Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Math 157 Analysis I - Solution of Term Exam 1

web version:
http://www.math.toronto.edu/~drorbn/classes/0304/157AnalysisI/TermExam1/Solution.html
Problem 1. All that is known about the angle α is that $\tan \frac{\alpha}{2}=\sqrt{2}$. Can you find $\sin \alpha$ and $\cos \alpha$? Explain your reasoning in full detail.
Solution. (Graded by C.-N. (J.) Hung) In class we wrote the formula $\sin 2 \beta=2 \sin \beta \cos \beta$. Also using $\sin ^{2} \beta+\cos ^{2} \beta=1$ and taking $\beta=\frac{\alpha}{2}$ we get

$$
\sin \alpha=\frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}}
$$

Dividing the numerator and denominator by $\cos ^{2} \frac{\alpha}{2}$ this becomes

$$
\frac{2 \tan \frac{\alpha}{2}}{\tan ^{2} \frac{\alpha}{2}+1}=\frac{2 \sqrt{2}}{\sqrt{2}^{2}+1}=\frac{2 \sqrt{2}}{3} .
$$

Likewise using $\cos 2 \beta=\cos ^{2} \beta-\sin ^{2} \beta$ we get

$$
\cos \alpha=\frac{\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\alpha}{2}}{\cos ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\alpha}{2}}=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}=\frac{1-\sqrt{2}^{2}}{1+\sqrt{2}^{2}}=-\frac{1}{3} .
$$

Problem 2.

1. State the definition of the natural numbers.
2. Prove that every natural number n has the property that whenever m is natural, so is $m+n$.

Solution. (Graded by V. Tipu)

1. The set of natural numbers \mathbb{N} is the smallest set of numbers for which

- $1 \in \mathbb{N}$,
- if $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$.

Alternatively, the set of natural numbers \mathbb{N} is the intersection of all sets I of numbers satisfying

- $1 \in I$,
- if $n \in I$ then $n+1 \in I$.

2. Let $P(n)$ be the assertion "whenever m is natural, so is $m+n$ ". We prove $P(n)$ by induction on n :
(a) $P(1)$ asserts that "whenever m is natural, so is $m+1$ ". This is true by the second bullet in the definition of \mathbb{N}.
(b) Assume $P(n)$, that is, assume that whenever m is natural, so is $m+n$. Let m be a natural number. Then $m+(n+1)=(m+n)+1$ is a natural number because by $P(n)$ the number $m+n$ is natural and because adding one to a natural number gives a natural number by the second bullet in the definition of \mathbb{N}. So we have shown that whenever m is natural so is $m+(n+1)$, and this is the assertion $P(n+1)$.

Problem 3. Recall that a function g is called "even" if $g(x)=g(-x)$ for all x and "odd" if $g(-x)=-g(x)$ for all x, and let f be some arbitrary function.

1. Find an even function E and an odd function O so that $f=E+O$.
2. Show that if $f=E_{1}+O_{1}=E_{2}+O_{2}$ where E_{1} and E_{2} are even and O_{1} and O_{2} are odd, then $E_{1}=E_{2}$ and $O_{1}=O_{2}$.

Solution. (Graded by C. Ivanescu)

1. Set $E(x)=\frac{1}{2}(f(x)+f(-x))$ and $O(x)=\frac{1}{2}(f(x)-f(-x))$. Then $E(x)+O(x)=$ $\frac{1}{2}(f(x)+f(-x)+f(x)-f(-x))=\frac{1}{2}(2 f(x))=f(x)$ while $E(-x)=\frac{1}{2}(f(-x)+$ $f(-(-x)))=\frac{1}{2}(f(x)+f(-x))=E(x)$ (so E is even) and $O(-x)=\frac{1}{2}(f(-x)-$ $f(-(-x)))=-\frac{1}{2}(f(x)-f(-x))=-O(x)$ (so O is odd).
2. Assume $f=E+O$ where E is even and O is odd. Then
$f(x)+f(-x)=E(x)+O(x)+E(-x)+O(-x)=E(x)+O(x)+E(x)-O(x)=2 E(x)$.
So necessarily $E(x)=\frac{1}{2}(f(x)+f(-x))$. Now if $f=E_{1}+O_{1}=E_{2}+O_{2}$ as above, then both E_{1} and E_{2} can play the role of E in this argument, so they are both equal to $\frac{1}{2}(f(x)+f(-x))$ and in particular they equal each other. Likewise,
$f(x)-f(-x)=E(x)+O(x)-E(-x)-O(-x)=E(x)+O(x)-E(x)+O(x)=2 O(x)$
and arguing like before, $O_{1}(x)=\frac{1}{2}(f(x)-f(-x))=O_{2}(x)$.
Problem 4. Sketch, to the best of your understanding, the graph of the function

$$
f(x)=\frac{1}{x^{2}-1}
$$

(What happens for x near 0 ? Near ± 1 ? For large x ? Is the graph symmetric? Does it appear to have a peak somewhere?)
Solution. (Graded by C. Ivanescu)
If $|x|>1$ then $x^{2}-1>0$ and so $\frac{1}{x^{2}-1}>0$; furthermore, the larger $|x|$ is (while $|x|>1$), the larger $x^{2}-1$ is and hence the smaller $\frac{1}{x^{2}-1}$ is. When $|x|$ approaches 1 from above, $x^{2}-1$ approaches 0 from above and hence $\frac{1}{x^{2}-1}$ becomes larger and larger. If $|x|<1$ the $x^{2}-1<0$ and so $\frac{1}{x^{2}-1}<0$. When $x=0, f(x)=-1$ and when $|x|$ approaches 1 from below, x^{2}
approaches 1 from below and $x^{2}-1$ approaches 0 from below, and so $\frac{1}{x^{2}-1}$ becomes more and more negative. In summary, the graph looks something like:

Problem 5.

1. Suppose that $f(x) \leq g(x)$ for all x, and that the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Prove that $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.
2. Suppose that $f(x)<g(x)$ for all x, and that the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Is it always true that $\lim _{x \rightarrow a} f(x)<\lim _{x \rightarrow a} g(x)$? (If you think it's always true, write a proof. If you think it isn't always true, provide a counterexample).
Solution. (Graded by C.-N. (J.) Hung)
3. Let $l=\lim _{x \rightarrow a} f(x)$ and $m=\lim _{x \rightarrow a} g(x)$ and assume by contradiction that $l>m$; that is, that $\epsilon:=\frac{l-m}{2}>0$. Use the existence of the two limits to find $\delta_{1}>0$ and $\delta_{2}>0$ so that

$$
0<|x-a|<\delta_{1} \Longrightarrow|f(x)-l|<\epsilon
$$

and

$$
0<|x-a|<\delta_{2} \Longrightarrow|g(x)-m|<\epsilon
$$

Now choose some specific $x \neq a$ for which both $|x-a|<\delta_{1}$ and $|x-a|<\delta_{2}$. But then $|f(x)-l|<\epsilon$ and so $f(x)>l-\epsilon$ while $|g(x)-m|<\epsilon$ and so $g(x)<m+\epsilon$. Therefore remembering that $f(x) \leq g(x)$ for all x we get

$$
l-\epsilon<f(x) \leq g(x)<m+\epsilon
$$

or

$$
l-\frac{l-m}{2}<m+\frac{l-m}{2}
$$

or

$$
\frac{m+l}{2}<\frac{m+l}{2}
$$

which is a contradiction. Thus the assumption that $l>m$ must be incorrect and thus $m \leq l$.
2. Take $f(x)=0$ for all x and $g(x)=x^{2}$ for all $x \neq 0$ and $g(0)=157$. Then $f(x)<g(x)$ for all x but $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)$. So it isn't always true that if $f(x)<g(x)$ for all x and the limits exist, then $\lim _{x \rightarrow a} f(x)<\lim _{x \rightarrow a} g(x)$.

The results. 105 students took the exam; the average grade was 67.19 , the median was 70 and the standard deviation was 21.12.

