Dror Bar-Natan: Classes: 2004-05: Math 157 - Analysis I:

Math 157 Analysis I — Solution of Term Exam 3

web version:

http://www.math.toronto.edu/~drorbn/classes/0405/157AnalysisI/TE3/Solution.html

Problem 1.

1. Compute
$$\int_0^1 \sqrt{x} \, dx$$
.
2. Compute $\int_0^\pi \sin x \, dx$.
3. For $x \ge 0$, compute $\frac{d}{dx} \int_{x^3}^{157} \sqrt{t} \, dt$.

Solution. (Graded by Shay Fuchs)

1. To use the second fundamental theorem of calculus we are looking for a function f for which $f' = \sqrt{x} = x^{1/2}$. The most obvious guess is $f(x) = x^{3/2}$, but this is off by a factor of 3/2, for $(x^{3/2})' = \frac{3}{2} = x^{1/2}$. So a good answer would be $f(x) = \frac{2}{3}x^{3/2}$. Now

$$\int_0^1 \sqrt{x} \, dx = \int_0^1 f'(x) \, dx = f \big|_0^1 = f(1) - f(0) = \frac{2}{3} 1^{3/2} - \frac{2}{3} 0^{3/2} = \frac{2}{3} \frac{1}{3} \frac{$$

•

2. Likewise choose $f(x) = -\cos x$ to get $f'(x) = \sin x$, and so using the second fundamental theorem of calculus,

$$\int_0^{\pi} \sin x \, dx = \int_0^{\pi} f'(x) \, dx = f(\pi) - f(0) = -\cos \pi - (-\cos 0) = 2.$$

3. Let $g(y) = \int_{157}^{y} \sqrt{t} dt$ and let $f(x) = x^3$. Using the first fundamental theorem of calculus, $g'(y) = \sqrt{y}$. So using the chain rule,

$$\frac{d}{dx} \int_{x^3}^{157} \sqrt{t} \, dt = \frac{d}{dx} \left(-\int_{157}^{x^3} \sqrt{t} \, dt \right) = -(g \circ f)'$$
$$= -g'(f(x))f'(x) = -\sqrt{x^3} 3x^2 = -3x^{7/2}.$$

Problem 2.

- 1. Perhaps using L'Hôpital's law, compute $\lim_{x\to 0} \frac{\sin x}{x}$ and $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.
- 2. Use these results to give educated guesses for the values of $\sin 0.1$ and $\cos 0.1$ (no calculators, please).

Solution. (Graded by Shay Fuchs)

1. $\sin x$ is differentiable at 0 and $\sin 0 = 0$. So

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x} = \sin' 0 = \cos 0 = 1.$$

(L'Hôpital's law also works and gives the same result).

The second limit is of the form $\frac{0}{0}$ so we can use L'Hôpital:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{2}$$

2. 0.1 is close to 0, so $\frac{\sin 0.1}{0.1} \sim \lim_{x \to 0} \frac{\sin x}{x} = 1$. Multiplying both sides by 0.1 we get $\sin 0.1 \sim 0.1$.

Likewise, $\frac{1-\cos 0.1}{0.1^2} \sim \frac{1}{2}$, so $1 - \cos 0.1 \sim \frac{1}{2} 0.1^2 = 0.005$, so $\cos 0.1 \sim 0.995$.

Problem 3.

- 1. State the "one partition for every ϵ " criterion of the integrability of a bounded function f defined on an interval [a, b].
- 2. Let f be an increasing function on [0, 1] and let P_n be the partition defined by $t_i = i/n$, for i = 0, 1, ..., n. Write simple formulas for $U(f, P_n)$ and for $L(f, P_n)$.
- 3. Under the same conditions, write a very simple formula for $U(f, P_n) L(f, P_n)$.
- 4. Prove that an increasing function on [0, 1] is integrable.

Solution. (Graded by Derek Krepski)

- 1. A bounded function f defined on an interval [a, b] is integrable iff for every $\epsilon > 0$ there is a partition P of [a, b] for which $U(f, P) - L(f, P) < \epsilon$.
- 2. As f is increasing, $m_i^{P_n} = \inf_{[t_{i-1},t_i]} f(x) = f(t_{i-1})$ and $M_i^{P_n} = \sup_{[t_{i-1},t_i]} f(x) = f(t_i)$. Thus

$$U(f, P_n) = \sum_{i=1}^n M_i^{P_n}(t_i - t_{i-1}) = \sum_{i=1}^n f(t_i) \frac{1}{n} = \frac{1}{n} \sum_{i=1}^n f(\frac{i}{n}).$$

Likewise, $L(f, P_n) = \frac{1}{n} \sum_{i=1}^n f(t_{i-1}) = \frac{1}{n} \sum_{i=1}^n f(\frac{i-1}{n}).$

$$U(f, P_n) - L(f, P_n) = \frac{1}{n} \sum_{i=1}^n f(t_i) - \frac{1}{n} \sum_{i=1}^n f(t_{i-1}) = \frac{1}{n} \sum_{i=1}^n (f(t_i) - f(t_{i-1}))$$

using telescopic summation this is

$$= \frac{1}{n}(f(t_n) - f(t_0)) = \frac{1}{n}(f(1) - f(0))$$

4. Since f is increasing, f is bounded (with upper bound f(1) and lower bound f(0)). So using the criterion of part 1, to show that f is integrable it is enough to show that for every $\epsilon > 0$ there is a partition P of [0,1] for which $U(f,P) - L(f,P) < \epsilon$. Indeed, let $\epsilon > 0$ be given. Choose n so big so that $\frac{1}{n}(f(1)-f(0)) < \epsilon$, and then the partition $P = P_n$ of before satisfies $U(f,P_n) - L(f,P_n) = \frac{1}{n}(f(1) - f(0)) < \epsilon$, as required.

Problem 4.

- 1. Show that the function $f(x) = 3x x^3$ is monotone on the interval [-1, 1].
- 2. Deduce that for every $c \in [-2, 2]$ the equation $3x x^3 = c$ has a unique solution x in the range $-1 \le x \le 1$.
- 3. For $c \in [-2,2]$, let g(c) be the unique x in the range $-1 \le x \le 1$ for which $3x x^3 = c$. Write a formula for g'(c) and simplify it as much as you can. Your end result may still contain g(c) in it, but not f, f' or g'.

Solution. (Graded by Brian Pigott)

- 1. $f'(x) = 3 3x^2 = 3(1 x^2)$. On (-1, 1) we know that $x^2 < 1$, so f'(x) > 0. So f is increasing on [-1, 1].
- 2. By the theorem about the existence of inverses of monotone functions, f has an inverse on [-1, 1] and it is defined on [f(-1), f(1)] = [-2, 2]. This precisely means that for $c \in [-2, 2]$ the equation $3x - x^3 = c$ (which defines $f^{-1}(c)$) has a unique solution with x in the range $-1 \le x \le 1$.
- 3. By the theorem about the derivative of an inverse function,

$$g'(c) = \frac{1}{f'(g(c))} = \frac{1}{3(1 - g(c)^2)}.$$

The results. 67 students took the exam; the average grade was 77.7 and the standard deviation was about 22.