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Riddle. People often
study π1(X) = [S1, X ]
and π2(X) = [S2, X ].
Why not πT (X) :=
[T,X ]?
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Let T be a finite set of “tail labels” and H a finite set of
“head labels”. Set

M1/2(T ;H) := FL(T )H ,

“H-labeled lists of elements of the degree-completed free Lie
algebra generated by T”.

FL(T ) =

{

2t2 −
1

2
[t1, [t1, t2]] + . . .

}

/(

anti-symmetry
Jacobi

)

. . . with the obvious bracket.

Trees and Wheels and Balloons and Hoops

15 Minutes on Algebra

Operations M1/2 → M1/2.

Tail Multiply tmuv
w is λ 7→ λ � (u, v → w), satisfies “meta-

associativity”, tmuv
u � tmuw

u = tmvw
v � tmuv

u .

Head Multiply hmxy
z is λ 7→ (λ\{x, y}) ∪ (z → bch(λx, λy)),

where

bch(α, β) := log(eαeβ) = α+ β +
[α,β]

2
+

[α,[α,β]]+[[α,β],β]

12
+ . . .

satisfies bch(bch(α, β), γ) = log(eαeβeγ) = bch(α,bch(β, γ))
and hence meta-associativity, hmxy

x � hmxz
x = hmyz

y � hmxy
x .

Tail by Head Action thaux is λ 7→ λ � RCλx
u , where

C−γ
u : FL → FL is the substitution u → e−γueγ , or more

precisely,

C−γ
u : u → e− ad γ(u) = u− [γ, u] +

1

2
[γ, [γ, u]] − . . . ,

and RCγ
u = (C−γ

u )−1. Then C
bch(α,β)
u = C

α�RC−β
u

u �Cβ
u hence

RC
bch(α,β)
u = RCα

u � RC
β�RCα

u
u hence “meta uxy = (ux)y”,

hmxy
z � thauz = thaux � thauy � hmxy

z ,

and tmuv
w �C

γ�tmuv
w

w = C
γ�RC−γ

v
u �Cγ

v � tmuv
w and hence “meta

(uv)x = uxvx”, tmuv
w � thawx = thaux � thavx � tmuv

w .

Wheels. Let M(T ;H) := M1/2(T ;H) × CW(T ), where
CW(T ) is the (completed graded) vector space of cyclic words
on T , or equaly well, on FL(T ):

vu vu

= −

Operations. On M(T ;H), define tmuv
w and hmxy

z as before,
and thaux by adding some J-spice:

(λ;ω) 7→ (λ, ω + Ju(λx)) � RCλx

u ,

where Ju(γ) :=

∫ 1

0
ds divu(γ�RCsγ

u )�C−sγ
u , and

Theorem Blue. All blue identities still hold.

Merge Operation. (λ1;ω1)∗(λ2;ω2) := (λ1 ∪ λ2;ω1 + ω2).

Tangle concatenations → π1 ⋉ π2. With dmab
c := thaab �

tmab
c � hmab

c ,

dmab
c

mab
ca b c

a b cdivu +

γ

λ =M1/2(u, v;x, y) =

Finite type invariants make
sense in the usual way, and
“algebra” is (the primitive part of) “gr” of “topology”.

T

H

balloons / tails

∞

Examples.

x y z

u v
	 	

S4

R4

hoops / heads

More on

satisfies R123, VR123, D, and
no!

• δ injects u-knots into Kbh (likely u-tangles too).
• δ maps v-tangles to Kbh; the kernel contains the above and
conjecturally (Satoh), that’s all.
• Allowing punctures and cuts, δ is onto.

δ

15 Minutes on Topology

IfX is a space, π1(X)
is a group, π2(X)
is an Abelian group,
and π1 acts on π2.

K � hmxy
z : K � thaux:

u v

x y

u v

z

K:

x y

w

Properties.
• Associativities: mab

a � mac
a = mbc

b � mab
a , for m = tm, hm.

• “(uv)x = uxvx”: tmuv
w � thawx = thaux � thavx � tmuv

w ,
• “u(xy) = (ux)y”: hmxy

z � thauz = thaux � thauy � hmxy
z .

K � tmuv
w :

Connected
Sums.

∗
Punctures & Cuts
Operations

newspeak!

“Meta-Group-Action”

ribbon
embeddings
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x

uu x

u

Shin Satoh
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ρ−ux:ρ+ux:

ǫu:

δδ

δ

δ δ
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ωεβ/meta
With Selmani,

See also ωεβ/tenn, ωεβ/bonn, ωεβ/swiss, ωεβ/portfolio

Repackaging. Given ((x → λux);ω), set cx :=
∑

v cvλvx,
replace λux → αux := cuλux

ecx−1
cx

and ω → eω, use tu = ecu ,
and write αux as a matrix. Get “β calculus”.

Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of the
computation is the computation of the inva-
riant of some topological thing (no fishy Gaus-
sian elimination). If there should be an Alexander invariant

with a computable algebraic categorification, it is this one!

See also ωεβ/regina, ωεβ/caen, ωεβ/newton.
“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

ζ: ; 0

for trees

+ cyclic colour
permutations,

ζ is computable! ζ of the Borromean tangle, to degree 5:

Loose Conjecture. For γ ∈ K(T ;H),
∫

DADBe
∫
B∧FA

∏

u

eOγu (B))
⊗

x

holγx
(A) = eτ (ζ(γ)).

That is, ζ is a complete evaluation of the BF TQFT.

Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s τ : FL(T ) → Fun(⊕T g → g)
and τ : CW(T ) → Fun(⊕T g). Together, τ : M(T ;H) →
Fun(⊕T g → ⊕Hg), and hence

eτ : M(T ;H) → Fun(⊕T g → U⊗H(g)).

ζ and BF Theory. (See Cattaneo-Rossi,
arXiv:math-ph/0210037) Let A denote a g-
connection on S4 with curvature FA, and B a
g
∗-valued 2-form on S4. For a hoop γx, let

holγx
(A) ∈ U(g) be the holonomy of A along γx.

For a ball γu, let Oγu
(B) ∈ g

∗ be (roughly) the
integral of B (transported via A to ∞) on γu.

Cattaneo

The Invariant ζ. Set ζ(ǫx) = (x → 0; 0), ζ(ǫu) = ((); 0), and

Theorem. ζ is (log of) the unique homomor-
phic universal finite type invariant on Kbh.

(. . . and is the tip of an iceberg)

; 0

Paper in progress with Dancso, ωεβ/wko

The β quotient is M divi-
ded by all relations that uni-
versally hold when when g is
the 2D non-Abelian Lie alge-
bra. Let R = QJ{cu}u∈T K and
Lβ := R ⊗ T with central R and with [u, v] = cuv − cvu for
u, v ∈ T . Then FL → Lβ and CW → R. Under this,

µ → ((λx);ω) with λx =
∑

u∈T

λuxux, λux, ω ∈ R,

bch(u, v) →
cu + cv

ecu+cv − 1

(

ecu − 1

cu
u+ ecu

ecv − 1

cv
v

)

,

if γ =
∑

γvv then with cγ :=
∑

γvcv,

u�RCγ
u =

(

1 + cuγu
ecγ − 1

cγ

)−1


ecγu− cu
ecγ − 1

cγ

∑

v 6=u

γvv



 ,

divu γ = cuγu, and Ju(γ) = log
(

1 + ecγ−1
cγ

cuγu

)

, so ζ is

formula-computable to all orders! Can we simplify?

Trees and Wheels and Balloons and Hoops: Why I Care

May class: ωεβ/aarhus Class next year: ωεβ/1350
Paper: ωεβ/kbh

Moral. To construct an M -valued invariant ζ of (v-)tangles,
and nearly an invariant on Kbh, it is enough to declare ζ on
the generators, and verify the relations that δ satisfies.

β Calculus. Let β(T ;H) be


















ω x y · · ·
u αux αuy ·
v αvx αvy ·
... · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω and the αux’s are
rational functions in
variables tu, one for
each u ∈ T .



















,

tmuv
w :

ω · · ·
u α
v β
... γ

7→

ω · · ·
w α+ β
... γ

,

ω1 H1

T1 α1
∗
ω2 H2

T2 α2

=
ω1ω2 H1 H2

T1 α1 0
T2 0 α2

,

hmxy
z :

ω x y · · ·
... α β γ

7→
ω z · · ·
... α+ β + 〈α〉β γ

,

thaux :

ω x · · ·
u α β
... γ δ

7→

ωǫ x · · ·
u α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1+α, 〈α〉 :=
∑

v αv, and 〈γ〉 :=
∑

v 6=u γv, and let

R+
ux :=

1 x
u tu − 1

R−
ux :=

1 x
u t−1

u − 1
.

On long knots, ω is the Alexander polynomial!

I have a nice free-Lie

calculator!

u x
u

x

x

u
u

x
−

= −

[u, v] cuv cvu= −

http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/meta
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/tenn
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/bonn
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/swiss
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/portfolio
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/regina
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/caen
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/newton
www.katlas.org
http://front.math.ucdavis.edu/math-ph/0210037
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/wko
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/aarhus
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/1350
http://www.math.toronto.edu/drorbn/Talks/Zurich-130919/kbh


Meta−Groups, Meta−Bicrossed−Products, and the Alexander Polynomial, 1
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R2

=
R1

+ + +

− −

Z
(

g+
o g+

u g+
o g−u g−o g+

u g+
o g+

u

g−u g−o

)

Idea. Given a group G and two “YB”
pairs R± = (g±o , g±u ) ∈ G2, map them
to xings and “multiply along”, so that

Z

This Fails! R2 implies that g±o g∓o = e = g±u g∓u and then R3
implies that g+

o and g+
u commute, so the result is a simple

counting invariant.

±
g±

o

g±
u

u v

x y

K � swth
ux

x y

w

K � tmuv
w

u v

z

K � hmxy
z

∗

v

y

u

x
K

http://www.math.toronto.edu/~drorbn/Talks/Sheffield-130206/

“divide and conquer”

A Standard Alexander Formula. Label the arcs 1 through
(n + 1) = 1, make an n × n matrix as below, delete one row
and one column, and compute the determinant:

+ + +

− −

+ + + +

−−− −

+

−

Alexander Issues.
• Quick to compute, but computation departs from topology.
• Extends to tangles, but at an exponential cost.
• Hard to categorify.

(3)

gm12
3

:=sw12�tm12
3

�hm12
3

Bicrossed Products. If G = HT is a group presented as a
product of two of its subgroups, with H ∩T = {e}, then also
G = TH and G is determined by H, T , and the “swap” map
swth : (t, h) 7→ (h′, t′) defined by th = h′t′. The map sw
satisfies (1) and (2) below; conversely, if sw : T ×H → H×T
satisfies (1) and (2) (+ lesser conditions), then (3) defines a
group structure on H × T , the “bicrossed product”.

h1t1h2t2 = h1(h′
2
t′
1
)t2 = (h1h′

2
)(t′

1
t2) = h3t3

A Group Computer. Given G, can store group elements and
perform operations on them:

mxy
z

. . . so that mxy

u �
muz

v = myz

u � mxu

v

(or muz

v ◦ mxy

u =
mxu

v ◦myz

u , in old-
speak).

Also has Sx for inversion, ex for unit insertion, dx for register dele-
tion, ∆z

xy for element cloning, ρx
y for renamings, and (D1, D2) 7→

D1 ∪D2 for merging, and many obvious composition axioms relat-
ing those.

G{x,u,v,y} G{u,v,z}

x : g1

v : g3

y : g4

u : g2

v : g3

z : g1g4

u : g2

P = {x : g1, y : g2} ⇒ P = {dyP} ∪ {dxP}

A Meta-Group. Is a similar “computer”, only its internal
structure is unknown to us. Namely it is a collection of sets
{Gγ} indexed by all finite sets γ, and a collection of opera-
tions mxy

z , Sx, ex, dx, ∆z
xy (sometimes), ρx

y , and ∪, satisfying
the exact same linear properties.
Example 0. The non-meta example, Gγ := Gγ .
Example 1. Gγ := Mγ×γ(Z), with simultaneous row and
column operations, and “block diagonal” merges. Here if

P =

(

x : a b
y : c d

)

then dyP = (x : a) and dxP = (y : d) so

{dyP}∪ {dxP} =

(

x : a 0
y : 0 d

)

6= P . So this G is truly meta.

Claim. From a meta-group G and YB elements R± ∈ G2 we
can construct a knot/tangle invariant.

=
(1)

tm12
1

�sw14 =sw24�sw14�tm12
1

(2)
=

H

h4 h4

3

21t1 t2 t1 t2

T

1 2

3

Abstract. I will define “meta-groups” and explain how one specific
meta-group, which in itself is a “meta-bicrossed-product”, gives rise
to an “ultimate Alexander invariant” of tangles, that contains the
Alexander polynomial (multivariable, if you wish), has extremely
good composition properties, is evaluated in a topologically mean-
ingful way, and is least-wasteful in a computational sense. If you
believe in categorification, that’s a wonderful playground.
This work is closely related to work by Le Dimet (Com-
ment. Math. Helv. 67 (1992) 306–315), Kirk, Livingston
and Wang (arXiv:math/9806035) and Cimasoni and Turaev
(arXiv:math.GT/0406269).

−X X − 1 1

−1 1 − X X

c
b

a

c
b

a c

c

a b c

a b c

817
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http://front.math.ucdavis.edu/math/9806035
http://front.math.ucdavis.edu/math.GT/0406269
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Meta−Groups, Meta−Bicrossed−Products, and the Alexander Polynomial, 2

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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6

T

A Partial To Do List. 1. Where does it more

simply come from?
2. Remove all the denominators.
3. How do determinants arise in this context?
4. Understand links (“meta-conjugacy classes”).
5. Find the “reality condition”.
6. Do some “Algebraic Knot Theory”.
7. Categorify.
8. Do the same in other natural quotients of the

v/w-story.

trivial

ribbon

example

T

A Meta-Bicrossed-Product is a collection of sets β(η, τ) and
operations tmuv

w , hmxy
z and swth

ux (and lesser ones), such that
tm and hm are “associative” and (1) and (2) hold (+ lesser
conditions). A meta-bicrossed-product defines a meta-group
with Gγ := β(γ, γ) and gm as in (3).
Example. Take β(η, τ) = Mτ×η(Z) with row operations for
the tails, column operations for the heads, and a trivial swap.

I mean business!

. . . divide and conquer!

β Calculus. Let β(η, τ) be


















ω h1 h2 · · ·
t1 α11 α12 ·
t2 α21 α22 ·
... · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

hj ∈ η, ti ∈ τ , and ω and
the αij are rational func-
tions in a variable X



















,

tmuv
w :

ω · · ·
tu α
tv β
... γ

7→

ω · · ·
tw α + β
... γ

,

ω1 η1

τ1 α1
∪

ω2 η2

τ2 α2

=
ω1ω2 η1 η2

τ1 α1 0
τ2 0 α2

,

hmxy
z :

ω hx hy · · ·
... α β γ

7→
ω hz · · ·
... α + β + 〈α〉β γ

,

swth
ux :

ω hx · · ·
tu α β
... γ δ

7→

ωǫ hx · · ·
tu α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1 + α and 〈c〉 :=
∑

i ci, and let

Rp
ab :=

1 ha hb

ta 0 X − 1
tb 0 0

Rm
ab :=

1 ha hb

ta 0 X−1 − 1
tb 0 0

.

Theorem. Zβ is a tangle invariant (and more). Restricted to
knots, the ω part is the Alexander polynomial. On braids, it
is equivalent to the Burau representation. A variant for links
contains the multivariable Alexander polynomial.

Why Happy? • Applications to w-knots.
• Everything that I know about the Alexander polynomial
can be expressed cleanly in this language (even if without
proof), except HF, but including genus, ribbonness, cabling,
v-knots, knotted graphs, etc., and there’s potential for vast
generalizations.
• The least wasteful “Alexander for tangles”
I’m aware of.
• Every step along the computation is the in-
variant of something.
• Fits on one sheet, including implementation
& propaganda.

=
(1)

Further meta-monoids. Π (and variants), A (and quotients),
vT , . . .

Further meta-bicrossed-products. Π (and variants),
−→
A (and

quotients), M0, M , Kbh, Krbh, . . .
Meta-Lie-algebras. A (and quotients), S, . . .

Meta-Lie-bialgebras.
−→
A (and quotients), . . .

I don’t understand the relationship between gr and H, as it
appears, for example, in braid theory.

Some
testing

817, cont.
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R3.

1

CP, B,
−−−→

STU ,
−→

AS,

and
−−−→

IHX

relations(2 in 1 out vertices)

=

= =

==

=
↔

↔↔

↔

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

+

=
TC

=
−→

4T

+

π : 7−→
a b

c d

a b

cd

=
R3

0 =

ζ is computable! ζ of the Borromean tangle, to degree 5:

for trees

+ cyclic colour
permutations,

I have a nice free-Lie
calculator!

= 0
(then connect using
xings or v-xings)

Start from =
R3 key: use

= +

=+++ + + +

+ + + +=

Abstract. On my September 17 Geneva talk (ω/sep) I de-
scribed a certain trees-and-wheels-valued invariant ζ of rib-
bon knotted loops and 2-spheres in 4-space, and my October 8
Geneva talk (ω/oct) describes its reduction to the Alexander
polynomial. Today I will explain how that same invariant
arises completely naturally within the theory of finite type
invariants of ribbon knotted loops and 2-spheres in 4-space.

Finite Type Invariants of Ribbon Knotted Balloons and Hoops
ω :=http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024Dror Bar-Natan: Talks: Geneva-131024:

T

H

balloons/tails

∞

x y z

u v
	 	

hoops/heads

S4

R4

“trees” “wheels”

My goal is to tell you why such an invariant is expected, yet
not to derive the computable formulas.

Conjecture
Disturbing

=

blue is never “over”

=

Expansions

Let In := 〈pictures with ≥ n semi-virts〉 ⊂ Kbh.
We seek an “expansion”

Z : Kbh → grKbh =
⊕̂

In/In+1 =: Abh

satisfying “property U”: if γ ∈ In, then

Z(γ) = (0, . . . , 0, γ/In+1, ∗, ∗, . . .).

Why? • Just because, and this is vastly more general.
•
(
Kbh/In+1

)⋆
is “finite-type/polynomial invariants”.

• The Taylor example: Take K = C∞(Rn), I =
{f ∈ K : f(0) = 0}. Then In = {f : f vanishes like |x|n} so
In/In+1 is homogeneous polynomials of degree n and Z is a
“Taylor expansion”! (So Taylor expansions are vastly more
general than you’d think).

Plan. We’ll construct a graded Ãbh, a sur-
jective graded π : Ãbh → Abh, and a fil-
tered Z̃ : Kbh → Abh so that π � gr Z̃ = Id

(property U: if degD = n, Z̃(π(D)) =
π(D) + (deg ≥ n)). Hence • π is an iso-
morphism. • Z := Z̃ � π is an expansion.

u v

“v-xing”

R2

VR1 VR2
VR3

M OC

CP CP
UC

the semi-virtual

Action 1.

Ãbh = Q

T H
degree=# of arrows

:= i.e. or− −−

=

Deriving
−→
4T .

Action 2.

Z̃ :
a b

cd

a b

ea

=7−→ + +1
2

+ · · ·

c d

TC
−→

4T TC

−−−→

STU1: = − = −

−=−

−−−→

STU2:

−−−→

IHX:
−−−→

STU3 =TC:

The Bracket-Rise Theorem.

Abh ∼=

= = −−

Proof.

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels
persist.

Theorem. Abh is a bi-algebra. The space of its primitives is
FL(T )H × CW(T ), and ζ = logZ.

FL(T )H ×CW(T )

Ãbh

π

��
Kbh

Z̃

<<
z

z
z

z
z

z
z

z

Z

// Abh

gr Z̃

OO

Kbh(T ;H)=

ζ

x

Kbh = Q

Dictionary.
Satoh

X.-S. Lin

= 0
CP

=
HC= 0

in In/In+1

using TC

B

Exercise.
Prove prop-
erty U.

= =

Goussarov-Polyak-Viro

ribbon
embeddings

www.katlas.org
http://www.math.toronto.edu/drorbn/Talks/Geneva-131024/sep
http://www.math.toronto.edu/drorbn/Talks/Geneva-131024/oct
http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024
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Unzip along an annulus Unzip along a disk

Meinrenken

Kashiwara

Torossian

Satoh
ω/Dal
Dalvit

Alekseev

Vergne

gives the “Wen”?
What band, inflated,

Riddle.

wK :=PA

Dancso, ω/ZD

A 4D knot by Carter and Saito ω/CS

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

=
R2

=
VR1

=
M

=
R3

=
VR2

CP CP

= ==
OC

no!

→ = =→

Colour Correct
Rotate

Adjoin

Colour Correct
Rotate

Adjoin

Abstract. I will describe the general “expansions” machine
whose inputs are topics in topology (and more) and whose
outputs are problems in algebra. There are many inputs
the machine can take, and many outputs it produces, but I
will concentrate on just one input/output pair. When fed
with a certain class of knotted 2-dimensional objects in 4-
dimensional space, it outputs the Kashiwara-Vergne Prob-
lem (1978 ω/KV, solved Alekseev-Meinrenken 2006 ω/AM,
elucidated Alekseev-Torossian 2008-2012 ω/AT), a problem
about convolutions on Lie groups and Lie algebras.

The Kashiwara-Vergne Problem and Topology
Dror Bar-Natan: Talks: Leiden-1601:

The Kashiwara-Vergne Conjecture. There exist
two series F and G in the completed free Lie
algebra FL in generators x and y so that

x+y−log eyex = (1−e− adx)F+(ead y−1)G in FL

and so that with z = log exey,

tr(adx)∂xF + tr(ad y)∂yG in cyclic words

=
1

2
tr

(
adx

eadx − 1
+

ad y

ead y − 1
−

ad z

ead z − 1
− 1

)

Implies the loosely-stated convolutions state-
ment: Convolutions of invariant functions on a
Lie group agree with convolutions of invariant
functions on its Lie algebra.

4D Knots.

=

=→ →=

ω/vX

The Generators

→ →

ω/X“the crossing”

“v-xing”

“cup”

+

The Machine. Let G be a group, K = QG = {
∑

aigi : ai ∈
Q, gi ∈ G} its group-ring, I = {

∑
aigi :

∑
ai = 0} ⊂ K its

augmentation ideal. Let

A = grK :=
⊕̂

m≥0
Im/Im+1.

Note that A inherits a product from G.
Definition. A linear Z : K → A is an “expansion” if for any
γ ∈ Im, Z(γ) = (0, . . . , 0, γ/Im+1, ∗, . . .), and a “homomor-
phic expansion” if in addition it preserves the product.
Example. Let K = C∞(Rn) and I = {f : f(0) = 0}. Then
Im = {f : f vanishes like |x|m} so Im/Im+1 is degree m ho-
mogeneous polynomials andA = {power series}. The Taylor
series is a homomorphic expansion!

ω/F

→

=
R4

all
types

=
UC

=

The Double Inflation Procedure.
−∞ +∞ +∞−∞

wKO.

“the +
vertex”

“Planar
Algebra”:
The objects
are “tiles” that can be composed in
arbitrary planar ways to make bigger
tiles.

Theorem (with Zsuzsanna Dancso, ω/WKO).
There is a bijection between the set of homomor-
phic expansions for wK and the set of solutions
of the Kashiwara-Vergne problem. This is the tip
of a major iceberg!

In the finitely presented case, finding Z amounts to solving
a system of equations in a graded space.

P.S. (K/Im+1)∗ is Vassiliev
/ finite-type / polynomial in-
variants.

Just for fun. K =

K/K1 K/K2 K/K3 K/K4

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

Q3

K2/K3⊕

=

ker(K/K4→K/K3)

=

=

(
The set of all 2D
projections of re-
ality (= Q3R2)

)

Handout, video, and links at ω/

ω :=http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601

VR3

=

The Machine general-
izes to arbitrary alge-
braic structures!

Why uK

xx♣♣
♣♣
♣♣
♣♣
♣♣

��

Z: the Kontsevich

integral
// Au

��

%%▲
▲▲

▲▲
▲▲

▲▲
kerg and more!

uu❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

vK

&&◆
◆◆

◆◆
◆◆

◆◆
◆

Z: hard work

Etingof-Kazhdan
// Av

yyrr
rr
rr
rr
r

))❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘ (given g)

care? wK
Z: today’s

work
// Aw Around Rep(g)

· · ·

(Wikimedia Commons image, ω/WM)

http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/Dal
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/ZD
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/CS
www.katlas.org
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/KV
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/AM
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/AT
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/vX
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/X
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/F
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/WKO
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/
http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601
http://www.math.toronto.edu/drorbn/Talks/Leiden-1601/WM
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Just for fun.

Convolutions on Lie Groups and Lie Algebras and Ribbon 2−Knots "God created the knots, all else in
topology is the work of mortals."

Leopold Kronecker (modified)Dror Bar−Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn−0908
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yet not
UC:

OC:

as
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W

W

W

W

"An Algebraic Structure"

[1] http://qlink.queensu.ca/~4lb11/interesting.html
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

www.math.toronto.edu/~drorbn/Talks/KSU−090407
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statement
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statement

Torossian

statement

Alekseev

The Orbit

Method

Convolutions

statement

Group-Algebra

statement
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statement

Diagrammatic

statement

sian, Meinrenken
Alekseev, Toros-

Unitary

statement

Subject

flow chart

True

no!

→ ==→

=

(
The set of all
b/w 2D projec-
tions of reality

)

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

R

K2/K3⊕

=

ker(K/K4→K/K3)

=adjoin

crop
rotate

K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·
Adjoin

Crop
Rotate

O3 O4

O1

•1

O2

•σ
ψ1

ψ3

ψ4

ψ2

Disclaimer:
Rough edges

remain!

The Bigger Picture... What are w-Trivalent Tangles? (PA :=Planar Algebra){
knots

&links

}
=PA

〈 ∣∣∣∣R123 : = , = , =

〉

0 legs

{
trivalent

tangles

}
=PA

〈
,

∣∣∣∣∣R23, R4 : = =

∣∣∣∣
→

〉

{
trivalent

w-tangles

}
=PA

〈
w-

generators

∣∣∣
w-

relations

∣∣∣
unary w-

operations

〉
wTT=

A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.

=

The w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W 2 = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

Our case(s).

K
Z: high algebra

−−−−−−−−−−−−−→
solving finitely many
equations in finitely
many unknowns

A :=
grK

given a “Lie”
algebra g

−−−−−−−−−−→
low algebra: pic-
tures represent
formulas

“U(g)”

K is knot theory or topology; grK is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”).

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtration respecting Z : K → grK that
“covers” the identity on grK. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

Example: Pure Braids. PBn is generated by xij , “strand i
goes around strand j once”, modulo “Reidemeister moves”.
An := grPBn is generated by tij := xij − 1, modulo the 4T
relations [tij , tik + tjk] = 0 (and some lesser ones too). Much
happens in An, including the Drinfel’d theory of associators.

Alekseev

Torossian

Kashiwara

Vergne

O =

n

objects of

kind 3

o

=

• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

29/5/10, 8:42am
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Polyak

R

V
R

R

V V

ω ω ω

Diagrammatic statement. Let R = expS ∈ Aw(↑↑). There
exist ω ∈ Aw(W) and V ∈ Aw(↑↑) so that

(1) = V

(2) (3)

WW

W

V

unzip unzip

(2) (3) →→

Knot-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:;(1)

:= :=

−→

4T : + = +

=

w-Jacobi diagrams and A. Aw(Y ↑) ∼= Aw(↑↑↑) is

+= TC:

− −STU:

VI:

W

= 0 = + = 0

deg= 1
2
#{vertices}=6

Unitary ⇐⇒ Algebraic. The key is to interpret Û(Ig) as tan-
gential differential operators on Fun(g):
• ϕ ∈ g

∗ becomes a multiplication operator.
• x ∈ g becomes a tangential derivation, in the direction of
the action of adx: (xϕ)(y) := ϕ([x, y]).
• c : Û(Ig) → Û(Ig)/Û(g) = Ŝ(g∗) is “the constant term”.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, τ : G → A is multiplicative then
(Fun(G), ⋆) ∼= (A, ·) via L : f 7→

∑
f(a)τ(a). For Lie (G, g),

(g,+) ∋ x
τ0=exp

S //

exp
U

((P

P

P

P

P

P

P

P

P

P

P

P

P

expG

��

ex ∈ Ŝ(g)

χ

��

(G, ·) ∋ ex τ1 // ex ∈ Û(g)

so

Fun(g)
L0 //

Φ−1

��

Ŝ(g)

χ

��

Fun(G)
L1 // Û(g)

with L0ψ =
∫
ψ(x)exdx ∈ Ŝ(g) and L1Φ

−1ψ =
∫
ψ(x)ex ∈

Û(g). Given ψi ∈ Fun(g) compare Φ−1(ψ1) ⋆ Φ−1(ψ2) and
Φ−1(ψ1 ⋆ ψ2) in Û(g): (shhh, L0/1 are “Laplace transforms”)

⋆ in G :

∫∫
ψ1(x)ψ2(y)e

xey ⋆ in g :

∫∫
ψ1(x)ψ2(y)e

x+y

Unitary =⇒ Group-Algebra.

∫∫
ω2

x+ye
x+yφ(x)ψ(y)

=
〈
ωx+y, ωx+ye

x+yφ(x)ψ(y)
〉
=

〈
V ωx+y, V e

x+yφ(x)ψ(y)ωx+y

〉

=〈ωxωy, e
xeyV φ(x)ψ(y)ωx+y〉=〈ωxωy, e

xeyφ(x)ψ(y)ωxωy〉

=

∫∫
ω2

xω
2
ye

xeyφ(x)ψ(y).

ϕi ϕj xn xm ϕn ϕl

dimg∑

i,j,k,l,m,n=1

bk
ijb

m
klϕ

iϕjxnxmϕl ∈ U(Ig)

Diagrammatic to Algebraic. With (xi) and (ϕj) dual bases of
g and g

∗ and with [xi, xj ] =
∑
bkijxk, we have Aw → U via

i j

k

lmn

bmklbkji

Group-Algebra statement. There exists ω2 ∈ Fun(g)G so that
for every φ, ψ ∈ Fun(g)G (with small support), the following
holds in Û(g): (shhh, ω2 = j1/2)∫∫

g×g

φ(x)ψ(y)ω2
x+ye

x+y =

∫∫

g×g

φ(x)ψ(y)ω2
xω

2
ye

xey.

(shhh, this is Duflo)

Unitary statement. There exists ω ∈ Fun(g)G and an (infinite
order) tangential differential operator V defined on Fun(gx ×
gy) so that

(1) V êx+y = êxêyV (allowing Û(g)-valued functions)
(2) V V ∗ = I (3) V ωx+y = ωxωy

Algebraic statement. With Ig := g
∗ ⋊ g, with c : Û(Ig) →

Û(Ig)/Û(g) = Ŝ(g∗) the obvious projection, with S the an-
tipode of Û(Ig), with W the automorphism of Û(Ig) induced
by flipping the sign of g

∗, with r ∈ g
∗⊗g the identity element

and with R = er ∈ Û(Ig) ⊗ Û(g) there exist ω ∈ Ŝ(g∗) and
V ∈ Û(Ig)⊗2 so that
(1) V (∆ ⊗ 1)(R) = R13R23V in Û(Ig)⊗2 ⊗ Û(g)
(2) V · SWV = 1 (3) (c⊗ c)(V∆(ω)) = ω ⊗ ω

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately,
let G be a finite dimensional Lie group and let g be its Lie
algebra, let j : g → R be the Jacobian of the exponential
map exp : g → G, and let Φ : Fun(G) → Fun(g) be given
by Φ(f)(x) := j1/2(x)f(expx). Then if f, g ∈ Fun(G) are
Ad-invariant and supported near the identity, then

Φ(f) ⋆ Φ(g) = Φ(f ⋆ g).

From wTT to Aw. grm wTT := {m−cubes}/{(m+1)−cubes}:

forget

topology

−−
−

We skipped... • The Alexander

polynomial and Milnor numbers.

• u-Knots, Alekseev-Torossian,

and Drinfel’d associators.

• v-Knots, quantum groups and

Etingof-Kazhdan.

• BF theory and the successful

religion of path integrals.

• The simplest problem hyperbolic geometry solves.


