Dror Bar-Natan: Classes: 2004-05: Math 157 - Analysis I:

Math 157 Analysis I - Solution of Term Exam 3

web version:
http://www.math.toronto.edu/~drorbn/classes/0405/157AnalysisI/TE3/Solution.html

Problem 1.

1. Compute $\int_{0}^{1} \sqrt{x} d x$.
2. Compute $\int_{0}^{\pi} \sin x d x$.
3. For $x \geq 0$, compute $\frac{d}{d x} \int_{x^{3}}^{157} \sqrt{t} d t$.

Solution. (Graded by Shay Fuchs)

1. To use the second fundamental theorem of calculus we are looking for a function f for which $f^{\prime}=\sqrt{x}=x^{1 / 2}$. The most obvious guess is $f(x)=x^{3 / 2}$, but this is off by a factor of $3 / 2$, for $\left(x^{3 / 2}\right)^{\prime}=\frac{3}{2}=x^{1 / 2}$. So a good answer would be $f(x)=\frac{2}{3} x^{3 / 2}$. Now

$$
\int_{0}^{1} \sqrt{x} d x=\int_{0}^{1} f^{\prime}(x) d x=\left.f\right|_{0} ^{1}=f(1)-f(0)=\frac{2}{3} 1^{3 / 2}-\frac{2}{3} 0^{3 / 2}=\frac{2}{3} .
$$

2. Likewise choose $f(x)=-\cos x$ to get $f^{\prime}(x)=\sin x$, and so using the second fundamental theorem of calculus,

$$
\int_{0}^{\pi} \sin x d x=\int_{0}^{\pi} f^{\prime}(x) d x=f(\pi)-f(0)=-\cos \pi-(-\cos 0)=2
$$

3. Let $g(y)=\int_{157}^{y} \sqrt{t} d t$ and let $f(x)=x^{3}$. Using the first fundamental theorem of calculus, $g^{\prime}(y)=\sqrt{y}$. So using the chain rule,

$$
\begin{aligned}
\frac{d}{d x} \int_{x^{3}}^{157} \sqrt{t} d t & =\frac{d}{d x}\left(-\int_{157}^{x^{3}} \sqrt{t} d t\right)=-(g \circ f)^{\prime} \\
& =-g^{\prime}(f(x)) f^{\prime}(x)=-\sqrt{x^{3}} 3 x^{2}=-3 x^{7 / 2}
\end{aligned}
$$

Problem 2.

1. Perhaps using L'Hôpital's law, compute $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ and $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
2. Use these results to give educated guesses for the values of $\sin 0.1$ and $\cos 0.1$ (no calculators, please).

Solution. (Graded by Shay Fuchs)

1. $\sin x$ is differentiable at 0 and $\sin 0=0$. So

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\sin x-\sin 0}{x}=\sin ^{\prime} 0=\cos 0=1 .
$$

(L'Hôpital's law also works and gives the same result).
The second limit is of the form $\frac{0}{0}$ so we can use L'Hôpital:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{(1-\cos x)^{\prime}}{\left(x^{2}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{1}{2} .
$$

2. 0.1 is close to 0 , so $\frac{\sin 0.1}{0.1} \sim \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. Multiplying both sides by 0.1 we get $\sin 0.1 \sim 0.1$.
Likewise, $\frac{1-\cos 0.1}{0.1^{2}} \sim \frac{1}{2}$, so $1-\cos 0.1 \sim \frac{1}{2} 0.1^{2}=0.005$, so $\cos 0.1 \sim 0.995$.

Problem 3.

1. State the "one partition for every ϵ " criterion of the integrability of a bounded function f defined on an interval $[a, b]$.
2. Let f be an increasing function on $[0,1]$ and let P_{n} be the partition defined by $t_{i}=i / n$, for $i=0,1, \ldots, n$. Write simple formulas for $U\left(f, P_{n}\right)$ and for $L\left(f, P_{n}\right)$.
3. Under the same conditions, write a very simple formula for $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)$.
4. Prove that an increasing function on $[0,1]$ is integrable.

Solution. (Graded by Derek Krepski)

1. A bounded function f defined on an interval $[a, b]$ is integrable iff for every $\epsilon>0$ there is a partition P of $[a, b]$ for which $U(f, P)-L(f, P)<\epsilon$.
2. As f is increasing, $m_{i}^{P_{n}}=\inf _{\left[t_{i-1}, t_{i}\right]} f(x)=f\left(t_{i-1}\right)$ and $M_{i}^{P_{n}}=\sup _{\left[t_{i-1}, t_{i}\right]} f(x)=$ $f\left(t_{i}\right)$. Thus

$$
U\left(f, P_{n}\right)=\sum_{i=1}^{n} M_{i}^{P_{n}}\left(t_{i}-t_{i-1}\right)=\sum_{i=1}^{n} f\left(t_{i}\right) \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) .
$$

Likewise, $L\left(f, P_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(t_{i-1}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i-1}{n}\right)$.
3.

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(t_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(t_{i-1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)
$$

using telescopic summation this is

$$
=\frac{1}{n}\left(f\left(t_{n}\right)-f\left(t_{0}\right)\right)=\frac{1}{n}(f(1)-f(0)) .
$$

4. Since f is increasing, f is bounded (with upper bound $f(1)$ and lower bound $f(0))$. So using the criterion of part 1 , to show that f is integrable it is enough to show that for every $\epsilon>0$ there is a partition P of $[0,1]$ for which $U(f, P)-$ $L(f, P)<\epsilon$. Indeed, let $\epsilon>0$ be given. Choose n so big so that $\frac{1}{n}(f(1)-f(0))<$ ϵ, and then the partition $P=P_{n}$ of before satisfies $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=$ $\frac{1}{n}(f(1)-f(0))<\epsilon$, as required.

Problem 4.

1. Show that the function $f(x)=3 x-x^{3}$ is monotone on the interval $[-1,1]$.
2. Deduce that for every $c \in[-2,2]$ the equation $3 x-x^{3}=c$ has a unique solution x in the range $-1 \leq x \leq 1$.
3. For $c \in[-2,2]$, let $g(c)$ be the unique x in the range $-1 \leq x \leq 1$ for which $3 x-x^{3}=c$. Write a formula for $g^{\prime}(c)$ and simplify it as much as you can. Your end result may still contain $g(c)$ in it, but not f, f^{\prime} or g^{\prime}.

Solution. (Graded by Brian Pigott)

1. $f^{\prime}(x)=3-3 x^{2}=3\left(1-x^{2}\right)$. On $(-1,1)$ we know that $x^{2}<1$, so $f^{\prime}(x)>0$. So f is increasing on $[-1,1]$.
2. By the theorem about the existence of inverses of monotone functions, f has an inverse on $[-1,1]$ and it is defined on $[f(-1), f(1)]=[-2,2]$. This precisely means that for $c \in[-2,2]$ the equation $3 x-x^{3}=c$ (which defines $f^{-1}(c)$) has a unique solution with x in the range $-1 \leq x \leq 1$.
3. By the theorem about the derivative of an inverse function,

$$
g^{\prime}(c)=\frac{1}{f^{\prime}(g(c))}=\frac{1}{3\left(1-g(c)^{2}\right)} .
$$

The results. 67 students took the exam; the average grade was 77.7 and the standard deviation was about 22 .

