
Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Math 157 Analysis I — Solution of the Final Exam

web version: http://www.math.toronto.edu/˜drorbn/classes/0304/157AnalysisI/Final/Solution.html

Problem 1. We say that a set A of real numbers is dense if for any open interval I, the
intersection A ∩ I is non-empty.

1. Give an example of a dense set A whose complement Ac = {x ∈ R : x 6∈ A} is also
dense.

2. Give an example of a non-dense set B whose complement Bc = {x ∈ R : x 6∈ B} is
also not dense.

3. Prove that if f : R → R is an increasing function (f(x) < f(y) for x < y) and if the
range {f(x) : x ∈ R} of f is dense, then f is continuous.

Solution.

1. Take for example A = Q, the set of rational numbers. Then Ac is the set of irrational
numbers. We’ve seen in class that between any two (different) numbers (i.e., within
any open interval) there is a rational number and there is an irrational number. Hence
both A and Ac are dense.

2. Take for example B = [0,∞], the set of non-negative numbers. Then Bc = (−∞, 0)
is the set of negative numbers. The set B is not dense because, for example, it’s
intersection with the interval (−2,−1) is empty. The set Bc is not dense because, for
example, it’s intersection with the interval (1, 2) is empty.

3. We have to show that for every a ∈ R and for every ε > 0 there is a δ > 0 so that
|x − a| < δ implies |f(x) − f(a)| < ε. So let ε > 0 be given. By the density of
A := {f(x) : x ∈ R} we know that we can find an element of A in the interval
(f(a)−ε, f(a)) and another element of A in the interval (f(a), f(a)+ε). That is, we can
find x1 and x2 so that f(a)− ε < f(x1) < f(a) and f(a) < f(x2) < f(a) + ε. It follows
from the monotonicity of f that x1 < a and that a < x2. Now set δ = min(a−x1, x2−a)
(this is a positive number because x1 < a and a < x2). Finally if |x−a| < δ then x is in
the interval (a− δ, a+ δ) ⊂ (a− (a−x1), a+(x2− a)) = (x1, x2). By the monotonicity
of f it follows that f(x) is in the interval (f(x1), f(x2)) ⊂ (f(a)− ε, f(a) + ε), and so
|f(x)− f(a)| < ε, as required.
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Problem 2. Sketch the graph of the function y = f(x) = xe−x2/2. Make sure that your
graph clearly indicates the following:

• The domain of definition of f(x).

• The behaviour of f(x) near the points where it is not defined (if any) and as x → ±∞.

• The exact coordinates of the x- and y-intercepts and all minimas and maximas of f(x).

Solution. Our function is defined for all x. As x goes to ±∞ exponentials dominate
polynomials, and so certainly ex2/2 gets much bigger than x. So limx→±∞ f(x) = 0. Solving
the equation xe−x2/2 = 0 we see that the only intersection of the graph of f with the axes is at

(0, 0). We can compute f ′(x) = x′e−x2/2+x
(
e−x2/2

)′
= e−x2/2−x2e−x2/2 = (1−x2)e−x2/2 and

f ′′(x) = (1−x2)′e−x2/2 +(1−x2)
(
e−x2/2

)′
= −2xe−x2/2−x(1−x2)e−x2/2 = x(x2− 3)e−x2/2.

Solving f ′(x) = 0 we see that the only critical points are when 1 − x2 = 0. That is, at
x = ±1. As f ′′(1) = −2e−1/2 < 0, the point (1, f(1)) = (1, e−1/2) is a local max. As
f ′′(−1) = 2e−1/2 > 0, the point (−1, f(−1)) = (−1,−e−1/2) is a local min. As there are
no other critical points and the behaviour of f near the ends of its domain of deifnition is
mute (as determined before), (1, e−1/2) is actually a global max and (−1,−e−1/2) is actually
a global min. Thus overall the graph is:
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Problem and Solution 3. Compute the following derivative and the following integrals:

1. Using the fundamental theorem of calculus in the form d
du

∫ u

0
f(t)dt = f(u) and the

chain rule with u = sin x we get

d

dx

(∫ sin x

0

√
arcsin t dt

)
=
√

arcsin sin x · (sin x)′ =
√

x cos x.

2. We make the substitution u =
√

x (and thus x = u2 and dx = 2udu) to compute

∫
e
√

x

√
x

dx =

∫
eu

u
2udu = 2

∫
eudu = 2eu + C = 2e

√
x + C.

3. Integrating by parts twice we get

∫
x2exdx = x2ex −

∫
2xexdx = x2ex − 2xex +

∫
2exdx = x2ex − 2xex + 2ex + C.

4. We make the substitution u = 2x (and thus x = log2 u and dx = du
u log 2

) to compute

∫
4xdx

2x + 1
=

∫ u2 du
u log 2

u + 1
=

1

log 2

∫
udu

u + 1
=

1

log 2

∫ (
1− 1

u + 1

)
du

=
1

log 2
(u− log |u + 1|) + C =

1

log 2
(2x − log |2x + 1|) + C.

5. We use the factorization x2 − 3x + 2 = (x− 1)(x− 2) to get

∫
dx

x2 − 3x + 2
=

∫
dx

(x− 1)(x− 2)
=

∫ (
dx

x− 2
− dx

x− 1

)

= log |x− 2| − log |x− 1|+ C = log

∣∣∣∣
x− 2

x− 1

∣∣∣∣ + C.
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Problem 4. In solving this problem you are not allowed to use any properties of the
exponential function ex.

1. Two differentiable functions, e1(x) and e2(x), defined over the entire real line R, are
known to satisfy e′1(x) = e1(x), e′2(x) = e2(x), e1(x) > 0 and e2(x) > 0 for all x ∈ R and
also e1(0) = e2(0). Prove that e1 and e2 are the same. That is, prove that e1(x) = e2(x)
for all x ∈ R.

2. A differentiable function e(x) defined over the entire real line R is known to satisfy
e′(x) = e(x) and e(x) > 0 for all x ∈ R and also e(0) = 1. Prove that e(x+y) = e(x)e(y)
for all x, y ∈ R.

Solution.

1. Set f(x) := e1(x)/e2(x) (this is well defined because e2(x) is never 0) and compute

f ′ =
(

e1

e2

)′
=

e′1e2 − e1e
′
2

e2
2

=
e1e2 − e1e2

e2
2

= 0.

So f is a constant. But f(0) = e1(0)/e2(0) = 1, so that constant is 1 and e1(x)/e2(x) =
1 for all x. This means that e1 = e2.

2. Fix y and set e1(x) = e(x + y) and e2(x) = e(x)e(y). Then (e1(x))′ = (e(x + y))′ =
e(x + y) = e1(x) and (e2(x))′ = (e(x)e(y))′ = (e(x))′e(y) = e(x)(e(y) = e2(x) and
e1(0) = e(0 + y) = e(y) = 1e(y) = e(0)e(y) = e2(0). All the other conditions of the
first part of this question are even easier to verify, and so the conclusion of that part
holds. Namely, e1 = e2, which means e(x + y) = e(x)e(y).
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Problem 5. In solving this problem you are not allowed to use any properties of the
trigonometric functions.

1. A twice-differentiable function c(x) defined over the entire real line R is known to
satisfy c′′(x) = −c(x) for all x ∈ R and also c(0) = c′(0) = 0. Write out the degree n
Taylor polynomial Pn,a,c(x) of c at a = 0.

2. Write a formula for the remainder term Rn,0,c(x) := c(x) − Pn,0,c(x). (To keep the
notation simple, you are allowed to assume that n is even or even that n is divisible
by 4).

3. Prove that c is the zero function: c(x) = 0 for all x ∈ R.

Solution.

1. From c′′(x) = −c(x) it is clear that c(2k) = (−1)kc and that c(2k+1) = (−1)kc′. So
c(2k)(0) = (−1)kc(0) = 0 and c(2k+1)(0) = (−1)kc′(0) = 0 and hence all the coefficients
of Pn,a,c(x) are 0. In other words, Pn,a,c = 0.

2. If n is divisible by 4 then c(n+1) = c′ and so the remainder formula says that for any
x 6= 0 there is a t between 0 and x for which

Rn,0,c(x) =
c(n+1)(t)

(n + 1)!
xn+1 =

c′(t)
(n + 1)!

xn+1.

3. Factorials grow faster then exponentials, so in the remainder formula the denominator
(n + 1)! grows faster then the term xn+1, while the numerator c′(t) is bounded (by the
theorem that a continuous function on a closed interval is bounded). So the remainder
goes to 0 when n goes to ∞, and hence limn→∞ Pn,a,c(x) = c(x). But Pn,a,c(x) = 0 for
all n, so necessarily c(x) = 0.

Remark 1. Two alternative forms of the remainder formula are

c(n+1)(t)

n!
x(x− t)n =

c′(t)
n!

x(x− t)n and

∫ x

0

c(n+1)(t)

n!
(x− t)ndt =

∫ x

0

c′(t)
n!

(x− t)ndt.

Either one of those could equaly well be used to solve part 3 of the problem.
Remark 2. There is an alternative approach to the whole problem; start with part 3 and
go backwards. To do part 3, consider the function f := c2+(c′)2. We have f ′ = 2cc′+2c′c′′ =
2cc′ − 2c′c = 0, so f is a constant function. But f(0) = c(0)2 + c′(0)2 = 02 + 02 = 0, so f
must be the 0 function. But f is a sum of squares, and the only way a sum of squares can
be 0 is if each summand is 0. So c2 = 0 and hence c = 0 as required in part 3. But if c
is the 0 function then its Taylor polynomials are all 0 and the remainder terms are also all
0, solving parts 1 and 2 as well. This is not the solution I had in mind when I wrote the
problem, but people who solved the problem this way got full credit.
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Problem 6. In solving this problem you are not allowed to use the irrationality of π, but
you are allowed, indeed advised, to borrow a few lines from the proof of the irrationality of
π.

Is there a non-zero polynomial p(x) defined on the interval [0, π] and with values in the
interval [0, 1

2
) so that it and all of its derivatives are integers at both the point 0 and the

point π? In either case, prove your answer in detail.
Solution. There is no such polynomial. Had there been one, we would have

0 <

∫ π

0

p(x) sin x dx <

∫ π

0

1

2
sin x dx = 1,

but also, by repeated integration by parts (an even number of times, for simplicity),

∫ π

0

p(x) sin x dx = −p(x) cos x|π0 +

∫ π

0

p′(x) cos x dx

= −p(x) cos x + p′(x) sin x|π0 −
∫ π

0

p′′(x) sin x dx = . . .

= (terms involving ±1, p(k)(x), sin x and cos x)
∣∣π
0
± p(2n)(x) sin x dx.

For any n the first term in this formula involves only integers (as p(k)(0), p(k)(π), sin 0, sin π,
cos 0 and cos π are all integers), and if 2n is larger than the degree of p, the second term is
0. So

∫ π

0
p(x) sin x dx is an integer. But by the first formula it is in (0, 1). That can’t be.
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The results. 80 students took the exam; the average grade was 69.33/120, the median was
71.5/120 and the standard deviation was 26.51. The overall grade average for the course (of
X = 0.05T1 + 0.15T2 + 0.1T3 + 0.1T4 + 0.2HW + 0.4 · 100(F/120)) was 68.5, the median was
71.57 and the standard deviation was 18.64. Finally, the transformation X 7→ 100(X/100)γ

was applied to the grades, with γ = 0.92. This made the average grade 70.41, the median
73.5 and the standard deviation 17.77. There were 30 A’s (grades higher or equal to 80) and
12 failures (grades below 50).

7


