June 25, 2002

Perceived Depth Images

Dror Bar-Natan
Department of Mathematics
Harvard University
Cambridge MA 02318
dror@math.harvard.edu

iy AR 4]

PDIPlot[Sin[Abs[x+I y]],{x,-10,10},{y,-10,10}, PlotPoints -> 120,
AspectRatio -> Automatic]

Also see http://www.ma.huji.ac.il/ drorbn/papers/PDI/

1

What is this thing? It’s a Perceived Depth Image (PDI). It looks like a random mess,
but it isn’t. It’s a three dimensional plot of the graph of sin|z|, z = x + iy, in the range
—10 < z,y < 10. To see it, stare straight through the page, as if the journal you are
holding weren’t there, and let your eyes relax until the two guiding blocks at the bottom of
the figure appear to separate and become four. Focus your eyes at some plane far behind
the figure, and make two of the four blocks coincide so that you now see exactly three
blocks. Now raise your eyes slowly up to the main part of the figure, without refocusing
them. What you see now is a real, live, almost touchable, three dimensional picture of
sin [z] — a round valley right at the center, with a circular hill surrounding it, a circular
valley surrounding the hill, ..., all seen from above. Just the same view could be plotted by
Plot3D[Sin[Abs[x+ I y]],{x,-10,10},{y,-10,10}], only that a PDI really comes out of
the page towards you.

Don’t be concerned if you can’t see it the first time; it takes some training. Most people
need 5-10 minutes to get their first PDI, and after a few more PDI’s they can focus at the
right distance almost instantaneously. Some people find it easier to start looking at the PDI
from about an inch away, and then slowly move the figure away until the image appears.
Others find crossing their eyes easier than staring at infinity — you can also view the PDI
by holding a pencil in front of the two guiding blocks, focusing your eyes on it, moving it
until the two blocks appear to be three, and than looking up the PDI itself.

How does it work? Looking more closely at the random mess that makes a PDI, you
see that it isn’t completely random. Each PDI can be divided into a certain number of
vertical strips (6 for the sin |z| picture, for example). The first such strip is randomly filled,
the second looks just like the first only a bit distorted, the third is just like the second only
distorted some more, and so on. Let us look at a smaller scale example:

SetOptions [PDIPlot,Periods -> 3, PlotPoints -> 12, Guides -> False]
Show[SeedRandom[1]; PDIPlot[0,{x,-1,1},{y,-1,1},
BasicBlock :> (Linel[
{#1+{1, 132, 81+, 1302 #1+{-1, -1 3#2 , #1+{-1, 13#2, #1+{1, 1 F#2}1&)],
SeedRandom[1]; PDIPlot[2y,{x,-1,1},{y,-1,1},
BasicBlock :> (Rectangle[#1-.5#2,#1+.5#2]&)],
AspectRatio -> Automatic]

nlunlnl
™
il
'.'|

|

|

LI

HEm
il
[]
Al

=
rRciCaa

5

"

SRR RS

In this example, we first printed a PDI plot of the function 0 (using the PDIPlot option
BasicBlock to make the basic building block of the picture be an unfilled square), and then,
on top of it, a plot of the function 2y (using smaller blocks). For clarity, we used the PDIP1lot
options Periods and PlotPoints to reduce the resolution of this plot. We also used the
Mathematica™ command SeedRandom[1] twice — to make sure that the two plots would
fit neatly one on top of the other. The pattern is now clear — in the plot of 0, we simply get
three identical vertical strips. In the plot of 2y we can also identify the three vertical strips,
but we can see that they are distorted — the distances between the blocks in the upper
rows, where 2y is positive, are made smaller than the distances in the lower rows, where 2y
is negative.

So what? A quick look at figure 1 now explains what happens. When we focus our eyes
on the plane P, the left eye sees the left guiding block and the right eye sees the right, but
our brain interprets it as if there were a single block, on the plane P, and that both our eyes
are looking at it. Following now the dotted lines in the figure, it is clear that changing the
distance between these two blocks can be interpreted as moving the “fused” image block in
our brain nearer or farther! A PDI is nothing but a systematic application of this simple
phenomenon. See also figure 2.

So how do we make a PDI? Well, it’s not very hard. A very simple (but crude)
Mathematica™ code that does a decent job is the following:

z := (-35-30I+x+I y)/30 ; f = Abs[z]*Sin[bArg[z]]
Show [Graphics[Table[
xsample=Join @@ Position[Table[Random[]<0.5,{10}],Truel;
xv=0uter [Plus,Table[i,{i,0,50,10}] ,xsample-1];
xv=xv-Accumulate [Plus,Map[(f /. {y->yi,x—>#})&,xv,{2}]1];
Point [{#,yi}]& /@ Flatten[xv],
{yi,60}11]

Guiding rectangles

Left Right
eve eve

Figure 1. A top view of an observer looking at a PDI.

Figure 2. A slightly aperiodic pattern, with the eyes focused behind the picture, ap-
pears to lie on three different planes. The spaces between consecutive points relate as
8:9:9:8:7:7:8.

The first line is the definition of the expression to be plotted — essentially it’s |z| sin arg z,
only with the variables scaled and shifted a bit. Then comes the main loop — the PDI is
plotted row by row, and yi, that goes from 1 to 60, is the current value of y. Each row is
made of six repetitions of the same pattern, each distorted by a little relative to the previous
one. The first line of the loop defines xsample to be a random subset of the integers 1 — 10.
These are the x coordinates of the pixels that will be turned on in this row of the left most
strip. Then xv is defined to be a list of six copies of xsample, each shifted by a different
amount to form the current row of the six strips. The next line is the main computation
— the function f is evaluated at each of the points of xv, and each point zy in xv is then
shifted, left or right, by the sum of the values of £ on the images of x(in the strips to its
left. This simply means that the distance between xy and the point corresponding to it on
the next strip to the left is changed by f(z¢,y) — so when these two points are matched by
the observer’s eye, f(zo,y) becomes the depths of the resulting image point. The last line
of the loop just plots the results of the computation in the line before.

Some more examples:

Mandelbrot [c_7?NumberQ,n_:32] :=Block[{d,z},
For[z=0.; d=0, Abs[z]<2 && d<n, d++, z=z"2+c]; d]
PDIPlot[Log[2,Mandelbrot [x+I y]],{x,-2.,1.},{y,-1.5,1.5%},
PlotRange -> {-5,5}, PlotPoints -> 300, BasicBlock -> (Point[#1]&),
ApparentDepth -> 1.5, AspectRatio -> Automatic, Prolog -> {PointSize[.004]3}]

PDIPlot [Abs [x+I ylArg[(x+I y)~8]1/5,{x,-1,1},{y,-1,1}, PlotPoints -> 120,
BasicBlock -> (Point[#1]&), AspectRatio -> Automatic,
Prolog -> {PointSize[.01]}]

48 TTh SRS % M . X <39858,8800°8°°5883 8, 8800°8 44887

TorusKnot [m_Integer,n_Integer,z_7NumberQ]:=
If[z==0,0,
Block[{distance,knottime,width,i},
width=.25/n"2 // N;
Max [0,Table[
knottime=(Arg[z]+2Pi i)m/n;
distance=(1+.5Sin[knottime] -Abs[z]) "2 // N;
If [distance>width,O,
N[.6+.5Cos [knottime] +1.55qrt [width-distance]]],
{i,n}]]
115
plot[m_,n_,pts_]:=PDIPlot[TorusKnot [m,n,x+I y],{x,-2,2},{y,-2,2},
BasicBlock -> (Point[#1]&), Prolog -> {PointSize[1.2/pts]l},
AspectRatio -> Automatic,PlotPoints -> pts]
plot[3,2,120]

3

() ()
Br o las”rl

()

‘uﬁﬁ‘-rt; "% 0.0 - ‘O“'O’:‘!F[iﬁﬂ“?:u:‘:’: 000435 0.0,
il JLEC St FHS, Sptte I St B,

()
$ %est $oe8 80 §
()

,pts_]:=PDIPlot[1-TorusKnot[m,n,x+I y]l,{x,-2,2},{y,-2,2},

—,0_

pzol[m

Prolog -> {PointSize[1.2/pts]},

AspectRatio -> Automatic,PlotPoints -> pts]

BasicBlock -> (Point[#1]&),
pzol[3,2,120]

R

o mou“o"

o ea T e & L o
8 8%, w“n&' oooouuu.no.%oououo iy X3 auo o“oouo-.% %

° ouuo oooooo o‘u‘mo' o.uou.t-mm
-mou 1..4.”

® 9

. ¥ Sagv 2! ...(.c. .3 o.....; C o
”o Imw oooooo-o o < 3 onuoulouo o3 K h‘i—\ na
.. [)

PDIPlot [Cos[x]Cos[y],{x,-156.7,15.7},{y,-15.7,15.7},ApparentDepth->.4,
BasicBlock->(Point [#1]&) ,AspectRatio->Automatic,PlotPoints->300,
Prolog->{PointSize[.004]}]

. ._“.",__ .‘5‘.‘.
i !'?"‘: : ;‘ / ,:i\..ﬁq
ia.!}‘h:“ff:}."' ggﬁ?.:’i}% :

R oy 0

% N

o <Rty ::: &

There are many other directions to check — the reader is welcome to try to plot other
functions, color PDI’s, animated PDI’s, The reader is advised to first try PDI’s of
relatively low resolution (say PlotPoints -> 48 or so), before attempting to reproduce the
PDUI’s in this article. These were produced on a fast workstation, and each took few hours
of computing time.

The package PDI.m. The package PDI.m is just the program displayed before, with
some additional options added. The only substantial improvement is that a new Graphics
primitive, PDIArray [basicblock_,pts_], is defined. pts is a list of points, and basicblock
is a pure function that is used to render each point in pts. PDIPlot gives it’s output in the
form of a PDIArray, and this PDIArray is not converted into simpler primitives until the
plot is displayed. This trick saves a significant amount of memory.

10

BeginPackage["PDI‘"]
PDIPlot::usage ="\n
PDIPlot [exp,{x,xmin,xmax},{y,ymin,ymax}] returns a perceived-depth-image\n
of the graph of the function given by exp. Options:\n
PlotPoints (can be an integer or pair of integers; defaults to 60);\n
Periods (6); PlotRange ({-1,1}); Density (.5); ApparentDepth (1.);\n
Guides (True); BasicBlock (Rectangle [#1-#2,#1+#2]&).\n
Other options are passed on to Graphics."
SetAttributes [PDIPlot,HoldFirst];
Options[PDIPlot] := {PlotPoints -> 60, Periods -> 6, Guides -> True,
PlotRange -> {-1,1}, Density -> .5, ApparentDepth -> 1.,
BasicBlock :> (Rectangle[#1-#2,#1+#2]&)}
Begin[" ‘private‘"]
(* A new Graphics primitive *)
Unprotect [Display]
Display[channel_,graphics_7(!FreeQ[#,PDIArrayl&)] :=
(Display[channel,graphics /.
(PDIArray[basicblock_,size_,pts_] :>
(basicblock[#,sizel& /@
(Flatten[Outer[List,First[#],{Last[#]}],11)& /@ pts))];
graphics)
Protect [Display]
PDIPlot [expr_,{x_Symbol,xmin_7NumberQ,xmax_7NumberQ},
{y_Symbol,ymin_?NumberQ,ymax_?NumberQ},opts___] :=

Block[{plotpts =(PlotPoints /. {opts} /. Options[PDIPlot]),
periods =(Periods /. {opts} /. Options[PDIPlot]),
zrange =(PlotRange /. {opts} /. Options[PDIPlot]),
density =(Density /. {opts} /. Options[PDIPlot]),
depth =(ApparentDepth /. {opts} /. Options[PDIPlot]),
basicblock =(BasicBlock /. {opts} /. Options[PDIPlot]),
guides =(Guides /. {opts} /. Options[PDIPlot]),

xres,xpts,xv,xsample,xsteps,xfull,xshift,
ypts,i,yv,zmin,zmax,zmid,zscale},
(* Some scaling calculations *)
{zmin,zmax} = zrange ; xres=Floor[xpts/periods];
zmid = (zmax+zmin)/2 ; zscale = .06depth(xmax-xmin)/(zmax-zmin);
{xpts,ypts} = If[Length[plotpts]==2,plotpts,{plotpts,plotpts}];
(x The strips *)
xsteps=xres*Table[i,{i,-.5,periods-1.5}];
(* The main program *)
Show [Graphics [{PDIArray[basicblock, {(xmax-xmin) /xpts, (ymax-ymin) /ypts}/2,
(* Loop over the values of yv *)
Table[
(* Filling the current row of the left-most strip randomly *)
xsample=Flatten[Position[Table [Random[]<density,{xres}],Truel];
(* The x values to be used in this row *)
xv=N[xmin+0Outer [Plus,xsteps,xsample-1]*(xmax-xmin)/xpts] ;
(* Computing the left/right shift of every block *)
z=N[Map[(expr /. {y->yv,x->#})&,xv,{2}]1]1-zmid;

11

xshift=zscale Accumulate[Plus,z];
(* Final positioning of the blocks *)
xfull=xv-((#-Last[xshift]/2)& /@ xshift);
{Flatten[xfull]l,yv}, {yv,ymin,ymax, (ymax-ymin)/ypts}l],
(* If guides==True, add guiding rectangles *)
If [guides, (Rectangle @@ #)& /@ Map[
({.5xmax+.5xmin, 1. 1lymin-. lymax}+{xmax-xmin, ymax-ymin}#/2/periods)&,
{{{-2.1,-.13,{-1.9, .13}, {{-.1,-.1},{. 1, . 13}},{2}], {31},
Sequence@@Select [{opts}, !MemberQ[First /@ Options[PDIPlot],First[#]]&]
111

End[]

EndPackage []

Exercise. Take a second look at the PDI plot of sinr. You can see that the second
circular hill, the last that can be seen in the picture, is a bit ‘squarish’. Why is it so? How
can it be avoided?

Notes. Our PDI’s are a slightly modified version of B. Julesz’s ‘Random-dot stere-
ograms’ [2], invented by D. S. Falk, D. R. Brill and D. G. Stork [1, 3]. The TLA PDI was
coined by a company, 3D-Hardcopy of Salt Lake City, Utah, which is producing full size PDI
posters of exactly the same type as ours. To order, call Jeremy Westover at (503) 345-9359.
I wish to thank S. Levy for his Mathematica™ advice and editorial help.

References

[1] D.S. Falk, D. R. Brill and D. G. Stork, Seeing the light : optics in nature, photography,
color, vision, and holography, Harper & Row, New York, 1986.

[2] B. Julesz, Foundations of Cyclopean Perception, The University of Chicago Press,
Chicago 1971.

[3] D. G. Stork and C. Rocca, Software for generating auto-random-dot stereograms, Be-
havior Research Methods, Instruments, & Computers 21 (1989) 525-534.

12

Postscript. On March 24, 1999, I got the image below from John Sullivan, who found
it at Andrei Gnepp’s web page, who got it from an unknown source. It serves as a wonderful
postscript to this paper:

_______________________________ K K
here gold slim where gold slim where gold slim where gold slim where gold slim w
ly dog camel silly dog camel silly dog camel silly dog camel silly dog camel sil
eird dish goat weird dish goat weird dish goat weird dish goat weird dish goat w
cky bank mile lucky bank mile lucky bank mile lucky bank mile lucky bank mile 1lu
d stop rook brand stop rook bran stop crook bran stop crook bran stop crook bran
wasting ill ton wasting ill to wasting pill to wasting pill to wasting pill to w

your host plant your host plan your ghost plan your ghost plan your ghost plan
s time pot stands time pot stand time spot stand time spot stand time spot stand
egg diet please egg diet please egg diet please egg diet please egg diet please
y a hit fool many a hit fool many a hit fool many a hit fool many a hit fool man
junkyard camels junkyard camels junkyard camels junkyard camels junkyard camels
dise fender paradise fender paradise fender paradise fender paradise fender para
ittles bitter skittles bitter skittles bitter skittles bitter skittles bitter sk

y lucky wow! very lucky wow! very lucky wow! very lucky wow! very lucky wow! ver
_______________________________ b e s Tkttt

13

