
The Penultimate Alexander Invariant

"God created the knots,

all else in topology

is the work of mortals"

Leopold Kronecker (paraphrased)

Visit!

Edit!
http://katlas.org

Dror Bar−Natan: Talks: Sandbjerg−0810:

A Definition of the MVA

Relations by J. Murakami

The Naik−Stanford Double Delta Relation

This handout and further links are at
http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg−0810/

Joint with
Jana Archibald

* Have "circuits" with "ends",
* Can be wired arbitrarily.

Circuit Algebras

* May have "relations" − de−Morgan, etc.
Example

Flip Flop

A J−K

K

J

CP
Q

Q’

A Relation by
A. Vaintrob

A Relation by H. Murakami There’s Lots More!

Why Works?

c b

xy
a

c

yx
a b

(From [Ar])

a b c
c −1 1 − x y

a b c
c −y x − 1 1

A =
(−)i+jdet(Mj

i)

wi(ti−1)

∏

k t
rot(k)−µ(k)

2

k

(From [MJ])

(From [NS])

xy(1− y + y2)

(From [MH])
(From [Va])

H. Murakami

J. Murakami

S. Naik T. Stanford

image
not
found

Our Goal. Prove all these relations uniformly, at maximal
confidence and minimal brain utilization.
⇒ We need an “Alexander Invariant” for arbitrary tangles,
easy to define and compute and well-behaved under tangle
compositions; better, “virtual tangles”.

V T = CA
〈!,"〉

/R23 = PA
〈!,",P〉

/R23, VR123, MR3

Reminders from linear algebra. If X is a (finite) set,

Λk(X) := 〈k-tuples in X, modulo anti-symmetry〉

Λtop(X) := 〈|X|-tuples in X, modulo anti-symmetry〉

Λ1/2(X) := 〈(|X|/2)-tuples in X, modulo anti-symmetry〉 .

If Y ⊂ Xm, the “interior multiplication” iY : Λk(X) →
Λk−m(X) is anti-symmetric in Y .

Definition. An “Alexander half density with input strands
X in and output strands Xout” is an element of

AHD(X in, Xout) := Λtop(Xout) ⊗ Λ1/2(X in ∪ Xout).

Often we extend the coefficients to some polynomial ring
without warning.
Definition. If αi ⊗ pi ∈ AHD(X in

i , Xout
i (for i = 1, 2), and

G = (X in
1 ∪X in

2)∩ (Xout
1 ∪Xout

2) is the set of “gluable legs”,
the “gluing” in AHD(X in

1 ∪ X in
2 − G, Xout

1 ∪ Xout
2 − G) is

iG(α1 ∧ α2) ⊗ iG(p1 ∧ p2).

Claim. This makes AHD a circuit algebra.

Definition. The “Penultimate Alexander Invariant” is de-
fined using

pA :
k j!
l i

7→ (j ∧ k) ⊗

(

l ∧ i + (ti − 1)l ∧ j − tll ∧ k
+i ∧ j + tlj ∧ k

)

pA :
l k"
i j

7→ (k ∧ l) ⊗

(

tji ∧ j − tji ∧ l + j ∧ k
+(ti − 1)j ∧ l + k ∧ l

)

Challenge. Can you categorify this?

Weaknesses. Exponential, no understanding of cablings,
no obvious “meaning”. The ultimate Alexander invariant
should address all that...

Every “rook arrangement” in the above picture must have
exactly l rooks in the yellow zone and l rooks in the purple
zone. So for T1 we only care about the minors in which
exactly l of the 2l middle columns are dropped, and the
rest is signs...

We Mean Business
Dror Bar−Natan: Talks: Sandbjerg−0810: The Penultimate Alexander Invariant:

More at http://www.math.toronto.edu/~drorbn/Sandbjerg−0810/pA.nb

Does this specify

the Alexander

polynomial?

Question.

1 (* WP: Wedge Product *)

2 WSort[expr_] := Expand[expr /. w_W :> Signature[w]*Sort[w]];

3 WP[0, _] = WP[_, 0] = 0;

4 WP[a_, b_] := WSort[Distribute[a ** b] /.

5 (c1_. * w1_W) ** (c2_. * w2_W) :> c1 c2 Join[w1, w2]];

6
7 (* IM: Interior Multiplication *)

8 IM[{}, expr_] := expr;

9 IM[i_, w_W] := If[FreeQ[w, i], 0,

10 -(-1)^Position[w, i][[1,1]]*DeleteCases[w, i]];

11 IM[{is___, i_}, w_W] := IM[{is}, IM[i, w]];

12 IM[is_List, expr_] := expr /. w_W :> IM[is, w]

13
14 (* pA on Crossings *)

15 pA[Xp[i_,j_,k_,l_]] := AHD[(t[i]==t[k])(t[j]==t[l]), {i,l}, W[j,k],

16 W[l,i] + (t[i]-1)W[l,j] - t[l]W[l,k] + W[i,j] + t[l]W[j,k]];

17 pA[Xm[i_,j_,k_,l_]] := AHD[(t[i]==t[k])(t[j]==t[l]), {i,j}, W[k,l],

18 t[j]W[i,j] - t[j]W[i,l] + W[j,k] + (t[i]-1)W[j,l] + W[k,l]]

19
20 (* Variable Equivalences *)

21 ReductionRules[Times[]] = {};

22 ReductionRules[Equal[a_, b__]] := (# -> a)& /@ {b};

23 ReductionRules[eqs_Times] := Join @@ (ReductionRules /@ List@@eqs)

24
25 (* AHD: Alexander Half Densities *)

26 AHD[eqs_, is_, -os_, p_] := AHD[eqs, is, os, Expand[-p]];

27 AHD /: Reduce[AHD[eqs_, is_, os_, p_]] :=

28 AHD[eqs, Sort[is], WSort[os], WSort[p /. ReductionRules[eqs]]];

29 AHD /: AHD[eqs1_,is1_,os1_,p1_] AHD[eqs2_,is2_,os2_,p2_] := Module[

30 {glued = Intersection[Union[is1, is2], List@@Union[os1, os2]]},

31 Reduce[AHD[

32 eqs1*eqs2 //. eq1_Equal*eq2_Equal /;

33 Intersection[List@@eq1, List@@eq2] =!= {} :> Union[eq1, eq2],

34 Complement[Union[is1, is2], glued],

35 IM[glued, WP[os1, os2]],

36 IM[glued, WP[p1, p2]]

37]]]

38
39 (* pA on Circuit Diagrams *)

40 pA[cd_CircuitDiagram, eqs___] := pA[cd, {}, AHD[Times[eqs], {}, W[], W[]]];

41 pA[cd_CircuitDiagram, done_, ahd_AHD] := Module[

42 {pos = First[Ordering[Length[Complement[List @@ #, done]] & /@ cd]]},

43 pA[Delete[cd, pos], Union[done, List @@ cd[[pos]]], ahd*pA[cd[[pos]]]]

44];

45 pA[CircuitDiagram[], _, ahd_AHD] := ahd

Comments online 2. W[i1,i2,...] represents
i1 ∧ i2 ∧ To sort it we Sort its arguments and
multiply by the Signature of the permutation
used. 3. The wedge product of 0 with anything
is 0. 4-5. The wedge product of two things in-
volves applying the Distributeive law, Joining
all pairs of W’s, and WSorting the result. 8. Inner
multiplying by an empty list of indices does noth-
ing. 9-10. Inner multiplying a single index yields
0 if that index is not pressent, otherwise it’s a sign
and the index is deleted. 11-12. Aftwrwards it’s
simple recursion. 15-18. For the crossings Xp and
Xm it is straightforward to determine the incom-
ing strands, the outgoing ones, and the variable
equivalences. The associated half-densities are
just as in the formulas. 21-23. The technicalities
of imposing variable equivalences are annoying.
26. That’s all we need from the definition of a
tensor product. 27-28. Straightforward simplifi-
cations. 29. The (circuit algebra) product of two
Alexander Half Densities: 30. The glued strands
are the intersection of the ins and the outs. 32-

33. Merging the variable equivalences is tricky
but natural. 34-35. Removing the glued strands
from the ins and outs. 36 The Key Point. The
wedge product of the half-densities, inner with
the glued strands. 40-45. A quick implementa-
tion of a “thin scanning” algorithm for multiple
products. The key line is 42, where we select the
next crossing we multiply in to be the crossing
with the fewest “loose strands”.

References

[Ar] J. Archibald, The Weight System of the Multivariable Alexander

Polynomial, arXiv:0710.4885.

[MH] H. Murakami, A Weight System Derived from the Multivariable Con-

way Potential Function, Jour. of the London Math. Soc. 59 (1999)
698–714, arXiv:math/9903108.

[MJ] J. Murakami, A State Model for the Multi-Variable Alexander Poly-

noomial, Pac. Jour. of Math. 157-1 (1993) 109–135.

[NS] S. Naik and T. Stanford, A Move on Diagrams that Generates S-

Equivalence of Knots, Jour. of Knot Theory and its Ramifications
12-5 (2003) 717–724, arXiv:math/9911005.

[Va] A. Vaintrob, Melvin-Morton Conjecture and Primitive Feynman Di-

agrams, Inter. J. Math. 8 (1997) 537–553, arXiv:q-alg/9605028.

Hence

“w-knots”

(The program also prints “False”
when appropriate, and computes Alexander polynomials)

