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Trees and Wheels and Balloons and Hoops kv, gy, 15 Minutes on Topology
Dror Bar-Natan, Zurich, September 2013 ; ) balloons / tails
T - : x| “Ribbon- T
weP:=http://www.math.toronto.edu/~drorbn/Talks/Zurich-130919 &= knotted ‘
15 Minutes on Algebra Tk balloons v v ' .
Let T be a finite set of “tail labels” and H a ﬁnlte set of and hoops” 00 Q%;R
“head labels”. Set CHIbCCCIEs g4
P jo[e]e}
“H-labeled lists of elements of the degree-completed free Lie hoops / heads
algebra generated by T7. Examples. . :
1 anti-symmetry €zt I |
FL(T) = { 2ty — =[ty, [t1,1 /( : ) x s
(T) { 2 = 5lt, [t1, tal] + } Jocobi | ! :\/
. with the obvious bracket| “*’ | !
y |
u v [ u u v 4 _ | Shin Satoh
Ml/?(uav;xay):g)‘:Gj_}Yay—)‘_%?/ ) puwbx Puz* o :
x Yy |
|

“the generators”

(Tail Multiply tm{" is A = A J/ (u,v — w), satisfies “meta-
associativity”, tmiY J tmi = tmPY ) tmkv.

Head Multiply hmz” is A = (A\{z,y}) U (z = bch(Az, \y)),
where

beh(a, B) = log(e®e?) = a + 4 2 4. [l Pl HlloA)0

]

Mgrc on \/\ L %

satisfies R123, VR123 D, and

_— j//\< yet not

(1))

OC: %e&as

|
5 + 1 + ...
satisfies bch(beh(a, ), ) = log(e®ee) = beh(a, beh(3,7))
and hence meta-associativity, hmz” ) hm%* =

my” ) hmz?.
Tail by Head Action tha® is A +— X J RC)=, wherd

u

7—/&
e § injects u-knots into K (likely u-tangles too).

e & maps v-tangles to K; the kernel contains the above and
conjecturally (Satoh), that’s all.
e Allowing punctures and cuts, ¢§ is onto.

Cyn': FL. — FL is the substitution u — e 7ue?, or more
precisely,

Ot = e (w) = u — byl + g v by o] -

and RC, = (Cy,, 7)™, Then chhleB) CS//RC;B

RCEMP) — RCS ) RCE//RC“ hence “meta u® = (u*)¥”,
hm%Y | tha"* = tha"* )| tha" || hm%Y

and tmi’ / cytmy = oyIRC, J C3 ) tm’ and hence “meta

(uv)® = u®v™”, tmk’ ) tha™® = tha"® || tha® || tml’.

ey

// C8 hencel

Operations
Punctures & Cuts
If X is a space, 71 (X)
is a group, wo(X)
is an Abelian group,
and 7 acts on .

T
' Connected
| Sums.

Riddle. People often:
study m(X) =[S, X]:
and mo(X) = [9?, X].:

Wheels.  Let M(T;H) = M,;(T;H) x CW(T'), where
CW(T) is the (completed graded) vector space of cyclic words

on T', or equaly well, on FL(

Why not mr(X)

St S2 . T

“Meta-Group-Action” " e e

Properties.

Operations. On M(T; H), define tm!’

wef/antig-ave
as before,
and tha"* by adding some .J-spice:

and hm>Y

o Associativities: m2® J/ m2 = mbe ) m2, for m = tm, hm.

o “(uv)® = uv™: tml’ ) tha* = tha'* // tha® J| tmYy
(

()\w) (A w+ Ju(Ag)) J RC,

ds div,(y/RC.) ) C %7, and

7

where J,,(

Alekseev

) = (u®)Y": hmmy /| tha** = tha"* || tha"¥ |/ hm

Tangle concatenations — 71 X mo. With dmgb = tha //

a

(e

Al

Theorem Blue. All blue identities still hold.

Torosslan

me [ hm®
4
Finite type invariants make

sense in the usual way, and >§<_>ﬁ< >>;i<_>>//<<

Merge Operation. (A;wi)*(Ao;ws) := (A1 U Ag;wy + wo).

“algebra” is (the primitive part of) “gr” of “topology”.
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Trees and Wheels and Balloons and Hoops: Why I Care

Moral. To construct an M-valued invariant ¢ of (v-)tangles

and nearly an invariant on K, it is enough to declare ¢ on|
the generators, and verify the relations that ¢ satisfies.

(x — 0;0), ¢(ew) = (();0), and

;;0>

The Invariant (. Set ((e;) =

¢ W) B

(Theorem. ( is (log of ) the unique homomor-
phic universal finite type invariant on %"
(... and is the tip of an iceberg)

Paper in progress with Dancso, ©ef3/wko B

u
u

X

{The [ quotient is M divi- |

L := R®T with central R and Wlth [u v = euv — cpu for
i,V €T. Then FL — Lg and CW — R. Under this,
' p— (Ae)iw) with Ap = > Ayguar, Aug,w € R,
ueT
Cu + Cy e —1 e, € —1
bch(u,v)—)ecu+cv_1< o u+e o v,
fy=>" 7w then with ¢y := > yycy,
e — 1 1

ded by all relations that uni-
versally hold when when g is |
the 2D non-Abelian Lie alge- |
bra. Let R = Q[{cy uer] and'

|

// RCVY = <1 + CuYu———

e
) e“u— ¢y

> e

Cy

v vy

«div, v = cyyu, and Jyu(vy) = log (1—1—

e’y —

cu'yu), so ( is
ormula-computable to all orders! Can we sunphfy“?

Repackaging.  Given ((x — Ayz);w), set ¢ = D, CyApg)

Cu
€

replace \yz — Qugz := Cudun ==L and w — ev, use t, =

See also msﬁ/tenn weP/bonn, wefB/swiss, msﬁ/portfoho

x
and write oy, as a matrix. Get “3 calculus”.

( is computable! ¢ of the Borromean tangle, to degree 5:

cyclic colou

\ + by
B . <permutations,>

for trees

I have a nice free-Lie
calculator!
+2

006D C

3 Calculus. Let 5(T; H) be

Let g be a finite dimensional Lie
FL(T) — Fun(®rg — 9)
Together, 7 : M(T;H) —

(Tensorial Interpretation.
algebra (any!). Then there’s 7 :
and 7 : CW(T) — Fun(®rg).
Fun(®rg — ®xg), and hence

T M(T; H) — Fun(®rg — U (g)).

( and BF Theory. (See Cattaneo-Rossi,
arXiv:math-ph/0210037) Let A denote a g-
connection on S* with curvature Fy, and B a & §
g*-valued 2-form on S%  For a hoop 7, let = % f\l
hol, (A) € U(g) be the holonomy of A along ;. ‘jCatftaneo
For a ball v,, let O,,(B) € g* be (roughly) the

integral of B (transported via A to 00) on .

Loose Conjecture. For v € K(T; H),
/ DADBe PMA T 95D (R hol,, (A) = €7 (¢(v)).

That is, ¢ is a complete evaluation of the BF TQFT.

w| T Y w and the ay,’s are
U | Oy Oy rational functions in
U Qug Oy variables t,, one for [’
each u € T. Wi metd
w 7%} | Hl . w2 | H2
u | wo Ti|or Ty o
tm%’ v| B — W a+f , wiw2 | H, Hy, ,
~y = T1 a1 0
v T2 0 (6 %)
 wlx oy - w z
hmiy: . | . | )
:‘aﬁ ¥ ‘a+ﬁ+<>ﬁ ¥
w | T we | T
tha . wla B u |a(l+(y)/e) B+ (1)/e)
v o9 : /e d—yB/e
where € := 1+, (@) 1= 3, ay, and () 1= 3, ., Vv, and let
1 T 1 T
+ o - ._
w T T 1 T T e
On long knots, w is the Alexander polynomiall

‘Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-j
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of thel
computation is the computation of the inva-"
riant of some topological thing (no fishy Gaus- @& ;
sian elimination). If there should be an Alexander mvamani
with a computable algebraic categorification, it is this onel

4 [See also (wef/regina) wef/caen, wef /newton.

4 ~ “Cod created the knots, all else in
‘= topology is the work of mortals.”

lay class: wef/aarhus Class next year: wef3/1350)

Leopold Kronecker (modified) www.katlas.org 7”75 K:

Paper: weB/kbh
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Meta—Groups, Meta—-Bicrossed—-Products,

and the Alexander Polynomial, 1

http://www.math.toronto.edu/ “drorbn/Talks/Sheffield-130206/

Dror Bar—Natan at Sheffield, February 2013.
b =

= O%hPY GEHH
IAbstract. I will define “meta-groups” and explain how one specifi
meta-group, which in itself is a “meta-bicrossed-product”, gives risq
to an “ultimate Alexander invariant” of tangles, that contains the
lAlexander polynomial (multivariable, if you wish), has extremely
good composition properties, is evaluated in a topologically mean-
ingful way, and is least-wasteful in a computational sense. If youl
believe in categorification, that’s a wonderful playground.
This work is closely related to work by Le Dimet (Com-
ment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston

and Wang (arXiv:math/9806035) and Cimasoni and Turaey
(arXiv:math.GT/0406269).

Alexander Issues. :
e Quick to compute, but computation departs from topology.
e Extends to tangles, but at an exponential cost.

e Hard to categorify.
>7/Z>/&
to Xings and “multiply along”, so that AN \g\u

Y >

This Fails! R2 implies that gfgF = e = gT g7 and then R3
implies that g and g} commute, so the result is a simpld
counting invariant.

A Group Computer. Given G, can store group elements and
perform operations on them:

ldea. Given a group G and two “YB”
pairs RT = (¢F,¢F) € G2, map them

A\
ﬁﬁﬁ%%ﬂﬁﬁ
9u 90

x miY
.so that mg? //
m“z =mY? [ my*

Igl
u: g

1 g3
Y04

G{x,u,v,y}

)Also has S, for inversion, e, for unit insertion, d, for register dele-
tion, A7, for element cloning, pj for renamings, and (D1, D2)
D1 U D5 for merging, and many obvious composition axioms relat-
ing those. P={z:q1,y: 92} = P={d,P} U{d, P}

A Meta-Group. Is a similar “computer”, only its internall

P‘G:
P=,

structure is unknown to us. Namely it is a collection of setd
{G,} indexed by all finite sets v, and a collection of opera-
tions mzY, S, ez, dr, A}, (sometimes), py, and U, satisfying
the exact same linear properties.

Fxample 0. The non-meta example, G := G7.
Example 1. Gy := Myx,(Z), with simultaneous row and
column operations, and “block diagonal” merges. Here if

“ b> then dyP = (z : a) and d, P = (y : d) s9

d
a 0

{d,P}U{d, P} = (i 0 d) # P. So this G is truly meta,

A Standard Alexander Formula. Label the arcs | through
, make an n X n matrix as below, delete one row
and one column, and compute the determinant:

-1 +4X-8X>+11%X°-8%%+4x%-X°

product of two of its subgroups, with H NT" = {e}, then also
/\ 1 1-X X G = TH and G is determined by H, T', and the “swap” map|
swt : (t,h) — (W,t') defined by th = A't’. The map s
o satisfies (1) and (2) below; conversely, if sw : T'x H — H x T|
/_ -X X-1 1 satisfies (1) and (2) (+ lesser conditions), then (3) defines 4
[ "1 "6 o o0 o0 %-1 0 -x. T TTTTTTTT group structure on H x T', the “bicrossed product”.
w0 oo eiaax o | T T SRR
x(_)l 1(_Jx _ox _11 g g g 3 [[1::7,1;;71 7/ Det% y W %2 % W
o o o0 o0 -x 1 0 x-1 = (3)
0 0 1-x 0 0 -1 x 0 :
0 0 o0 x-1 0 o0 -x 1) g SN 3 /3

Claim. From a meta-group G and YB elements RT € G we
can construct a knot/tangle invariant.

Bicrossed Products. If G = HT is a group presented as a

T: tm%z / swia —sw24//sw14 //tm g'mllg2 =swi2 //tm32 //lm’n12

" hitihaoty = hl(hét’l)tQ = (h1h' (t/ t2) = hstg
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Meta—Groups, Meta—Bicrossed—-Products, and the Alexander Polynomial, 2

: - : O aal uy i=pl.t_-1;
A Meta-Bicrossed-Product is a collectlon of sets 3(n, ) and]l mean business! e (51 12 Bkt 8 1. el
i ) ; . . hm, .. (B[w , 4 ]] := Module[
operations tm’, hmz” and sw!’, (and lesser ones), such thats et e oot Matee; (22 DL, hd, B=DLs, B, =4 T By = 0),
e N ’ Blw, (a+ (1+(a))B)h,+v] // BCollect];
tm and hm are “associative” and (1) and (2) hold (4 lesser] coects ». cottect e, < sl <l S (Bl A1) o= Modslel, 5, v, 6, <),
. . BForm[B[«~ , 4 ]] := Module[{ts, hs, M}, a = Coefficient[4, h,t,]; B = D[4, t,] /. he - 0;
conditions). A meta-bicrossed-product defines a meta-group| : - vnion[cases[stu, 41, t. = u, Intinity]]; R AR AN
. L . hs = Union[Cases[B[w, 4], h, = x, Infinity]]; N Z"“’; oyl et . e se
Wlth G»y = ,6(’7,’)/) and gm as 1 (3) M = Outer[BSimp[Coefficient[4, h.; t..]] &, yk':s, ts]; 2l ',,,(:hx( S ‘i(.lyjaje/ '
— 1 3 rependTo[M, ts & /! sl ollect] ;
Example. Take B(n,T) = M;(Z) with row ope%"ajmons for) Jremendely e (b & 16 ho, G115 Gmen e (41 on b ) e 11 e 11 s
the tails, column operations for the heads, and a trivial swap,| etsizromral: B/ ALIBloZ, 42) i= Bloleaz, 41+42);
) ’ jBForm[else ] := else /. 4 B > BForm[/]; Rpsp = [1, zx 1) ;«*‘:1']
Format[4 B, StandardForm] := BForm[/4]; Rm,, i= B[1, (x?-1)t.h];

3 Calculus. Let 3(n,T) be B
wl|h hy - et e Lo and {B = B[w, Sum[asos,5 ta by, {i, {1, 2,3}}, {3, (4, 5}}11,
t1 ol o2 - tﬁ > ti T,t.an ]wf an (B // tmizs1 // swig) == (B // swaa // swia // tmiz,1)}
to | g oy - e «y; are rational func- ¢,

. tions in a variable X w hg hs
: . . . t1 g ags T Some
{ t2 024 Ops | rue testing
w1|n1 Uu)2|772 O34 O35
o T1 | o T2 | 2
w1t | | {Rms; Rmgz Rpsg // gMyg,y // Giys,; // gMg,s,
tm® wiwy [ m me
= o 0 \i/l/ Rpg; Rmag Rmas // gmyy,y // giys,; // gisgg,z}
T 0 o h; hy 1 h; (=]
_-1+X 0 t, - -1+X 0
| Ce hz e Vf ts X ’ X
xyY . —1+X _-1+X -1+X _ -1+X
hmZ¥ . — = ) X X by 7 X
tla By Plat B+ (@B v ... divide and conquer!
w | hy - we | ha /3=Rm12,1 Rma7 Rmg3 Rmy, 11 RP1¢,5 RPg,13 RP14,9 RP10,15 817
P T R P P e 1 o e 1 R S S S VS
N8 /e 5§ —~B/e t, 0 0 0 -=X 0 0 0 0
ty 0 0 0 0 0 -2 0 0
where € := 1+« and (¢) :== ), ¢;, and let te 0 0 0 0 0 0 1.x o
-1+X
1 ‘ ha hb 1 | ha hb tg 0 i 0 0 0 0 0 0
R =1, 0 X—1 M= ta | 0 XTT—1. [T 0 000000 X
ty 0 0 t 0 0 tiy - —~ 0 0 0 0 0 0 0
tiy 0 0 0 0 -1+X 0 0 0

Theorem. Z7 is a tangle invariant (and more). Restricted to[l tis 0 0 -1+x © 0 0 0 0

knots, the w part is the Alexander polynomial. On braids, itP°l® = B // guer, {k, 2, 10317 B 817, cont.

is equivalent to the Burau representation. A variant for links L h; hi hys his

contains the multivariable Alexander polynomial. ty - (14%) (1-X+X%) (-1+X) (1-X+X%) -1+X

Why Happy? e Applications to w-knots. O 0 ) )

(o Everything that I know about the Alexander polynomial|t,, -1:x %ﬂ *M 0

can be expressed cleanly in this language (even if without| . 1 (-1+%)2 1w® 0

. . . . X X

proof), except HF, but including genus, ribbonness, cablingf-------------------"------~-"---~--~-~---~- - - -

v-knots, knotted graphs, etc., and there’s potential for vast e Do[B = B // gmy,,, {k, 11, 16}]; B

generalizations. /2 \Waddell < _1-4x+8x2-11x3+8x4-4x5:%x6 )

o The least wasteful “Alexander for tangles” Alexander x3

['m aware of. A Partial To Do List. 1. Where does it more
e Every step along the computation is the in : | simply come from?

variant of something. : - £2. Remove all the denominators. g
e Fits on one sheet, including implementation ; 3. How do determinants arise in this context? Kjtrivial
& propaganda. .‘ . Understand links (“meta-conjugacy classes”). ~
Further meta-monoids. II (and variants), A (and quotients),5. Find the “reality condition”. '
vl ... - 6. Do some “Algebraic Knot Theory”. o
Further meta-bicrossed-products. II (and variants), A (and[7. Categorify. kjribbon
quotients), Mo, M, K, K00, 8. Do the same in other natural quotients of the

Meta-Lie-algebras. A (and quotients), S, ... v/w-story. /\/X\/
. . — . R

Meta-Lie-bialgebras. A (and quotients), | .44 "God created the knots, all else in \/ﬂ\

[ don’t understand the relationship between gr and H, as it . topology is the work of mortals." »

appears, for example, in braid theory. Leopold Kronecker (modified)  yyyyw katlas. org T ret example




Dror Bar-Natan: Talks: Geneva-131024: w :=http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024 E 4

Finite Type Invariants of Ribbon Knotted Balloons and Hoops

Abstract. On my September 17 Geneva talk (w/sep) I de-/Action 1. }:ZT_C K
scribed a certain trees-and-wheels-valued invariant ¢ of rib- -
bon knotted loops and 2-spheres in 4-space, and my October 8 L—)ﬁ H_‘:#
Geneva talk (w/oct) describes its reduction to the Alexander jbh —

polynomial. Today I will explain how that same invariant ar r_)M r_‘::t
arises completely naturally within the theory of finite type cpP T

X K R X — ——
invariants of ribbon knotted loops and 2-spheres in 4-space. T H

balloons/tails bh "
T{ a a = K™™(T;H) >Z< (then connect using " S
T —

v v xings or v-xings)

ribbon  R? ¢ —
embeddings gl Derlvmg AT \ R3, key: use &. ?
Start from \ A=<

oussarov-Polyak-Viro

D () C o | D" D ) P, @% oGS Y

My goal is to tell you why such an invariant is expected, yet

not to derive the computable formulas. tﬁ w M_’—ﬁ # m

+ LT = L :
Disturbing i R2 using TC U
Conjectur W / / > Action 2.

d c c d
h=qf v VQEN E}%%{j Z: %H%Z +%+ +-
2 gc @%ﬁ E) R L o B
TC

|
Satoh ar —= TC —/—>‘ erty U.

(@) 4
Dictionary. ! \\/ =7 = \T/ >{}< The Bracket-Rise Theorem.
/ >}<< o V >< ° ° CP B,

“y-xing” m . T g / STU B

AW o

blue is never “over” (2 in 1 out vertices) | relations

Expansions N N V4 \/

the semi-virtual }ZZ = K_>< ie. K_>< or K_>< \] \ / y STU2 \ / y
Let Z" := (pictures with > n semi-virts) C K. — /
We seek an “expansion” Ll F STUs =TC: 0= \ /X T I - > \ X

N~

7. ’Cbh — or ’Cbh — @In/zn—i-l Abh
satisfying “property U”: if v € Z", then

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels

Z(v)=(0,..., 77/1-”_'_17 *y Ky ) X.-S. Lin persist.
Why? e Just because, and this is vastly more general. Theorem. A is a bi-algebra. The space of its primitives is
. (leh /I”‘H)* is “finite-type/polynomial invariants”. FL(T)" x CW(T), and ¢ = log Z.
e The Taylor example: Take K = C*([R"), I =( iscomputable! ¢ of the Borromean tangle, to degree 5:

7" /Z™*! is homogeneous polynomials of degree n and Z is a
“Taylor expansion”! (So Taylor expansions are vastly more
general than you’d think).

{f€K: f(0)=0}. Then Z" = {f: f vanishes like |z|"} SOY < cyclic Colour>
B2 % permutations

for trees

Plan. We'll construct a graded .[lbh, a sur- Jbh
jective graded m: A" — AP and a fil- 7 i 5 .‘%‘ .%’
tered Z: KPh — AP so that / grZ =1Id /w”grz
(property U: if degD = n, Z(n(D)) = JCbl > pbh 2.§§‘712’$P7 ? ?
Z
- O

7T()h (deg > n)) Hence e 7 is an 1se— H 2°[°°

B .o[m)t

"
*?‘?*@’?
«z”'-?’«f”

5
A
—

have a nice free-Lie
calculator'

g “God created the knots all else i in
| topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org 1t



www.katlas.org
http://www.math.toronto.edu/drorbn/Talks/Geneva-131024/sep
http://www.math.toronto.edu/drorbn/Talks/Geneva-131024/oct
http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024

Dror Bar-Natan: Talks: Leiden-1601: w :=http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601 E
The Kashiwara-Vergne Problem and Topology Handout, video, and links at w/

Abstract. I will describe the general “expansions” machine
whose inputs are topics in topology (and more) and whose
outputs are problems in algebra. There are many inputs
the machine can take, and many outputs it produces, but I
will concentrate on just one input/output pair. When fed
with a certain class of knotted 2-dimensional objects in 4-
dimensional space, it outputs the Kashiwara-Vergne Prob- C
lem (1978 w/KV, solved Alekseev-Meinrenken 2006 w/AM,
elucidated Alekseev-Torossian 2008-2012 w/AT), a problem

about convolutions on Lie groups and Lie algebras. Q w/F

The Kashiwara-Vergne Conjecture. There exist

two series F' and G in the completed free Lie

. | l | Satoh Dalvit
algebra FL in generators x and y so that Kashiwara L w/Dal
z+y—logele” = (1—e” MO F4(e21Y—1)G i rL —— @ EoOF —© “cup”
and so that with z = log e%eY, Vergne € enerators \ ‘= X-R g D
|
tr(adz)0, F + tr(ad y)0yG  in cyclic words * /—>>\/<< -1 © E e
1 adz ady ad z 1) Alekseev = > E } °
=3 r cadz _ ] | pady _ ]  eadz 1 v “the crossing” w/X sOo & \-l- °
¥ -
Implies the loosely-stated convolutions state- !
-1ele-N
ment: Convolutions of invariant functions on a  Meinrenken >;<\< @ -row-B g °
Lie group agree with convolutions of invariant _ = % = | he °
functions on its Lie algebra. Torossian >>/ = 5 = | vertex” <
. : s> E
The Machine. Let G be a group, K = QG = {>_a;g;: a; € — /<< w/vX rerel-l A P
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omomorphic expansions for a filtered algebraic structure K:

OpSGIC = IC() D) ]C1 o K
Y lz
ops—grkC = ICo/’Cl D ’Cl/ICQ D ICQ/’Cg D ’Cg/K:4 D ...
An expansion is a filtration respecting Z : K — grC that
“covers” the identity on grXC. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

D K3 D...

A Ribbon 2- Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and

/-& %R R-R

iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let K; be the ideal
generated by differences (the “augmentation ideal”), and let
[Crm, := ((K1)™) (using all available “products”).

he w-relations 1nclude R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W? = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

"An Algebraic Structure"
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e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.
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= Unzip along an annulus Unzip along a disk

xample: Pure Braids. PB, is generated by x;;, “strand i
goes around strand j once”, modulo “Reidemeister moves’
A, := gr PB,, is generated by t;; := x;; — 1, modulo the 4T
relations [t;;,t;x + t;1] = 0 (and some lesser ones too). Much

happens in A,, including the Drinfel’d theory of associators.

> Qust for fun.

The set of all
b/w 2D projec-
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Our case(s).
Z: high algebra

given a “Lie”
algebra g

A=
gr K

“«y (g)au
solving finitely many
equations in finitely
many unknowns

)C is knot theory or topology; grC is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

low algebra: pic-
tures represent
formulas
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An expansion Z is a choice of a
“progressive scan” algorithm.
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rotate

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
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Knot-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:
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From wT'T to A", gr,, wI'T := {m—cubes}/{(m+1)

forget
topology
Polyak

cubes}

Vassiliev

Goussarov

w-Jacobi diagrams and A. AY(Y T) =2 AY(117) i

4T:L»H+LF:I=F’H+FF:I

Diagrammatic statement. Let R = exp™ € A" (]1). There

exist w € AY(T) and V € A*(11) so that

WYY el
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deg=1#{vertices}=6
Diagrammatic to Algebraic. With (z;) and (¢’) dual bases of
g and g* and with [;vi, x| = bejxk, we have AY — U via

bk

4(Ig)/U(g ) = S(g*) the obvious projection, with S the an-
tipode of U (Ig), with W the autommphlsm of U(Ig) induced
v flipping the sign of g*, with € g* ® g the identity element
and with R = e” € U(Ig) ® U(g) there exist w € S(g*) and |°
V € U(Ig)®? so that

(1) V(A ®1)(R) = R®R®V in U(Ig)®2 @ U(g)

(2) V-SWV =1 3B) (c®c)(VAWw)) =wRuw

T T /><\ Penrose CV|tanOV|c
w w T,
d1m g
Z bz kl§0 QO xnmeO S U(Ig)
i’j7k7l7m7n:1
Unitary <= Algebraic. The key is to interpret ¢/(Ig) as tan-
Algebraic statement. With Ig == g* x g, with ¢ : U/(Ig) — gential differential operators on Fun(g):

e © € g* becomes a multiplication operator.

e © € g becomes a tangential derivation, in the direction of
the action of ad x: (z¢)(y) := ¢([x,y]).

¢:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.

Unitary = Group-Algebra. // w;z;+?/em+y¢(az)1/1(y)
(g SIS ) )~ (Vi1 VE TSNS ()i 1,

Unitary statement. There exists w € Fun(g)“ and an (infinite
order) tangential differential operator V' defined on Fun(g, x
g,) so tha that

(1) Verts = &gy (allowing U(g)-valued functions)
R)VV =T  (3) Vweyy = waty

= <w:1:w’y7 emeyv¢(m)w(y)wﬂf+y> = <W:L'wilja exey(p(x)w(y)wi'waI)

[ eers@pw.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then

Group-Algebra statement. There exists w? € Fun(g)® so that

for every ¢, 1/1 € Fun(g)® (with small support), the following
holds in Z/{ (shhh, w? = j1/?)
//¢ /2+ x+y_//¢ emey
r+y
gxg gxg (shhh7 this is Duflo)

(Fun(G),x) =2 (A,-) via L: f— > f(a)7(a). For Lie (G 9),

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately, |®
let G be a finite dimensional Lie group and let g be its Lie
hlgebra, let j : g — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ®(f)(z) := JL/Q( ) f(expz). Then if f,g € Fun(G) are
Ad-invariant and supported near the identity, then

D(f) *2(g) = 2(f *g).

(9.4) 22 === ¢ € S(g) Fun(g) —*— &(g)
lexp&\ lx SO l@l l
(G, Bez#ezea( ) Fun(G ) Z](g
with Loy = [4(z)e*dr € S(g) and L;d~ 1y = fd) z)e”
Ll(g). Given 1; € Fun(g) compare ®~'(¢1) x &1 (¢)2) and

(wl * 111)2 in L{( ) (shhh, Ly, are “Laplace transforms”)

% in G : //¢1 Yo (y)ee *xin g : / 1 (x)1ha (y)e™ Y

'We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.

e u-Knots, Alekseev-Torossian, ® BF theory and the successful
and Drinfel’d associators. religion of path integrals.

e The simplest problem hyperbolic geometry solves.




