagrams in the Chern-Simons theory have been regularized using �-functionregularization in [32] and using Pauli-Villars regularization in [1]. Both of these regulariza-tions give partial results consistent with the above conjecture, but presently I don't knowhow to complete these results and use them to prove the conjecture to all orders.9. EpilogueThere has been major developments in this subject in the 4 years since this paper was�rst distributed in a preprint form5.In [3, 4] Axelrod and Singer found an additional symmetry obeyed by the Chern-Simonspath integral (3), and used it to prove that perturbation theory on bare three manifolds(subject to some additional conditions) is indeed �nite to all orders, and that the resultingintegrals are `almost' independent of the choice of a metric, with the residual metric depen-dence being proportional to �C, as predicted in (73). A similar construction was given (butnever published in detail) by Kontsevich [24], who also states theorem 1 (without proof)in [25].In [6] I have noticed that the \lie-algebraic" part of Chern-Simons perturbation theory canbe \divorced" from the \integral" part, showing (modulo analytical di�culties) that there isa perturbative invariant corresponding to each \weight system", and in [7] I have shown thatthese \weight systems" underlying Chern-Simons perturbation theory are the same as theweight systems underlying the theory of Vassiliev invariants6, thus establishing a relationship4Q�c = �, and therefore h�(x)�(y)i = 0. This together with the structure of the �B propagator provesthat the amputated two-point function is given by ?LdL of a (1; 1)-form whose convergence properties areby one degree better. For a similar example, see e.g. [10, pp. 299-300].5Though it seems that no one had yet published an alternative proof of theorem 1.6The inclusion fChern-Simons weight systemsg � fVassiliev weight systemsg was already proven in [5, 6].



40 DROR BAR-NATANbetween the two domains. This same relationship was later observed and vastly generalizedby Kontsevich [24, 25]. Appendix A. Some algebraWe include here the short computer routine that veri�es few assertions that were madein sections 5 and 6. First, the routine itself. It is written in MathematicaTM | a symbolicmathematics language. For more information about this language see [37].X[mu_] := {X1[mu],X2[mu],X3[mu]} ; Xd[mu_] := D[X[nu],nu] /. nu -> muX1[0]=X2[0]=X3[0]=0 ; w[mu_] := {w1[mu], w2[mu], w3[mu]}ser[expr_] := Series[#,{var,0,ord}]& /@ exprXdtau = ser[Xd[a tau]] ; wtau = ser[w[a tau]]Xdeps = ser[Xd[b eta tau]] ; weps = ser[w[b eta tau]]Xdnegeps = ser[Xd[-b eta tau]] ; wnegeps = ser[w[-b eta tau]]t = lambda1 X[a tau] + lambda2 X[-b eta tau] + lambda3 X[b eta tau]z1 = X[a tau] - t ; z2 = X[-b eta tau] - t ; z3 = X[b eta tau] - tdelta = IdentityMatrix[3]S=Table[ser[Which[var==eta,{(z1[[i]]delta[[j,k]]+z2[[j]]delta[[k,i]]+z3[[k]]delta[[i,j]])/. lambda1 -> c2 eta ,z1[[i]] (Expand[z2[[j]]z3[[k]]]/. {lambda1^2 -> c5 eta^3 , lambda1 -> c4 eta^2})/eta^2},var==tau,{(z1[[i]]delta[[j,k]]+z2[[j]]delta[[k,i]]+z3[[k]]delta[[i,j]])/tau,z1[[i]]z2[[j]]z3[[k]]/tau^3}]],{i,3},{j,3},{k,3}]sign = (Signature /@ (perm = Permutations[{1,2,3}]))eps[f_]:=Sum[sign[[p]]sign[[q]](f@@Join[perm[[p]],perm[[q]]]),{p,6},{q,6}]six[f_]:=eps[f[#3,#1,#4,#6,#2,#5]&] + eps[f[#6,#1,#4,#2,#3,#5]&]e[type_] :=six[S[[#1,#2,#3,type]]Xdtau[[#4]]Xdnegeps[[#5]]Xdeps[[#6]]&] /. b->1e12[type_]:=six[S[[#1,#2,#3,type]]Xdtau[[#4]]wnegeps[[#5]]Xdeps[[#6]]&]e69[type_]:=eps[S[[#3,#5,#6,type]]wtau[[#1]]Xdtau[[#2]]Xdeps[[#4]]&]e78[type_]:=eps[S[[#6,#3,#5,type]]Xdnegeps[[#1]]wnegeps[[#2]]Xdtau[[#4]]&]de[type_] :=Sum[e12[type] + e69[type] + e78[type] , {b,-1,1,2}]The �rst paragraph of the routine de�nes X, _X, !, and their expansions with respect tothe externally de�ned variable var to order ord at the points �� , �� = ���� , and � = ��� .The second paragraph de�nes S[[i,j,k,1 or 2]] to be Sijk1 or 2 expanded with respect to therelevant variable. S is de�ned di�erently for var=eta then for var=tau | if var=eta then (33)and (34) mean that in S1 one can make the replacement lambda1 -> c2 eta while (35) meansthat in S2 the replacement {lambda1^2 -> c5 eta^3 , lambda1 -> c4 eta^2} can be made. It iseasy to see that after the latter replacement has been made the expansion for S2 will beginat �2, and this justi�es dividing it by �2 and expanding everything to an order two less thanis mentioned in sections 5 and 6. If var=tau the expansions for z1, z2, and z3 begin at � ,and thus the de�nitions S[[i,j,k,1]]= Sijk1 =� and S[[i,j,k,2]]= Sijk2 =� 3. This allows us to



PERTURBATIVE CHERN-SIMONS THEORY 41expand S[[i,j,k,1]] (S[[i,j,k,2]]) to an order lower by one (three) than the order requiredfor Sijk1 (Sijk2 ).The third paragraph contains the routines that do the ���� and the 6������ contractions, andthe last paragraph de�nes the relevant diagrams.We now include a MathematicaTM session produced using the above routine, for which Ihave chosen the not very imaginative name \�le".Mathematica (sun4) 1.2 (November 6, 1989) [With pre-loaded data]by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin,S. Omohundro, D. Ballman and J. Keiperwith I. Rivin and D. WithoffCopyright 1988,1989 Wolfram Research Inc.In[1]:= var=eta; ord=1; << fileIn[2]:= {e[1] , e[2]} /. {a->1 , eta->0}Out[2]= {0, 0}In[3]:= {de[1] , de[2]} /. a->12 2Out[3]= {O[eta] , O[eta] }In[4]:= var=tau; ord=1; << fileIn[5]:= {Sum[e[1],{a,-1,1,2}] , Sum[e[2],{a,-1,1,2}]}2 2Out[5]= {O[tau] , O[tau] }In[6]:= var=tau; ord=2; << fileIn[7]:= {Sum[de[1],{a,-1,1,2}] , Sum[de[2],{a,-1,1,2}]}3 3Out[7]= {O[tau] , O[tau] }Out[2] and Out[5] prove equations (38) and (40), while Out[3] and Out[5] prove the asser-tions at the end of the invariance proof in section 6. This concludes the proof of the maintheorem of this paper.Comment: Obtaining these eight expansions takes few hours of CPU time on a 1989 work-station. References1. L. Alvarez-Gaume, J.M.F. Labastida, A.V. Ramallo, A note on perturbative Chern-Simons theory, Nucl.Phys. B330 (1990) 347.
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