A Quick Reference Guide to Khovanov’s Categorificatio
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The Kauffman Bracket: () =1; (OL) = (¢+q¢ )(L); (X)=(

The Jones Polynomial: .J(L) = (—1)"~¢"+ 2"~ (L), where (n,,n_
Khovanov’s construction: [L] — a chain complex of graded Z-modules;
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Theorem 1.
Theorem 2.

The graded Euler characteristic of C(L) is J(L).

The homology H(L) is a link invariant and thus so is Khy(L) :=

(with (ny,n_)=(3,0))

>t qdimHE(C(L)) over any field F.

Theorem 3. H(C(L)) is strictly stronger than .J(L):
Conjecture 1. Kho(L) = ¢* 1 (1+¢2
s = s(L) and non-negative-coefficients laurent polynomial Kh' = Kh'(L).

Conjecture 2. For alternating knots s is the signature and Kh' depends only on tg?.

H(C(51

)) # H(C(10132)) whereas .J(5;) =
+(1+1tq")KN) and Khg, (L) = ¢*'(1 + ¢°) (1+ (1+ tg*) KI) for even

J(10432).

References.

Khovanov’s arXiv:math.QA /9908171 and arXiv:math.QA /0103190 and DBN’s
http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.

More at http://www.math.toronto.edu/~drorbn/Talks/UW0-040213/

191


http://www.math.toronto.edu/~drorbn/Talks/UWO-040213/

