Dror Bar-Natan: Classes: 2002-03: Math 157 - Analysis I:

Homework Assignment 8

Assigned Tuesday October 29; due Friday November 8, 2PM at SS 1071
web version: http://www.math.toronto.edu/~ drorbn/classes/0203/157AnalysisI/HW08/HW08.html

Required reading

All of Spivak Chapter 9.

To be handed in

From Spivak Chapter 9: 1, 9, 15, 23.

Recommended for extra practice

From Spivak Chapter 9: 8, 11, 21, 28.
Also, let $p(x)$ be the polynomial $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Now that we know that for $|x|>2 n \max \left(\left|a_{n-1}\right|, \ldots,\left|a_{1}\right|,\left|a_{0}\right|, 1\right)$ we have that

$$
\frac{1}{2}\left|x^{n}\right|>\left|a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right|,
$$

complete the proof of the following

Theorem.

- If n is odd then the equation $p(x)=c$ has a root for any value of c.
- If n is even then there is some constant c_{0} so that the equation $p(x)=c$ has no roots for $c<c_{0}$, has at least one root for $c=c_{0}$ and at least two roots for $c>c_{0}$.

Just for fun

Write a computer program that will allow you to draw the graph of the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin 3^{n} x
$$

and will allow you to zoom on that graph through various small "windows". Use your program to convince yourself that f is everywhere continuous but nowhere differentiable. The best plots will be posted on this web site! (Send pictures along with window coordinates by email to drorbn@math.toronto.edu).

