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ALGEBRAIC STRUCTURES ON KNOTTED OBJECTS AND
UNIVERSAL FINITE TYPE INVARIANTS

DROR BAR-NATAN AND DYLAN P. THURSTON

ABSTRACT. We discuss a number of topics related to algebraic constructions of universal
finite type invariants. The idea is to find presentations of knot theory, or of some mild
generalizations of knot theory, in terms of finitely many generators and relations, and then
to construct a universal finite type invariant by setting its values on the generators so as
the relations are satisfied. One such presentation involves knotted trivalent graphs, and is
genuinely 3-dimensional. In this presentation the generators turns out to be the standardly
embedded tetrahedron A and the relations are on one hand equivalent to the pentagon
and hexagon relations of Drinfel’d’s theory of associators and on the other hand they are
closely related to the Biedenharn-Elliot identities of 6j-symbols and to the Pachner moves
of the theory of triangulations. Another such presentation involves Jones’ notion of a planar
algebra [J] and leads to a crossing-centric constructions of a universal finite type invariant (as
opposed to the now-standard associativity-centric construction). Much of what we discuss
is work in progress, and this article contains many “live ends”, unfinished problems that
don’t seem to be dead ends.

This work in progress is available electronically at http://www.ma.huji.
ac.il/~drorbn/Misc.
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1. INTRODUCTION

1.1. Finite type invariants and the fundamental theorem.

Summary. A brief introduction to the fundamental theorem and universal finite type
invariants. You can find all that (and more) in [BNS].

The Fundamental Theorem of Finite Type Invariants' has a deceptively simple formulation
and a surprising number of proofs and partial proofs, each one coming with its own philosophy
and employing its own set of tools. The purpose of this article is to further study one family
of approaches, the algebraic approaches, not so much as to prove the theorem, for this summit
is already multiply climbed, but rather for the mere beauty of these specific paths, for the
view from some of the vista points along those, for some new perspectives and insights
gained along the way, and, well, o.k., also for an occassional technical advantage over the
other approaches. In fact, some of the paths we will take don’t even make it all the way to
the top, or if they do, they are sometimes obviously non-geodetic, but to find the nearby
shorter routes one would have to venture a bit into still unexplored territory. So another
reason for the existance of this article is to encourage ourselves, and others, to complete and
improve what we already have. Thus quoting from the abstract, this article suggests many
“live ends”, unfinished problems that don’t seem to be dead ends.

In one form, the Fundamental Theorem of Finite Type Invariants, or just the Fundamental
Theorem throughout this article, asserts that there exists a universal finite type invariant, an
essential invariant 7 : K(O9) — A(O). Let us start by defining the terms in this statement,
and then, in the further parts of this introduction, we will sketch the algebraic family of
approaches (to be followed by full details in Sections 2—4):

TAlso known as the Fundamental Theorem of Vassiliev Invariants or Kontsevich’s Theorem or simply
Kontsevich’s Integral after the main ingredient of its first proof.
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e K(09) is the set of all framed knots. When we draw knots in the plane? we will always
assume the standard blackboard framing, except when using the notations == and -=,
which indicate a right-handed and left-handed framing twists, respectively. Thus for

example,
_/& e S _j¥ - ——

e A() is the usual graded-completed algebra of chord diagrams whose skeleton is a
circle, modulo AS, THX and STU relations®:

o e
e
STU: Y: -

e We now come to the only condition that Z has to satisfy, that it be “essential”. Recall
first that any knot invariant with values in an Abelian group can be extended to n-
singular knots, knots with n double point, by iterated use of the local formula

Z(X) = Z(X) — Z(X).

Recall also that the symbol Dg of an n-singular knot K is the degree n chord diagram
obtained by taking the parameter space of K, a circle, and connecting by a chord any
pair of points on that circle that are identified in the image:

Vo 80 50 -0

The “essential” condition on Z is that whenever K is an n-singular knot,

(2) Z(K) = Dk + terms of higher degree.

An equivalent formulation of the Fundamental Theorem is that every degree n weight
system is the nth derivative of some type n invariant; in particular, it follows that there
are lots of finite type invariants, and it reduces the problem of their enumeration to a finite
algebro-combinatorial problem at any fixed degree.

1.2. Generators, relations and syzygies.
Summary. As a toy model for the algebraic approach to the construction of Z, we give
a brief introduction to generators, relations and syzygies in a group-theoretical context,
and their use in the construction of group representations.

As we have already mentioned, there are many approaches to the construction of an in-
variant 7 : () — A(0) satisfying the condition in Equation (2). The algebraic approach,
which is the topic of this article, is to find some algebraic context within which the set
K(O) (or some mild generalization thereof) is finitely presented, and then to use this finite

2As we are often forced to do due to the limitations of our media.
3If these terms don’t seem terribly “usual” to you, you should fix that before proceeding. Being totally
unbiased, our favorite reference is [BN1].
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presentation to define Z. Namely, one would have to make wise guesses Z(K;) for the values
of Z on the generators K; of K((9), so that for each relation R;(K7y,...) the corresponding
values of 7 would satisfy the corresponding relation R;(Z(Ky),...) (two comments: 1. For
this to make sense A((9) must carry the same kind of algebraic structure as K(0); 2. The
verification of essentiality, Equation (2), is typically easy).

Let us see what this entails on a toy model. Suppose we want to find invariants of elements
of the set By of braids on 4 strands. One way to proceed is to notice that B, carries an
algebraic structure, that is, it has an associative product which makes it a group. Thus we
may seek invariants on B4 with values in associative algebras, which respect the algebraic
structure. Such creatures are not new on the mathematical scenery; they are usually called
“sroup representations”. Our approach to finding representations of By would be to make
wise guesses for their values Z(o1), Z(02) and Z(o3) on the generators oy, o3 and o3 of By
(see Figure 1), so as to satisfy the relations between the o;’s. Setting z; := Z(0;), these
relations are (again see Figure 1):

(3) 2123 = 2321, Z21Z921 = 292129 and 292329 = 232923.

In our real problem, the construction of Z : K(09) — A(O), the target space A(0) is
graded, and we will attempt to construct Z inductively, degree by degree. Thus we will be
asking ourselves, “suppose our construction is done to degree 16; can we extend it to degree
177”7, Let us go back to the toy model and examine the situation over there. Let A be
an associative algebra and let ./ C I C A be ideals in A (think “/ = {degrees > 17} and
J = {degrees > 17}”) so that -1 C J (“17 4+ 17 > 177). Suppose we have z; € A which
satisfy the equations (3) in A/I (“done to degree 16”). But equations (3) may fail in A/.J;
let A, ¢4, € 1/J be the errors in when these equations are considered in A/.J:

(4) A= 2123 — 2321, W, = 212921 — 292123 and Wy 1= 292329 — 232923.

We wish to modify the z;’s so as to satisfy equations (3) in A/.J (“extend to degree 177),
so we sef

(5) zi=z+( €Al

where we assume that (; € 1/.J (so as z; = z/ in A/I) (“the correction (; is of degree precisely
177). We now compute the new errors X, ¢! ) € I/.J in terms of the old ones and using
the property I -1 C .J:
(6) Noi= Az -z = (4 G)(es + G) — (234 G)(z + G

= 2123 — 2321 + 21(3 + (123 — 2301 — (321

= A4 Gizs+ 2103 — (321 — 23(q,
and likewise,
Yo = Yo+ G2z + 21021 + 21226 — Q2122 — 220122 — 2221 (o,
Yy = Uy (2322 + 220322 + 222302 — (32225 — 230223 — 2322(s.

These are linear (] uations and thus to solve our roblem namely to ﬁnd i7S SO that
q ) p )
/\/ = I = = 0 we need to ShOW that the tI‘i 16 E = /\ a b € AS iS iIl the ima (] Of
a b ) p 9 9 g
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Figure 1. A finite presentation of the group B4 and one of its syzygies. The central frame
in this figure shows the generators o1, 09 and o3 of B, followed by a standard way of writing
the relations between them. The outside frame shows a syzygy between these relations — a
closed loop whose vertices are words in the generators o; and whose edges are relations. See
Comment 6.1.

the linear map d" : A®> — A? defined by

G Cizs + 21(3 — (321 — 23(;
d | G | = | Grozi + z1Gz + 21220 — Q2122 — 220122 — 22212
€ (o232 + 220322 + 222302 — (32223 — 230223 — 232203

Our strategy to show that £ € imd" is to find a second linear map d°, whose domain is
the target space of d", so that d° o d” = 0 and so that d*F£ = 0. This done we can define
the homology group H := kerd®/imd", and if by some magical means we could prove that
it vanishes, we would use d°F£ = 0 to determine that £ € imd”", and our problem would
be solved. We will mention techniques for the computation of the homology group H in
Section 5. For now we only wish to describe how the map d° is found.
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To find linear relations between the errors A, v, and v, we start with a syzygy for our
presentation of the braid group B; — a closed loop whose vertices are words in the generators
o; and whose edges are relations. When we perform the replacement o; — 2; on the vertices

of a syzygy, say the one displayed in Figure 1, we get a loop like such:

(7) Z1297123%2221 Z129R3%1R89281 ———— > 212223222179
—2z120 2021 —212223%a
Yaz3 2221 —2z1¢pz1 22
221722352721 217322732172
2221 Y21 —Az0 232122
22173222321 Z3L1%273%172
zZ2 )\2223 zZ1 Z32122 )\22
Z9R3Z1%292723%21 Z321222123%9
—29232122A —ZBwaZSZQ
Z9R3Z129221%3 Z3R9RZ1R2923%2
2223%q23 —232221¢%
Yy2z12223 —2322A2223
R£QRZ37271%2%3 £3%2%3%1%2%3 2382217232273

Now given that the edges of a syzygy are relations, we know that the difference between the
element written at the head of any given edge and at the tail of that edge is a multiple of
A, g or tby. These multiples are written to the side of each edge in Equation (7). By the
ouroboros? summation formula (a cousin of the telescopic summation formula, but where
the beginning point and the end point are the same) the sum of these differences is 0. That
is, I/ is in the kernel of the linear map d® defined by

A —2129A2021 — 212223, — 21Ppz129 — AZa232120 + 23212202
S . —
d . E == ¢a — —23¢a2322 — 232221¢b — 2322/\2223 —|— 77be12223 —|— 2223¢a23
Py —29232129\ + 29 A292321 + 2oz1p21 + Ya232227.

Moral. Tt would be nice to have an algebraic context within which knot theory is finitely
presented and within which the syzygies of the presentation are simple to analyze.

Problem 1.1. In the specific case of the presentation of Figure 1 of the braid group B,
(and its obvious generalization to B,), we don’t know if the methodology of this section
can actually be used to construct invariants (though we do know of some more complecated
situations in which this methodology is useful; see the rest of this article). This is especially
interesting when the target algebra A is taken to be the algebra A’ of chord diagrams for
braids (see e.g. [BN4]).

1.3. Parenthesized tangles.

Summary. As an example where the scheme of Section 1.2 has been successfully used,
and also in order to display some formulas for later use in this article, we give a very
quick reminder of parenthesized tangles and the pentagon and hexagon relations and
their syzygies, along the lines of [BN3, BN5, LM].
The papers [BN3, BN5, LM] introduce an algebraic context within which the scheme of
Section 1.2 is used to construct a universal finite type invariants of links. The “algebraic

*http://www.draconian.com /whatis/whatis.htm
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Figure 2. The pentagon relation O and its tensor-category-theoretical origin.
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Figure 3. The positive and negative hexagon relations O and their tensor-categorical origin.

context” there is the structure of a category with certain additional operations. Rather than
defining everything in full, we will just recall some key notions, pictures and formulas here.

The category PaT of “parenthesized tangles”, (the
algebraic structure which we wish to represent, like <-
By in Section 1.2) is the category whose objects C
are parenthesizations such as (((-)-)-) or ((--)(++)), /\ —\
and whose morphisms are tangles with parenthe- " g <<

. . 3 Ay /\
sized top and bottom. See the picture on the right, <<<

which also illustrates how parenthesized tangles are composed.

The category PaT carries some additional operations. The '

most interesting are the “strand addition on the left /right”
operations, and the strand doubling operations (illustrated /\ ((()/\
on the right). More details are in [BN3, BN5, LM].

Likewise, one can set up a category PaA of “parenthesized chord diagrams”, that captures
the “symbols” of “singular” parenthesized tangles as in Equation (1). The category PaA
supports the same additional operations as PaT, and one may wish to look for structure
preserving functors Z : PaT — PaA which are “essential” in a sense similar to that of

Equation (2). In [BN3], this is done following the same generators-relations-syzygies sequence
as in Section 1.2:

1.3.1. Generators. The category PaT is generated by the morphisms Il and X. We set d =
Z(”) and R = Z(X) and then reconsider these morphisms in PaA as elements ® € A(13)
and R € A(T2), where A(T,) denotes the usual space of chord diagrams modulo AS, THX

and STU relations on a skeleton made of n vertical lines.

1.3.2. Relations. There are several relations beween |-l and X as elements of the algebraic
structure PaA, as listed in [BN3]. The most prominent of those are the pentagon O and the
two hexagon relations Oy, displayed in Figures 2 and 3.
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Now let us assume that we already found R and ® so that the relations between them
corresponding to O and O are satisfied up to degree 16 (say), and let g and 1 be the
degree 17 errors in these equations (compare with Equation (4)). That is, modulo degrees
18 and up we have (notaion as in [BN3], compare with [BN3, Equations (10) and (11)]):

po= O (10AL)()- o™ - (Ae1e 1)(®) (1012 A)(P),
¢i — (I)123 . (R:I:I)QS((I)—I)ISQ . (R:I:I)IB . (I)312 o (A ® 1)(R:F1)
Proceeding as in Equation (5) we set ® = ® + ¢ and R’ = R + r with ¢ and r of degree
17, and like in Equation (6) we get (compare with [BN3, Equations (12) and (13)]):
W= nt e —(Aelel)(p)+ (1o Al)(p) - (1218 A)(e) +¢™
Yo = s B ol P12 (7“23 (AR D) + 7“13) ‘

Thus we are interested in knowing whether the triple £ := (g, v4) is in the image of the
linear map

N PP —(A1a1)(e)+ (12 Al)(¢) - (1210 A)(¢)+¢'*
d <r>'_>< 99123—99132+L,9312:|:(r23—(A@l)(r)—l—rlS) )

1.3.3. Syzygies. On like in Section 1.2, the trick is to use syzygies between the & and O
relations to reduce the problem to the computation of a homology group H := kerd®/imd"
where d® is some other linear map, for which d* o " = 0 and d°FE = 0. Again, this was
carried out in full in [BN3]. Here we only reproduce the four syzygies we need to use (see
Figure 4) and the resulting map d* (the four components of d° correspond to the syzygies

; i : the symbol (A111) denotes (A ® 1 ® 1 ® 1) etc.; compare

with [BN3, Equations (15-19)]):

P (ATT() 4+ (1A11) () — (1TA)(p) + (111A) (1) — 12
Iu Iu1234 _ Iu1243 _I_ Iu1423 4123 ?7/)234 (All)(¢+) _ (1A1)(,¢+) 124
ds . < ) — Iu1234 Iu

in Figure 4 in the order

¢i 1324 _I_ILL3124 3142 _I_ILL3412 _I_Iu1342
124 + (11A)(,¢+) 123 771}342 (All)(¢331) _ 77Z)?_>41
3_13 _ 123 ,¢231 ¢321

1.4. Plan of the paper. TBW.

1.5. Acknowledgement. We wish to thank Greg Kuperberg for comments and sugges-
tions.

2. KNOTTED TRIVALENT GRAPHS

2.1. Knotted trivalent graphs and some moves between them.

Summary. Here we will define the class of knotted objects we will be working with
(knotted trivalent graphs, KTG) and the elementary moves between them. For now,
see [BN7, handout].

2.2. The set of knotted trivalent graphs is finitely generated.

Summary. Here we will show that with the elementary moves of the previous section,
the set KTG is generated by just two of it’s elements: the trivially embedded positively
twisted M6bius band & and the trivially embedded tetrahedron A. For now, see [BN6,
slides 11-16] and [BN7, handout].
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2.3.

2.4.

2.5.

2.6.

b(ac)

Figure 4. Four syzygies in PaT. The vertices in these pictures correspond to objects of
PaT, the edges to morphisms, the faces to relations and hence each of the four polyhedra is
a single syzygy. Further details are in [BN3, BN5].

Chord diagrams on trivalent skeleta.

Summary. This is the relevant space of chord diagrams for invariants of knotted
trivalent graphs. For now, see [MO].

Symmetries, the pentagon and the hexagon relations.

Summary. Here we discuss some relations between the generators C and A of KTG and
show that they are equivalent to Drinfel’d’s pentagon and hexagon relations [Drl, Dr2].
For now, see [BN7, handout].

Vertex renormalizations and uniqueness.

Summary. Here we will talk about the uniqueness up to vertex renormalizations of a
well behaved universal invariant of knotted trivalent. This is the parallel in our theory
of the uniqueness up to gauge equivalence of well behaved invariants of q-tangles [L.M].

Is KTG finitely presented?
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Summary. This is a sticky point. We are quite sure that relative to the elementary
moves and with the generators G and A the set KTG is finitely presented, and we are
quite sure that we know all the relations, and they are the pentagon and hexagon of
Section 2.4. But depending on our mood in the morning of any given day, we either
don’t have a proof or are very unhappy about the proof we have. No reference yet.

2.7. The relation with 6j-symbols and Turaev-Viro invariants.

Summary. Here we will explain how within our context Z(A) is related to the theory
of 65-symbols. A nice Lie algebra problem still remains. No reference yet.

2.8. The relation with perturbative Chern-Simons theory.

Summary. Our discussion so far implies that if one could set up a well behaved
perturbative Chrn-Simons theory (synonymously, a well behaved theory of configuration
space integrals), then the invariant of the tetrahedron A would be an associator, when
viewed in the right way. We plan a short discussion of this matter here. No reference
yet.

2.9. Some dreams regarding Witten’s Asymptotics Conjecture and the Kashaev-
Murakami-Murakami Volume Conjecture.

Summary.  We have some very speculative remarks (that in fact where the origin
of this whole study) as for the relationship between everything here and the Witten’s
Asymptotics Conjecture (that the asymptotics of the Reshetikhin-Turaev invariants is
governed by Feynmann-diagram expansions around flat connections) and its sibling the
Kashaev-Murakami-Murakami Volume Conjecture. Little as we have to say about it,
we’ll say it here. For now, see [BN6].

3. PLANAR ALGEBRAS

Summary.  Another approach for understanding knot theory as a finitely presented
theory is within the context of planar algebras which we will review is Section 3.1. Within
the context of planar algebras, knot theory has a very nice (and familiar) decription —
it is the theory generated by crossings modulo the standard Reidemeister moves. Even
the syzygies of this theory are simply enumerated by codimension two singular plane
projections. For now, see [BN8, BN9].

3.1. A quick introduction to planar algebras. For now, see [J].

3.2. The standard planar algebras of tangles and of chord diagrams and the no-go
theorem.

Summary. Here we will describe the standard planar algebras of tangles and its
associated standard algebra of chord diagrams, and show that there is essential planar
algebra map from the former planar algebra to the latter. For now, see [BN9, slide 16].

3.3. Shielded chord diagrams and tangles.

Summary. There is a “better” planar algebra of chord diagrams, that does support a
universal finite type invariant. We will define it here. For now, see [BN9, slides 17-18].

3.4. Generators, relations and syzygies.

Summary. Here is where we will go through the generators-relations-syzygies sequence
in the case of the planar algebra of tangles. Nothing’s formally written yet.
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4. ANNULAR BRAIDS

Summary. This is another semi-successful algebraic approach to the construction of
a universal finite type invariants via generators and relations. The central objects here
are “annular braids”, braids in an annulus cross an interval (rather than a disk cross an
interval). Nothing written yet.

5. APPENDIX: SYMMETRIZATION AND ANONYMIZATION

Summary. Here we will recall the three-step reduction of chord-diagram-valued equations-
given-constraints problems into manageable homological algebras problems, as in [Dr2,

LM, BN3].
5.1. Linear substitution problems. TBW.
5.2. Symmetrization. TBW.
5.3. Anonymization. TBW.

6. APPENDIX: COMMENTS
6.1. A comment on Figure 1. It would be worthwhile for the reader to reflect on the
relationship between the relations and the syzygies of B, and singularities of plane curves.

i
One such codimension one singularity is the triple point k, which corresponds to the
last two relations above, which can be viewed as “the motion of a double point across a line”.

One such codimension two singularity is the quadruple point %, and it corresponds

to the syzygy of Figure 1: There is a circle-worth of generic deformations of the quadruple
N

}J “~—. The different

codimension one singularities along this rotation are exactly the relations in our syzygy.

point, corresponding to “the cross rotating around the target”:
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