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Signs?
What is it? A cube for each knot/link projection; % / \
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Where does it live? In Kom(Mat(<Cob> /{S, T, 4Tu})) / homotopy -
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Euler characteristic is the Jones polynomial. But is it invariant? //i)]] E. . H ]
The key point: O V= (vp,v_), degvy =+l (With similar proofs . o ‘
for R—II and R—IIT) , t-&J ot
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Why is it interesting? A functor? '
1. It is stronger than the Jones polynomial. VR )
: P IR X

2. It is less understood than the Jones polynomial:

a. Does it have a topological interpretation?
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b. Does it have a "physical" interpretation? .
c. Does it also work for other ST
quantum invariants? / Q
. . R3 |
d. Does it work for manifolds e
and for knots in manifolds? y x/ o — R/
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e. Is there a relation with I e X ! N
finite—type invariants? “ 0 /
f. Does it work for "virtual knots"? Y,
3. Jacobsson, Khovanov: It is a functor!!! R3 K
(from knots and cobordisms to u XelX A

complexes and morphisms)
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