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Problem 1.

1. Compute

∫ 1

0

√
x dx.

2. Compute

∫ π

0

sin x dx.

3. For x ≥ 0, compute
d

dx

∫ 157

x3

√
t dt.

Solution. (Graded by Shay Fuchs)

1. To use the second fundamental theorem of calculus we are looking for a function
f for which f ′ =

√
x = x1/2. The most obvious guess is f(x) = x3/2, but this

is off by a factor of 3/2, for (x3/2)′ = 3
2

= x1/2. So a good answer would be
f(x) = 2

3
x3/2. Now

∫ 1

0

√
x dx =

∫ 1

0

f ′(x)dx = f |10 = f(1)− f(0) =
2

3
13/2 − 2

3
03/2 =

2

3
.

2. Likewise choose f(x) = − cos x to get f ′(x) = sin x, and so using the second
fundamental theorem of calculus,

∫ π

0

sin x dx =

∫ π

0

f ′(x)dx = f(π)− f(0) = − cos π − (− cos 0) = 2.

3. Let g(y) =
∫ y

157

√
t dt and let f(x) = x3. Using the first fundamental theorem

of calculus, g′(y) =
√

y. So using the chain rule,

d

dx

∫ 157

x3

√
t dt =

d

dx

(
−

∫ x3

157

√
t dt

)
= −(g ◦ f)′

= −g′(f(x))f ′(x) = −
√

x33x2 = −3x7/2.

Problem 2.
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1. Perhaps using L’Hôpital’s law, compute lim
x→0

sin x

x
and lim

x→0

1− cos x

x2
.

2. Use these results to give educated guesses for the values of sin 0.1 and cos 0.1
(no calculators, please).

Solution. (Graded by Shay Fuchs)

1. sin x is differentiable at 0 and sin 0 = 0. So

lim
x→0

sin x

x
= lim

x→0

sin x− sin 0

x
= sin′ 0 = cos 0 = 1.

(L’Hôpital’s law also works and gives the same result).

The second limit is of the form 0
0

so we can use L’Hôpital:

lim
x→0

1− cos x

x2
= lim

x→0

(1− cos x)′

(x2)′
= lim

x→0

sin x

2x
=

1

2
lim
x→0

sin x

x
=

1

2
.

2. 0.1 is close to 0, so sin 0.1
0.1

∼ limx→0
sin x

x
= 1. Multiplying both sides by 0.1 we

get sin 0.1 ∼ 0.1.

Likewise, 1−cos 0.1
0.12 ∼ 1

2
, so 1− cos 0.1 ∼ 1

2
0.12 = 0.005, so cos 0.1 ∼ 0.995.

Problem 3.

1. State the “one partition for every ε” criterion of the integrability of a bounded
function f defined on an interval [a, b].

2. Let f be an increasing function on [0, 1] and let Pn be the partition defined by
ti = i/n, for i = 0, 1, . . . , n. Write simple formulas for U(f, Pn) and for L(f, Pn).

3. Under the same conditions, write a very simple formula for U(f, Pn)−L(f, Pn).

4. Prove that an increasing function on [0, 1] is integrable.

Solution. (Graded by Derek Krepski)

1. A bounded function f defined on an interval [a, b] is integrable iff for every ε > 0
there is a partition P of [a, b] for which U(f, P )− L(f, P ) < ε.

2. As f is increasing, mPn
i = inf [ti−1,ti] f(x) = f(ti−1) and MPn

i = sup[ti−1,ti]
f(x) =

f(ti). Thus

U(f, Pn) =
n∑

i=1

MPn
i (ti − ti−1) =

n∑
i=1

f(ti)
1

n
=

1

n

n∑
i=1

f(
i

n
).

Likewise, L(f, Pn) = 1
n

∑n
i=1 f(ti−1) = 1

n

∑n
i=1 f( i−1

n
).
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3.

U(f, Pn)− L(f, Pn) =
1

n

n∑
i=1

f(ti)− 1

n

n∑
i=1

f(ti−1) =
1

n

n∑
i=1

(f(ti)− f(ti−1))

using telescopic summation this is

=
1

n
(f(tn)− f(t0)) =

1

n
(f(1)− f(0)).

4. Since f is increasing, f is bounded (with upper bound f(1) and lower bound
f(0)). So using the criterion of part 1, to show that f is integrable it is enough
to show that for every ε > 0 there is a partition P of [0, 1] for which U(f, P )−
L(f, P ) < ε. Indeed, let ε > 0 be given. Choose n so big so that 1

n
(f(1)−f(0)) <

ε, and then the partition P = Pn of before satisfies U(f, Pn) − L(f, Pn) =
1
n
(f(1)− f(0)) < ε, as required.

Problem 4.

1. Show that the function f(x) = 3x− x3 is monotone on the interval [−1, 1].

2. Deduce that for every c ∈ [−2, 2] the equation 3x−x3 = c has a unique solution
x in the range −1 ≤ x ≤ 1.

3. For c ∈ [−2, 2], let g(c) be the unique x in the range −1 ≤ x ≤ 1 for which
3x−x3 = c. Write a formula for g′(c) and simplify it as much as you can. Your
end result may still contain g(c) in it, but not f , f ′ or g′.

Solution. (Graded by Brian Pigott)

1. f ′(x) = 3− 3x2 = 3(1− x2). On (−1, 1) we know that x2 < 1, so f ′(x) > 0. So
f is increasing on [−1, 1].

2. By the theorem about the existence of inverses of monotone functions, f has
an inverse on [−1, 1] and it is defined on [f(−1), f(1)] = [−2, 2]. This precisely
means that for c ∈ [−2, 2] the equation 3x− x3 = c (which defines f−1(c)) has
a unique solution with x in the range −1 ≤ x ≤ 1.

3. By the theorem about the derivative of an inverse function,

g′(c) =
1

f ′(g(c))
=

1

3(1− g(c)2)
.

The results. 67 students took the exam; the average grade was 77.7 and the
standard deviation was about 22.
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