Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Math 157 Analysis I - Solution of Term Exam 4

web version:
http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/TermExam4/Solution.html
Problem 1. Is there a non-zero polynomial $p(x)$ defined on the interval $[0, \pi]$ and with values in the interval $\left[0, \frac{1}{2}\right)$ so that it and all of its derivatives are integers at both the point 0 and the point π ? In either case, prove your answer in detail. (Hint: How did we prove the irrationality of π ?)
Solution. There isn't. Had there been one, we could reach a contradiction as in the proof of the irrationality of π. Indeed we would have that $0<\int_{0}^{\pi} p(x) \sin x d x<\frac{1}{2} \int_{0}^{\pi} \sin x d x=1$, hence the integral $I=\int_{0}^{\pi} p(x) \sin x d x$ is not an integer. But repeated integration by parts gives

$$
\begin{gathered}
I=\binom{\text { boundary }}{\text { terms }} \pm \int_{0}^{\pi} p^{\prime}(x) \cos x d x=\binom{\text { boundary }}{\text { terms }} \pm \int_{0}^{\pi} p^{\prime \prime}(x) \sin x d x=\ldots \\
=\binom{\text { boundary }}{\text { terms }} \pm \int_{0}^{\pi} p^{(2 n)}(x) \sin x d x
\end{gathered}
$$

The assumptions on $p^{(k)}(0) \in \mathbb{Z}$ and $p^{(k)}(\pi) \in \mathbb{Z}$ along with the fact that $\sin 0, \sin \pi, \cos 0$ and $\cos \pi$ are all integers imply that the boundary terms are all integers. If n is large enough, $p^{(2 n)}=0$ and hence the remaining integral is 0 . So I is an integer, and that's a contradiction.
Problem 2. Compute the volume V of the "Black Pawn" on the right the volume of the solid obtained by revolving the solutions of the inequalities $4 x^{2} \leq y+3-(y-3)^{3}$ and $y \geq 0$ about the y axis (its vertical axis of symmetry). (Check that $5+3-(5-3)^{3}=0$ and hence the height of the pawn is 5).

Solution. This is the area of the rotation solid with radius $r(y)=$ $\frac{1}{2} \sqrt{y+3-(y-3)^{3}}$ bounded by $y=0$ and $y=5$. Thus

$$
\begin{aligned}
V= & \pi \int_{0}^{5} r(y)^{2} d y=\frac{\pi}{4} \int_{0}^{5}\left(y+3-(y-3)^{3}\right) d y \\
& =\left.\frac{\pi}{4}\left(\frac{y^{2}}{2}+3 y-\frac{(y-3)^{4}}{4}\right)\right|_{0} ^{5}=\frac{175 \pi}{16}
\end{aligned}
$$

Problem 3.

1. Compute the degree n Taylor polynomial P_{n} of the function $f(x)=\frac{1}{1-x}$ around the point 0 .
2. Write a formula for the remainder $f-P_{n}$ in terms of the derivative $f^{(n+1)}$ evaluated at some point $t \in[0, x]$.
3. Show that at least for very small values of $x, f(x)=\lim _{n \rightarrow \infty} P_{n}(x)$.

Solution.

1. $f^{\prime}=\frac{1}{(1-x)^{2}}, f^{\prime \prime}=\frac{2}{(1-x)^{3}}, f^{\prime \prime \prime}=\frac{2 \cdot 3}{(1-x)^{4}}$ and so it can be shown by induction that $f^{(k)}=\frac{k!}{(1-x)^{k+1}}$. Thus $f^{(k)}(0)=k!$ and hence $P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{n} x^{k}=$ $1+x+x^{2}+\cdots+x^{n}$.
2. Cauchy's formula for the remainder is $R_{n}(x)=f(x)-P_{n}(x)=\frac{f^{(n+1)}(t)}{(n+1)!} x^{n+1}=\frac{x^{n+1}}{(1-t)^{n+2}}=$ $\frac{1}{1-t}\left(\frac{x}{1-t}\right)^{n+1}$ for some $t \in[0, x]$.
3. If $|x|<\frac{1}{2}$ then $|t|<\frac{1}{2}$ and $|1-t|>\frac{1}{2}$ and hence $\left|\frac{x}{1-t}\right|<2|x|<1$ and thus $\left|R_{n}(x)\right|<$ $\frac{1}{1-t}(2|x|)^{n+1} \rightarrow 0$. Therefore $f(x)-P_{n}(x) \rightarrow 0$, as required.

Problem 4.

1. Prove that if $\lim _{n \rightarrow \infty} a_{n}=l$ and the function f is continuous at l, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=$ $f(l)$
2. Let $b>1$ be a number, and define a sequence a_{n} via the relations $a_{1}=1$ and $a_{n+1}=$ $\frac{1}{2}\left(a_{n}+b / a_{n}\right)$ for $n \geq 1$. Assuming that this sequence is convergent to a positive limit, determine what this limit is.

Solution.

1. See the "easy" part of Theorem 1 of Spivak's Chapter 22.
2. Assume $\lim a_{n}=l>0$. Then $l=\lim a_{n+1}=\lim \frac{1}{2}\left(a_{n}+b / a_{n}\right)$. Using the first part of this question on the function $x \mapsto \frac{1}{2}(x+b / x)$, which is continuous at l, we find that $\lim \frac{1}{2}\left(a_{n}+b / a_{n}\right)=\frac{1}{2}(l+b / l)$. Hence l satisfies $l=\frac{1}{2}(l+b / l)$. Dividing by l we get $1=\frac{1}{2}+\frac{b}{2 l^{2}}$ which is $1=\frac{b}{l^{2}}$ which along with $l>0$ implies that $l=\sqrt{b}$.
Problem 5. Do the following series converge? Explain briefly why or why not:
3. $\sum_{n=1}^{\infty} \frac{n}{2 n+1}$.

Solution. $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$ hence by the vanishing test the series cannot converge.
2. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n \sqrt{n}+1}$.

Solution. $\frac{\sqrt{n}}{n \sqrt{n}+1}>\frac{\sqrt{n}}{2 n \sqrt{n}}=\frac{1}{2 n}$. The latter is a multiple of the harmonic series which doesn't converge, hence the original series doesn't converge either.
3. $\sum_{n=1}^{\infty} \frac{n^{2}}{n!}$.

Solution. Ignoring the first two terms of the series, which don't change convergence anyway,

$$
\frac{n^{2}}{n!}=\frac{n^{2}}{n(n-1)(n-2)!}<\frac{n^{2}}{2 n^{2}(n-2)!}=\frac{1}{2(n-2)!}
$$

The latter sequence is summable as we have shown in class, hence the original series is convergent.
4. $\sum_{n=1}^{\infty} \frac{\log n}{n^{2}}$.

Solution. The function $f(x)=\sqrt{x}-\log x$ is positive at $x=1$ and simple differentiation shows that $f^{\prime}(x)>0$ for $x \geq 1$, hence it is increasing, and hence it is positive for all $x \geq 1$. Thus $\frac{\log n}{n^{2}}<\frac{\sqrt{n}}{n^{2}}=\frac{1}{n^{3 / 2}}$ which is summable as was shown in class.
5. $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.

Solution. That's a tough one. Here's a solution inspired by the solution to Problem 20 of Spivak's Chapter 23, which by itself is inspired by the proof of the divergence of the harmonic series:

$$
\sum_{n=2}^{2^{K}} \frac{1}{n \log n}=\sum_{k=1}^{K}\left(\sum_{n: 2^{k-1}<n \leq 2^{k}} \frac{1}{n \log n}\right)=\#
$$

If we replace each of the inner sums here by the number of terms in it times the smallest of those, which is the last of those, it only becomes smaller. Hence

$$
\#>\sum_{k=1}^{K} 2^{k-1} \frac{1}{2^{k} \log 2^{k}}=\sum_{k=1}^{K} \frac{2^{k-1}}{2^{k} k \log 2}=\frac{2}{\log 2} \sum_{k=1}^{K} \frac{1}{k}
$$

The latter are partial sums of a divergent positive series, hence they approach infinity. Therefore the partial sums $\sum_{n=2}^{2^{K}} \frac{1}{n \log n}$ approach infinity and our series is divergent.

The results. 75 students took the exam; the average grade is 47.4 , the median is 46 and the standard deviation is 23.55 .

