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Problem 1. Is there a non-zero polynomial p(x) defined on the interval [0, π] and with
values in the interval [0, 1

2
) so that it and all of its derivatives are integers at both the point

0 and the point π? In either case, prove your answer in detail. (Hint: How did we prove the
irrationality of π?)
Solution. There isn’t. Had there been one, we could reach a contradiction as in the proof
of the irrationality of π. Indeed we would have that 0 <

∫ π

0
p(x) sin x dx < 1

2

∫ π

0
sin x dx = 1,

hence the integral I =
∫ π

0
p(x) sin x dx is not an integer. But repeated integration by parts

gives

I =
(

boundary
terms

)
±

∫ π

0

p′(x) cos x dx =
(

boundary
terms

)
±

∫ π

0

p′′(x) sin x dx = . . .

=
(

boundary
terms

)
±

∫ π

0

p(2n)(x) sin x dx.

The assumptions on p(k)(0) ∈ Z and p(k)(π) ∈ Z along with the fact that sin 0, sin π, cos 0
and cos π are all integers imply that the boundary terms are all integers. If n is large enough,
p(2n) = 0 and hence the remaining integral is 0. So I is an integer, and that’s a contradiction.

Problem 2. Compute the volume V of the “Black Pawn” on the right —
the volume of the solid obtained by revolving the solutions of the inequalities
4x2 ≤ y + 3 − (y − 3)3 and y ≥ 0 about the y axis (its vertical axis of
symmetry). (Check that 5 + 3 − (5 − 3)3 = 0 and hence the height of the
pawn is 5).
Solution. This is the area of the rotation solid with radius r(y) =
1
2

√
y + 3− (y − 3)3 bounded by y = 0 and y = 5. Thus

V = π

∫ 5

0

r(y)2dy =
π

4

∫ 5

0

(y + 3− (y − 3)3)dy

=
π

4

(
y2

2
+ 3y − (y − 3)4

4

)∣∣∣∣
5

0

=
175π

16
.

Problem 3.

1. Compute the degree n Taylor polynomial Pn of the function f(x) = 1
1−x

around the
point 0.

2. Write a formula for the remainder f − Pn in terms of the derivative f (n+1) evaluated
at some point t ∈ [0, x].

3. Show that at least for very small values of x, f(x) = limn→∞ Pn(x).
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Solution.

1. f ′ = 1
(1−x)2

, f ′′ = 2
(1−x)3

, f ′′′ = 2·3
(1−x)4

and so it can be shown by induction that

f (k) = k!
(1−x)k+1 . Thus f (k)(0) = k! and hence Pn(x) =

∑n
k=0

f (k)(0)
k!

xk =
∑n

k=0 xk =

1 + x + x2 + · · ·+ xn.

2. Cauchy’s formula for the remainder is Rn(x) = f(x)−Pn(x) = f (n+1)(t)
(n+1)!

xn+1 = xn+1

(1−t)n+2 =
1

1−t

(
x

1−t

)n+1
for some t ∈ [0, x].

3. If |x| < 1
2

then |t| < 1
2

and |1− t| > 1
2

and hence
∣∣ x
1−t

∣∣ < 2|x| < 1 and thus |Rn(x)| <
1

1−t
(2|x|)n+1 → 0. Therefore f(x)− Pn(x) → 0, as required.

Problem 4.

1. Prove that if limn→∞ an = l and the function f is continuous at l, then limn→∞ f(an) =
f(l)

2. Let b > 1 be a number, and define a sequence an via the relations a1 = 1 and an+1 =
1
2
(an + b/an) for n ≥ 1. Assuming that this sequence is convergent to a positive limit,

determine what this limit is.

Solution.

1. See the “easy” part of Theorem 1 of Spivak’s Chapter 22.

2. Assume lim an = l > 0. Then l = lim an+1 = lim 1
2
(an + b/an). Using the first part of

this question on the function x 7→ 1
2
(x + b/x), which is continuous at l, we find that

lim 1
2
(an + b/an) = 1

2
(l + b/l). Hence l satisfies l = 1

2
(l + b/l). Dividing by l we get

1 = 1
2

+ b
2l2

which is 1 = b
l2

which along with l > 0 implies that l =
√

b.

Problem 5. Do the following series converge? Explain briefly why or why not:

1.
∞∑

n=1

n

2n + 1
.

Solution. limn→∞ n
2n+1

= 1
2

hence by the vanishing test the series cannot converge.

2.
∞∑

n=1

√
n

n
√

n + 1
.

Solution.
√

n
n
√

n+1
>

√
n

2n
√

n
= 1

2n
. The latter is a multiple of the harmonic series which

doesn’t converge, hence the original series doesn’t converge either.

3.
∞∑

n=1

n2

n!
.

Solution. Ignoring the first two terms of the series, which don’t change convergence
anyway,

n2

n!
=

n2

n(n− 1)(n− 2)!
<

n2

2n2(n− 2)!
=

1

2(n− 2)!
.
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The latter sequence is summable as we have shown in class, hence the original series
is convergent.

4.
∞∑

n=1

log n

n2
.

Solution. The function f(x) =
√

x − log x is positive at x = 1 and simple differen-
tiation shows that f ′(x) > 0 for x ≥ 1, hence it is increasing, and hence it is positive

for all x ≥ 1. Thus log n
n2 <

√
n

n2 = 1
n3/2 which is summable as was shown in class.

5.
∞∑

n=2

1

n log n
.

Solution. That’s a tough one. Here’s a solution inspired by the solution to Prob-
lem 20 of Spivak’s Chapter 23, which by itself is inspired by the proof of the divergence
of the harmonic series:

2K∑
n=2

1

n log n
=

K∑

k=1


 ∑

n : 2k−1<n≤2k

1

n log n


 = #.

If we replace each of the inner sums here by the number of terms in it times the smallest
of those, which is the last of those, it only becomes smaller. Hence

# >

K∑

k=1

2k−1 1

2k log 2k
=

K∑

k=1

2k−1

2kk log 2
=

2

log 2

K∑

k=1

1

k
.

The latter are partial sums of a divergent positive series, hence they approach infinity.

Therefore the partial sums
∑2K

n=2
1

n log n
approach infinity and our series is divergent.

The results. 75 students took the exam; the average grade is 47.4, the median is 46 and
the standard deviation is 23.55.
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