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Math 157 Analysis I — Solution of Term Exam 4

web version:
http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/ TermExam4 /Solution.html

Problem 1. Is there a non-zero polynomial p(z) defined on the interval [0, 7] and with
values in the interval [0, %) so that it and all of its derivatives are integers at both the point
0 and the point 77 In either case, prove your answer in detail. (Hint: How did we prove the
irrationality of 77)

Solution. There isn’t. Had there been one, we could reach a contradiction as in the proof
of the irrationality of 7. Indeed we would have that 0 < foﬂ p(z)sinx dr < % foﬂ sinzdr =1,
hence the integral I = [ p(x)sinx dz is not an integer. But repeated integration by parts
gives

I= <boundary> :I:/ p'(z) cosx dr = <boundary> :I:/ p'(z)sinxdr = ...
0 0

terms terms

= (boundary> i/ p (x)sinz dx.
terms 0

The assumptions on p*)(0) € Z and p*)(7) € Z along with the fact that sin0, sinn, cos0

and cos 7 are all integers imply that the boundary terms are all integers. If n is large enough,

p?" = 0 and hence the remaining integral is 0. So [ is an integer, and that’s a contradiction.

Problem 2. Compute the volume V' of the “Black Pawn” on the right —
the volume of the solid obtained by revolving the solutions of the inequalities
42> < y+3 — (y —3)% and y > 0 about the y axis (its vertical axis of
symmetry). (Check that 5+ 3 — (5 — 3)® = 0 and hence the height of the
pawn is 5).

Solution. This is the area of the rotation solid with radius r(y) =
%\/y+3 — (y — 3)3 bounded by y = 0 and y = 5. Thus

VZW/O T(y)Zdyzgfo (y+3—(y—3)*)dy

2 4
[y (w-3)
_4<2+3y 1 )

> B 1757

. 16

Problem 3.

1
1—x

1. Compute the degree n Taylor polynomial P, of the function f(z) = around the

point 0.

2. Write a formula for the remainder f — P, in terms of the derivative 1) evaluated
at some point t € [0, z].

3. Show that at least for very small values of z, f(z) = lim, o Py (7).
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Solution.

1. ff = ﬁ, "= ﬁ, "= % and so it can be shown by induction that
k
fk) = # Thus f®(0) = k! and hence BP,(z) = >__, f(k)!(o)xk =Y 1t =
l+x+a?+- 42"
2. Cauchy’s formula for the remainder is R, (z) = f(z)—P,(x) = L0@) ol . _antt
- n n (nr1)! e

= (1%:)”“ for some ¢ € [0, z].

3. If |z| < 4 then [¢t| < 4 and [1 —¢| > 1 and hence |{%;| < 2|z| < 1 and thus |R,(z)| <
= (2|z])"™ — 0. Therefore f(z) — P,(x) — 0, as required.

Problem 4.

1. Prove that if lim,, ., a,, = [ and the function f is continuous at [, then lim,,_., f(a,) =

f

2. Let b > 1 be a number, and define a sequence a,, via the relations a; = 1 and a,,11 =

1

5(an +b/ay,) for n > 1. Assuming that this sequence is convergent to a positive limit,

determine what this limit is.
Solution.
1. See the “easy” part of Theorem 1 of Spivak’s Chapter 22.

2. Assume lima, =1 > 0. Then [ = lima,; = lim %(an + b/ay). Using the first part of
this question on the function z — (z + b/z), which is continuous at I, we find that
lim $(a, + b/a,) = (I + b/l). Hence [ satisfies [ = (I + b/l). Dividing by | we get
1 =3+ 5% which is 1 = % which along with [ > 0 implies that { = v/b.

Problem 5. Do the following series converge? Explain briefly why or why not:

= n
L ;271—1-1'

Solution. lim,,_

n

_ l . . .
3,57 = 3 hence by the vanishing test the series cannot converge.

— Vn
Q.Zm.

Solution. —— > V" — L The latter is a multiple of the harmonic series which
ny/n+1 2n\/n 2n° : ;
doesn’t converge, hence the original series doesn’t converge either.

n=1

0 2

3. Z%

n=1
Solution. Ignoring the first two terms of the series, which don’t change convergence

anyway,

n? n? n? 1

n!  nn—1)(n—2)! = 2n2(n —2)!  2(n —2)I'
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The latter sequence is summable as we have shown in class, hence the original series
is convergent.

A i 1052”.

n=1

Solution. The function f(x) = \/x — logz is positive at x = 1 and simple differen-
tiation shows that f’(x) > 0 for x > 1, hence it is increasing, and hence it is positive

for all x > 1. Thus 1‘;%2” < ‘7{—25 = # which is summable as was shown in class.
= 1

5. .
; nlogn

Solution. That’s a tough one. Here’s a solution inspired by the solution to Prob-
lem 20 of Spivak’s Chapter 23, which by itself is inspired by the proof of the divergence
of the harmonic series:

oK K

1 1
anogn:Z Z nlogn =

n=2 k=1 \n:2k-1l<n<2k

If we replace each of the inner sums here by the number of terms in it times the smallest
of those, which is the last of those, it only becomes smaller. Hence

K

| 2k-1 2 &
> 2 T — = _=
# Z 2k log 2k ZQkklog2 log2Z

| =

The latter are partial sums of a divergent positive series, hence they approach infinity.
2K 1

=2 nlogn approach infinity and our series is divergent.

Therefore the partial sums »

The results. 75 students took the exam; the average grade is 47.4, the median is 46 and
the standard deviation is 23.55.



