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Problem 1. Find formulas for sin α, cos α and tan α in terms of tan α
2
. (You may use any

formula proven in class; you need to quote such formulae, though you don’t need to reprove
them).
Solution. (Graded by Shay Fuchs) Using the formulas sin 2β = 2 sin β cos β and sin2 β +
cos2 β = 1 and taking β = α

2
we get

sin α =
2 sin α

2
cos α

2

sin2 α
2

+ cos2 α
2

.

Dividing the numerator and denominator by cos2 α
2

this becomes

sin α =
2 tan α

2

tan2 α
2

+ 1
.

Likewise using cos 2β = cos2 β − sin2 β we get

cos α =
cos2 α

2
− sin2 α

2

cos2 α
2

+ sin2 α
2

=
1− tan2 α

2

1 + tan2 α
2

.

Finally, dividing these two formulas by each other we get

tan α =
sin α

cos α
=

2 tan α
2

1− tan2 α
2

.

Problem 2.

1. Let k be a natural number. Prove that any natural number n can be written in a
unique way in the form n = qk + r, where q and r are integers and 0 ≤ r < k.

2. We say that a natural number n is “divisible by 3” if n/3 is again a natural number.
Prove that n is divisible by 3 if and only if n2 is divisible by 3.

3. We say that a natural number n is “divisible by 4” if n/4 is again a natural number.
Is it true that n is divisible by 4 if and only if n2 is divisible by 4?

Solution. (Graded by Brian Pigott)

1. We prove this assertion (without uniqueness) by induction. If n = 1 write n = 0k + 1
(if k > 1) or n = 1k + 0 (if k = 1). In either case the assertion is proven for n = 1.
Now assume n can be written in the form n = qk + r, where q and r are integers and
0 ≤ r < k. If r < k − 1 then r + 1 < k and so n + 1 = (qk + r) + 1 = qk + (r + 1) is a
formula of the desired form for n+1. Otherwise r = k−1 and so n+1 = (qk+r)+1 =
q(k + 1) = q(k + 1) + 0, and again that’s a formula of the desired form for n + 1. This
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concludes the proof that every natural number n can be written in the form n = qk+r,
where q and r are integers and 0 ≤ r < k. Now assume it can be done in two ways; i.e.,
assume n = q1k + r1 = q2k + r2 where q1, q2, r1 and r2 are integers and 0 ≤ r1, r2 < k.
But then q1k + r1 = q2k + r2 and so (q1 − q2)k = r2 − r1 and so q1 − q2 = r2−r1

k
. But

q1 − q2 is an integer and so γ = r2−r1

k
is an integer. From 0 ≤ r1, r2 < k it follows that

−k < r2 − r1 < k and so −1 < γ < 1 and so the integer γ must be 0. Thus 0 = r2−r1

k

and so r1 = r2. But then the equality n = q1k + r1 = q2k + r2 implies q1k = q2k and
so q1 = q2 and we see that the pair (q, r) is unique.

2. An integer n is divisible by 3 iff q = n/3 is an integer iff n = 3q with an integer q. Now
if n is divisible by 3 then n = 3q with an integer q and then n2 = (3q)2 = 9q2 = 3(3q2).
So n2 is also 3 times an integer (the integer 3q2), and so n2 is also divisible by 3.
Assume now that n is not divisible by 3. By the previous part n = 3q + r with integer
q and r and with 0 ≤ r < 3. Had r been 0 we’d have had that n = 3q + 0 = 3q
is divisible by 3 contrary to assumption. So r = 1 or r = 2. In the former case
n2 = (3q +1)2 = 3(3q2 +2q)+1, but then by the uniqueness of writing n2 as 3q′+ r′ it
follows that r′ = 1, so n2 cannot be written in the form n2 = 3q′, so n2 is not divisible
by 3. In the latter case n2 = (3q + 2)2 = 3(3q2 + 4q + 1) + 1 and for the same reason
again we find that n2 is not divisible by 3. So if n is divisible by 3 so is n2, and if n is
not divisible by 3 so is n2.

3. No it’s not true. Example: 2 is not divisible by 4 but 22 = 4 is divisible by 4.
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Problem 3. A function f(x) is defined for 0 ≤ x ≤ 1 and has the graph plotted above.

1. What are f(0), f(0.5) and f(1)?

2. Let g be the function f ◦ f . What are g(0), g(0.5) and g(1)?

3. Are there any values of x for which g(x) = 1? How many such x’s are there? Roughly
what are they?

4. Plot the graph of the function g. (The general shape of your plot should be clear and
correct, though numerical details need not be precise).

5. (5 points bonus, will be given only to excellent solutions and may raise your overall
exam grade to 105!) Plot the graphs of the functions g ◦ f and g ◦ g.
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Solution. (Graded by Derek Krepski)

1. By inspecting the graph, f(0) = 0, f(0.5) = 1 and f(1) = 0.

2. g(0) = f(f(0)) = f(0) = 0, g(0.5) = f(f(0.5)) = f(1) = 0 and g(1) = f(f(1)) =
f(0) = 0.

3. g(x) = 1 means f(f(x)) = 1. Denoting y = f(x) we must have f(y) = 1, and
inspecting the graph we find that y = 0.5. Thus f(x) = 0.5. Inspecting the graph we
find that there are two values of x for which this happens and they are approximately
x = 0.15 and x = 0.85.

4. and 5.:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

g = f ◦ f g ◦ f = f ◦ f ◦ f g ◦ g = f ◦ f ◦ f ◦ f

Problem 4.

1. Define “lim
x→a

f(x) = l” and “ lim
x→a+

f(x) = l”.

2. Prove that if lim
x→a+

f(x) = l and lim
x→a−

f(x) = l then lim
x→a

f(x) = l.

3. Prove that if lim
x→a

f(x) = l then lim
x→a+

f(x) = l and lim
x→a−

f(x) = l.

4. Draw the graph of some function for which lim
x→a+

f(x) = 0 and lim
x→a−

f(x) = 1.

Solution. (Graded by Shay Fuchs)

1. “lim
x→a

f(x) = l” means that for every ε > 0 there is a δ > 0 so that whenever 0 <

|x − a| < δ we have that |f(x) − l| < ε, while “ lim
x→a+

f(x) = l” means that for every

ε > 0 there is a δ > 0 so that whenever 0 < x − a < δ (i.e., whenever a < x < a + δ)
we have that |f(x)− l| < ε

2. Let ε > 0 be given. Using lim
x→a+

f(x) = l choose δ1 > 0 so that whenever 0 < x−a < δ1

we have that |f(x) − l| < ε. Using lim
x→a−

f(x) = l choose δ2 > 0 so that whenever 0 <

a−x < δ1 we have that |f(x)− l| < ε. Set δ = min(δ1, δ2) and assume 0 < |x− a| < δ.
If x > a then 0 < x− a < δ ≤ δ1 and by the choice of δ1 it follows that |f(x)− l| < ε.
If x < a then 0 < a− x < δ ≤ δ2 and by the choice of δ2 it follows that |f(x)− l| < ε.
So in any case, |f(x)− l| < ε as required.
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3. Let ε > 0 be given. Using lim
x→a

f(x) = l choose δ > 0 so that whenever 0 < |x− a| < δ

we have that |f(x)− l| < ε. But then if 0 < x− a < δ then certainly 0 < |x− a| < δ
so by the choice of δ we get |f(x) − l| < ε. Thus lim

x→a+
f(x) = l. A similar argument

shows that also lim
x→a−

f(x) = l.

4.

0

1

Problem 5. Give examples to show that the following definitions of lim
x→a

f(x) = l do not

agree with the standard one:

1. For all δ > 0 there is an ε > 0 such that if 0 < |x− a| < δ, then |f(x)− l| < ε.

2. For all ε > 0 there is a δ > 0 such that if |f(x)− l| < ε, then 0 < |x− a| < δ.

Solution. (Graded by Derek Krepski)

1. This is satisfied whenever there exists a constant M so that |f(x)| < M for all x and
regardless of the limit of f . Indeed, choose ε bigger than |l|+M where M is a constant
as in the previous sentence (for example, if f is sin x, then M can be chosen to be 1),
and then |f(x)− l| < ε is always true.

2. According to this definition, for example, lim
x→a

c = c is false, and hence it cannot

be equivalent to the standard definition. Indeed, in this case |f(x) − l| < ε means
0 = |c− c| < ε. This imposes no condition on x, so |x− a| need not be smaller than δ.

The results. 89 students took the exam; the average grade was 59 and the standard
deviation was about 18.5.
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