
An explicit formula for quantization of Lie bialgebras
Notes of the talk at the Les Daibrelets workshop given on 27.08.2015 by Sergei Merkulov.

The talk is based on a joint work (in progress) with Thomas Willwacher

1. Introduction

We show two new explicit formulae — one for deformation quantizations of Poisson structures and one for
quantization of Lie bialgebras. Both extend to associated formality maps.

The main idea in both formulae is to consider an intermediate object — a quantizable Poisson structure and,
respectively, a quantizable Lie bialgebra — so that the quantization process splits in two steps as follows
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Here d is any natural number and ~ a formal parameter. In fact, we have explicit formulae for the associated
(to these deformation quantization problems) formality maps.

2. A new explicit formula for quantization of Poisson structures

2.1. Poisson structures and their deformation quantization. Let Tpoly(Rd) = C∞(Rd)[ψ1, . . . , ψd]
(ψi being a formal variable of homological degree 1 which stands for the partial derivative ∂/∂xi) be the
vector space of smooth (or formal) polyvector fields on Rd = {x1, . . . , xi, . . . , xd}, equipped with the standard
Schouten Lie brackets (of degree −1)

[f1, f2]S =
∑
i=1

∂f1

∂ψi

∂f2

∂xi
+ (−1)|f1||f2| ∂f1

∂xi
∂f2

∂ψi
.

A Poisson structure in Rd is, by definition, a Maurer-Cartan element of this Lie algebra, that is a bivector
field π =

∑
i,j=1d πij(x)ψiψj satisfying the equation [π, π]S = 0.

A start product in C∞(Rd) is an associative product,

n
√∗~ : C∞(Rd)× C∞(Rd) −→ C∞(Rd)

(f(x), g(x)) −→ f ∗~ g = fg +
∑∞
k≥1 ~kBk(f, g)

where all operators Bk are bi-differential. One can check that the associativity condition for ∗~ implies that
π(f, g) := B1(f, g) − B1(g, f) is a Poisson structure in Rd; then ∗~ is called a deformation quantization of
π ∈ Tpoly(Rd).
Deformation quantization problem: given a Poisson structure in Rd, does there exists ∗~ which is its defor-
mation quantization?

This problem was solved by Maxim Kontsevich [Ko] by giving an explicit direct map between the two sets

Poisson
structures in Rd

depends on

associators
//

Star products
∗~ in C∞(Rd)[[~]]

Later Dmitry Tamarkin proved [Ta2] existence theorem for deformation quantizations which exhibited a
non-trivial role of Drinfeld’s associators.

We show a new explicit formula for a formality map behind quantizations of Poisson structures by considering
an intermediate structure called quantizable Poisson structure. To show an explicit formula defining these
intermediate structures, and its relation to ordinary Poisson structures, we have to introduce a certain operad
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of graphs and an associated graph complex which we discuss next (the operadic structure can be ignored at
the first reading, what is really important is an association “a graph Γ” −→ a “polydifferential operator ΦΓ

on Tpoly(Rd)”).

2.2. An operad of graphs and polyvector fields. For any integers n ≥ 1 and l ≥ 0 we denote by Gn,l
a set of graphs1, {Γ}, with n vertices and l edges such that (i) the vertices of Γ are labelled by elements of
[n] := {1, . . . , n}, (ii) the set of edges, E(Γ), is totally ordered up to an even permutation, (iii) the edges are

oriented, i.e. there is a choice of arrow on any edge. For example,
1 2• •// ∈ G2,1. The group Z2 acts freely

on Gn,l for l ≥ 2 by changes of the total ordering (which are often called orientations of graphs); its orbit is
denoted by {Γ,Γopp}. Let K〈Gn,l〉 be the vector space over a field K spanned by isomorphism classes, [Γ],
of elements of Gn,l modulo the relation2 Γopp = −Γ, and consider a Z-graded Sn-module,

Gra(n) :=

∞⊕
l=0

K〈Gn,l〉[l].

Note that graphs with two or more edges between any fixed pair of vertices do not contribute to Gra(n) so
that we could have assumed right from the beginning that the sets Gn,l do not contain graphs with multiple
edges. The S-module, Gra := {Gra(n)}n≥1, is naturally an operad with the operadic compositions given by

◦i : Gra(n)⊗ Gra(m) −→ Gra(m+ n− 1)
Γ1 ⊗ Γ2 −→

∑
Γ∈Gi

Γ1,Γ2

(−1)σΓΓ

where GiΓ1,Γ2
is the subset of Gn+m−1,#E(Γ1)+#E(Γ2) consisting of graphs, Γ, satisfying the condition: the

full subgraph of Γ spanned by the vertices labeled by the set {i, i + 1, . . . , i + m − 1} is isomorphic to Γ2

and the quotient graph, Γ/Γ2, obtained by contracting that subgraph to a single vertex, is isomorphic to Γ1.
The sign (−1)σΓ is determined by the equality∧

e∈E(Γ)

e = (−1)σΓ

∧
e′∈E(Γ1)

e′ ∧
∧

e′′∈E(Γ2)

e′′.

where the wedge product is taken with respect The unique element in G1,0 serves as the unit element in the
operad Gra. The associated Lie algebra of S-invariants, ((Gra{−2})S, [ , ]) is denoted, following notations of
[Wi1], by fGC2. Its elements can be understood as graphs from Gn,l but with labeling of vertices forgotten,
e.g.

Υ2 := • •// =
1

2

(
1 2• •+

2 1• •
)
∈ fGC2.

The cohomological degree of a graph with n vertices and l edges is 2(n−1)− l. It is easy to check that • •
is a Maurer-Cartan element in the Lie algebra fGC2. Hence we obtain a dg Lie algebra

(fGC2, [ , ], δ0 := [• •// , ]) .

One may define a dg Lie subalgebra, GC2, spanned by connected graphs with at least trivalent vertices and no
edges beginning and ending at the same vertex. It is called the Kontsevich graph complex. The cohomologies
of GC2 and fGC2 were partially computed by Thomas Willwacher [Wi1]. The complex fGC2 can be identified
with the deformation complex of morphism of operads Def(Lie{1} → Gra) so that non-trivial MC elements
of (fGC2, [ , ]) give us non-trivial morphisms of operads Lie{1} → Gra.

There is a canonical representation of the operad Gra in the vector space of polyvector fields Tpoly(Rd) =
C∞(Rd)[ψ1, . . . , ψd],

(1)
ρ : Gra(n) −→ EndTpoly(Rd)(n) = Hom(Tpoly(Rd), Tpoly(Rd))

Γ −→ ΦΓ

1A graph Γ is, by definition, a 1-dimensional CW -complex whose 0-cells are called vertices and 1-dimensional cells are called

edges. The set of vertices of Γ is denoted by V (Γ) and the set of edges by E(Γ).
2Abusing notations we identify from now an equivalence class [Γ] with any of its representative Γ.
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given explicitly as follows:

ΦΓ(f1, . . . , fn) := µ

 ∏
e∈E(Γ)

∆e

(
f1(x(1), ψ(1))⊗ f2(x(2), ψ(2))⊗ . . .⊗ fn(x(n), ψ(n))

)
where, for an edge e connecting vertices labeled by integers i and j,

∆e =

n∑
a=1

∂

∂xa(i)

∂

∂ψa(j)
+

∂

∂ψa(i)

∂

∂xa(j)

with the subscript (i) or (j) indicating that the derivative operator is to be applied to the i-th of j-th factor
in the tensor product. The symbol µ above denotes the multiplication map,

π : Tpoly(Rn)⊗n −→ Tpoly(Rn)
f1 ⊗ f2 ⊗ . . .⊗ fn −→ f1f2 · · · fn.

The above representation induces a map of Lie algebras

fGC2 −→ Coder(�•(Tpoly(Rd)))

so that any MC element in fGC2 gives us a Lie∞ structure in Tpoly(Rd)). In particular, the element • •// gives
us the standard Schouten brackets in Tpoly(Rd)), and its infinitesimal universal deformations are controlled
by the cohomology group H1(fGC2, δ0). It is a folk conjecture that H1(fGC2, δ) = 0 (but the implication
δ0γ = 0⇒ γ = δ0α must depend on the choice of an associator).

There is another more exotic Lie∞ structure in Tpoly(Rd)) which is in a sense unique and which leads us to
the notion of quantizable Poisson structures.

2.3. Oriented graph complexes and an exotic Lie∞ structure in Tpoly(Rd)). The above representa-
tion, Γ→ Φγ , of Gra in Tpoly(Rd)) makes sense only for finite values of the parameter d. There is a suboperad
Gra↑ spanned by graphs without wheels, that is, by graphs with no directed paths of edges making a closed

path. The associated subcomplex of fGC2 is denoted by fGC↑2. The MC elements of fGC↑2 give us those Lie∞
structures in Tpoly(Rd)) which make sense when d → +∞. One such structure is given by the graph • •//
as it belongs to the subcomplex fGC↑2 ⊂ fGC2, and its infinitesimal deformations are controlled by the group

H1(fGC↑2, δ0) which is, thanks to Thomas Willwacher [W2], is completely known: H1(fGC↑2, δ0) = K and it
is generated as 1-dimensional vector space by the following graph

Υ4 :=

•

• •

•�� ��

���� ��

+ 2

•
•

•
•
��

�� tt

�� ��

+

•

• •

•

�� ��

��

�� ��

MoreoverH2(fGC↑2, δ0) = K and is generated by a graph with four vertices. This means that one can construct
by induction a new Maurer-Cartan element (the integer subscript stand for the number of vertices)

ΥKS = • •// + Υ4 + +Υ6 + Υ8 + . . .

as all obstructions have more than 8 vertices and hence do not hit the unique cohomology class in

H2(fGC↑2, δ0) = K. Up to gauge equivalence, this new MC element Υ is the only non-trivial deformation of
the standard MC element • •// .

2.3.1. Definition. Any MC element in the Lie algebra (fGC↑2, [ , ]) which is gauge equivalent to ΥKS above
is a called a Kontsevich-Shoikhet MC element, and the associated Lie∞ structure in Tpoly(Rd) is called a
Kontsevich-Shoikhet one. It was introduced by Boris Shoikhet in [Sh2] with a reference to an important
contribution by Maxim Kontsevich via an informal communication.
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2.3.2. Definition. Let {µKS2k : ∧2kTpoly(Rd)→ Tpoly(Rd)}k≥1 be a Kontsevich-Shoikhet Lie∞ structure. A
bivector field π ∈ Tpoly(Rd) is called quantizable if it satisfies the equation

µ2(π, π) + ~2µ4(π, π, π, π) + ~4µ6(π, π, π, π, π, π) + . . . = 0

Do these structures have anything to do with ordinary Poisson structures and their quantization? The
answer is “yes” as we explain in the next subsections.

2.4. Quantizable versus ordinary Poisson structures. Boris Shoikhet conjectured in [Sh2] that Lie∞
algebras (Tpoly(Rd), [ , ]S) and (Tpoly(Rd), µKS• ) are quasi-isomorphic for any finite d ∈ N. Stated in terms

of graphs, this conjecture says that as MC elements in fGC2 (rather than in fGC↑2) Υ2 and ΥKS are gauge-
equivalent,

(2) Υ2 = eadΘΥKS ≡ eadΘ

( ∞∑
k=1

Υ2k

)
for some degree zero element Θ in fGC2. That this relation hold true is far from obvious. Indeed, let us
attempt to construct Θ by induction (as we managed to construct ΥKS). The first step is easy — the term
Υ4 is δ0 exact in fGC2,

Υ4 = δ0


•

•
••

•��•

•DD77

''
+

•
•

••

•��•

•DD
wwgg


and we can use the sum of two degree zero graphs inside the brackets to gauge away Υ4. However the
next obstruction becomes a cyclic wheeled graph Υ′6 from fGC2 so that starting with this second step all
the obstruction classes land in H1(fGC2), the same cohomology group where obstructions for the universal
deformation of Poisson structures lie. Therefore, the formula for Θ must be transcendental (as the Kontsevich
formula). One of our main results in this subsection is such an explicit formula for Θ.

2.4.1. Theorem. The relation (2) holds true for Θ defined as follows:

Θ =
∑
n≥1

∑
Γ∈Gn,2n−2

cΓΓ

with

cΓ =

∫
Cn(R2)

ΩΓ

where

(i) Cn(R2) be the smooth (2n− 2)-dimensional manifold of all injections

i : [n] −→ R2 = C
(1, 2, . . . , n) −→ (z1, . . . , zn)

modulo the action of the 2-dimensional translation group R2,

(z1, . . . , zn)→ (z1 + a, . . . , z1 + a) ∀ z1, . . . , zn ∈ C, a ∈ C,

(ii) ΩΓ =
∧
e∈E(Γ) Ωe where Ωe := ωg(zi, zj) for every directed edge e =

i j
• •// ∈ E(Γ), and the smooth

differential 1-form ωg(zi, zj) is given by the formula

ωg(z1, z2) =
1

2π
Arg(zi − zj) +

|z1 − z2|
1 + |z1 − z2|

dΨg

(
zi − zj
|zi − zg|

)
+ Ψg

(
zi − zj
|zi − zg|

)
d

(
|z1 − z2|

1 + |z1 − z2|

)
where Ψg

(
zi−zj
|zi−zg|

)
is a smooth function on S1 = {(x, y) ∈ R2 | x2 + y2 = 1} satisfying the condition

1

2π
Arg(zi − zj) + dΨg

(
zi − zj
|zi − zg|

)
= g

(
zi − zj
|zi − zg|

)
dArg(zi − zj)

for some function g on the circle S1 with compact support in the upper half circle given by y > 0,

and normalized so that
∫ 2π

0
g(θ)dθ = 1.
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Idea of the proof: the space Cn(R2) admits a compactification (introduced in [Me1]) whose codimension 1
boundary strata capture the combinatorics of the 2-coloured operad of Lie∞ morphisms. All the forms ΩΓ

extend to this compactification (so that weights cΓ are well-defined) and factorize on the boundary strata
as required in [Me1].

2.4.2. Corollary. (i) For any finite natural number d there is a 1-1 correspondence between ordinary Poisson
structures in Tpoly(Rd)[[~]] and quantizable Poisson structures in the same vector space.

(ii) The quantizable Poisson structure πqua associated to an ordinary Poisson structure π in Tpoly(Rd) (or
Tpoly(Rd)[[~]]) is given by the following explicit formula

πqua = π +

∞∑
n=2

~n−1
∑

Γ∈Gn,2n−2

cΓΦΓ(π, π, . . . , π).

2.5. From quantizable Poisson structures to star products. This step is easy: it can be done either
by induction (see [W2, B]) or using Kontsevich formulae from [Ko] with the crucial difference that instead
of the hyperbolic propagator

ω(zi, zj) =
1

2π
Arg

(
zi − zj
z̄i − zj

)
one uses the following smooth differential form,

ωnew(zi, zj) = g(Arg(zi − zj))dArg(zi − zj)

3. A new explicit formula for quantization of Poisson structures

3.1. A quantization problem suggested by Drinfeld [D]. Let V be a Z-graded real vector space, and
let OV := �•V = ⊕n≥0 �n V the be the space of polynomial functions on V ∗ equipped with the standard
graded commutative and cocommutative bialgebra structure. If AssB stands for the prop of bialgebras, then
the standard product and coproduct in OV give us a representation,

(3) ρ0 : AssB −→ EndOV
.

A formal deformation of the standard bialgebra structure in OV is a continuous morphisms of props,

(4) ρ~ : AssB[[~]] −→ EndOV
[[~]],

~ being a formal parameter, such that ρ~|~=0 = ρ0. It is well-known [D] that if ρ~ is a formal deformation

of ρ0, then dρ~
d~ |~=0 makes the vector space V into a Lie bialgebra, that is, induces a representation,

ν : LieB −→ EndV
of the prop of Lie bialgebras, LieB, in the vector space V . Thus Lie bialgebra structures, ν, in V control
infinitesimal formal deformations of ρ0. Drinfeld formulated a deformation quantization problem: given ν in
V , does ρ~ exist such that dρ~

d~ |~=0 induces ν? This problem was solved affirmatively by Etingof and Kazhdan
in [EK]; later Tamarkin gave a second proof of the Etingof-Kazhdan deformation quantization theorem in
[Ta1], and recently Pavol Severa showed [?] a third proof; all proofs of existence of ρ~ are very inexplicit.
Boris Shoikhet claimed in [Sh2] an explicit formula for ρ~.

In this subsection we show a new proof of the Etingof-Kazhdan theorem for finite-dimensional Lie bialgebras
based on an explicit formula in the form

(5) ρexplicit~ (a generator of AssB) =
∑

Γ

cΓΦΓ,

where the sum runs over a certain family of graphs, ΦΓ is an element of EndOV
uniquely determined by

each graph Γ, and cΓ is an absolutely convergent integral,
∫
C(Γ)

ΩΓ, of a smooth differential form ΩΓ over a

certain configuration space of points, C(Γ), in a 3-dimensional subspace, H, of the Cartesian product, H×H,
of two copies of the closed upper-half planes. This formula is a relatively straightforward generalization of
our formula for quantization of Poisson structures discussed in the previous section..
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3.2. An explicit formula for deformation quantization of Lie bialgebras. Let ν : LieB → EndV be
a Lie bialgebra structure in a finite-dimensional vector space V . We want to give an explicit formula for an
associated bialgebra structure

ρ~ : AssB −→ End�•V [[~]]

in �•V [[~]] such that dρ~
d~ |~=0 induces precisely ν in V .

Step 1: From Lie bialgebras to quantizable Lie bialgebras. Let g : [−π, π] → R be an even function with
compact support in (−π/2, π/2). Then ωg := g(Arg(t+ ix))dArg(t+ ix) ∧ g(Arg(t+ iy))dArg(t+ iy) is a
well-defined smooth 2-form on the 2-sphere

S2 = {(x, y, t) ∈ R3 | x2 + y2 + t2 = 1}

and has compact support in the upper semisphere t > 0; we can always choose g in such a way that∫
S2 ωg = 1. If V olS2 is the standard homogeneous volume form on S2 (normalized so that

∫
S2 V olS2 = 1)

then we have

ωg = V olS2 + dΨg

for some 1-form Ψg on S2.

Let Cn(R3) be the smooth (3n− 3)-dimensional manifold of all injections

i : [n] −→ R3

(1, 2, . . . , n) −→ (p1, . . . , pn)

modulo the action of the 3-dimensional translation group R3,

(p1, . . . , pn)→ (p1 + a, . . . , p1 + a) ∀ p1, . . . , pn ∈ R3, a ∈ R3,

so that we have a smooth isomorphism

C2(R3)
'−→ S2 × R+

(p1, p2) −→ ( p1−p2

|p1−p2| , |p1 − p2|)

Consider a propagator on C2(R3)

ω(p1, p2) = VolS2

(
p1 − p2

|p1 − p2|

)
+ h (|p1 − p2|) dΨg

(
p1 − p2

|p1 − p2|

)
−Ψg

(
p1 − p2

|p1 − p2|

)
∧ dh(|p1 − p2|)

where h is any smooth function on R with h(0) = 0 and h(+∞) = 1, for example

h(|p1 − p2|) =
|p1 − p2|

1 + |p1 − p2|

This is a differential 2-form on C2(R3). Similarly, ω(pi, pj) is a well-defined differential 2-form on Cn(R3) for
any pair of different indices i, j ∈ [n].

Let G4k+1,6k, k > 0, be the set of directed graphs Γ with 4k + 1 vertices and 6k edges; we assume that
vertices of Γ are labelled bijectively by integers from set [4k+ 1]. To every such a graph we can associated a

• a differential operator φΓ : ∧4k+1gV → gV (whose construction is explained in §?.?).
• a real number cΓ which is given by the converging integral

cΓ =

∫
C4k+1(R3)

ΩΓ.

where

(6) ΩΓ =
∧

e∈E(Γ)

Ωe

with Ωe := ω(pi, pj) for every directed edge e =
i j
• •// ∈ E(Γ).
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Then the associated quantizable Lie bialgebra structure νqua ∈ gV [[~]] is defined by

νqua := ν +
∑
k≥1

∑
Γ∈G4k+1,6k

~4k+1

(4k + 1)!
cΓφΓ(ν, . . . , ν︸ ︷︷ ︸

4k+1

)

This structure amounts to a pair consisting of “brackets”, ∧2V → V [[~]] and “cobrackets”, V → ∧2[[~]]
which satisfy a “quantizability” equation

µ2(νqua, νqua) + µ9(νqua, . . . , νqua) + . . . = 0

where {µ4k+1 : ∧2k+1gV → gV }k≥2 is a Lie∞ structure in gV which is a deformation of the standard Lie
algebra structure µ2 = { , } in gV and which is given explicitly below in §?.?.

There is a 1-1 correspondence between ordinary Lie bialgebras and quantizable Lie bialgebras, but such
a correspondence depends on the choice of an associator and hence must be highly non-trivial as in the
particular explicit formula above (we do not know which associator this particular formula corresponds to).

Step 2: From quantizable Lie bialgebras to bialgebra structures in �•(V )[[~]]. Let k ≥ 0, m ≥ 1 and n ≥ 1
be integers satisfying inequality 3k+m+ n ≥ 3. The set Gk;m,n consists, by definition, of directed graphs Γ
with k vertices called internal, m vertices called in-vertices and n vertices called out-vertices and satisfying
the following conditions

(i) every internal vertex of Γ is at least trivalent, and has at least one incoming edge and one outgoing
edge,

(ii) every in-vertex can have outgoing edges (called out-legs) but no incoming ones,
(iii) every out-vertex can have ingoing edges (called in-legs) but no outgoing ones,
(iv) Γ has no loops (edges beginning and ending at the same vertex) an no wheels (a wheel is a sequence

of directed edges making a closed path in the standard pictorial representation of directed graphs).
(v) if Eint(Γ) stands for the set of internal edges (that is, the edges connecting two internal vertices),

Ein(Γ) for the set of in-legs, and Eout(Γ) for the set of out-legs, then the following equality,

(7) 2#Eint(Γ) + #Ein(Γ) + #Eout(Γ) = 3k +m+ n− 3

holds,
(vi) there are no edges connecting in-vertices to out-vertices,
(vii) bijections Vinternal(Γ)→ [k], Vin(Γ)→ [n], Vout(Γ)→ [m] are fixed,

(viii) the sets Ein(Γ) and Eout(Γ) are totally ordered up to an even permutation,

For example (we omit labellings of vertices by integers),

◦
•

◦ ◦

OO

?? __ ∈ G1;2,1,
•
•

◦ ◦

◦ ◦
OO

?? __

__ ?? OO

∈ G2;2,2,

◦

•
• •
◦ ◦

?? __

OO OO

?? __OO

∈ G3;2,1,

◦
•
•

• •
◦ ◦

__

?? __

OO OO

??

__??

∈ G4;2,1

Thus graphs from Gk;m,n admit a flow which we always assume in our pictures to be directed from the bottom
to the top (so that there is no need to show directions of the edges anymore). To any graph Γ ∈ Gk;m,n one
can associate a linear map

ΦΓ : ⊗kgV ⊗⊗n(�•V ) −→ ⊗m(�•V )
(γ1, . . . , γk, f1, . . . , fn) −→ ΦΓ(γ1, . . . , γk, f1, . . . , fn)

In fact one can construct a 2-coloured properad Bra out of these graphs such that the association Γ → ΦΓ

gives us a representation.

Let H′ = {(x, t) ∈ R × R>0} and H′′ = {(y, t̂) ∈ R × R>0} be two copies of the upper-half plane, and let

H′ = {(x, t) ∈ R× R≥0} and H′′ = {(y, t̂) ∈ R× R≥0} be their closures. Consider a subspace H ⊂ H′ ×H′′

given by the equation tt̂ = 1, and denote by H its closure under the embedding into H′ × H′′. The space
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H has two distinguished lines, X := {(x ∈ R, y = 0, t = 0} and Y := {(x = 0, y ∈ R, t̂ = 0}; it also has a
natural structure of a smooth manifold with boundary.

Y

X

oo

��

��

OO

The group G3 := R+ oR2 acts on H,

R+ oR2 × Ĥ −→ Ĥ
(λ, a, b) × (x, y, t) −→ (λx+ a, λ−1y + b, λt).

Consider a configuration space of injections

(8) Conf k;m,n := {iint : [k]→ H, [n] : Vin(Γ) ↪→ X, [m] : Vout(Γ) −→ Y} ,
where injections iint are required to satisfy an extra condition that its composition with each of the natural
projections H → H′ and H → H′′ is also an injection, and that injection iin (respectively, iout) respects the
total orders3 in the sets [n] and X (respectively, in [m] and Y). The group G3 acts on Conf k;m,n(Γ) freely
so that the quotient

Ck;m,n := Conf k;m,n/G3

is an open smooth manifold of dimension 3k +m+ n− 3.

For any graph Γ ∈ Gk;m,n we define a smooth top degree differential form ΩΓ on Ck;m,n,

ΩΓ :=
∧

e∈Ein(Γ)

ω′e ∧
∧

e∈Eint(Γ)

Ωe ∧
∧

e∈Eout(Γ)

ω′′e

where ω′e and ω′′e are 1-forms and Ωe is a 2-form defined as follows.

There are two natural projections,

H′ π′′←− H π′′−→ H′′

z′(p) = x+ it ←− p = (x, y, t) −→ z′′(p) = y + i
t .

If we identify vertices of Γ with their images in H under injections in (8), then

(i) for any edge e =
v1 v2

◦ •// ∈ Ein(Γ) we set ω′e := g(Arg(z′(v1)− z′(v2)))dArg(z′(v1)− z′(v2)),

(ii) for any edge e =
v1 v2

• ◦// ∈ Eout(Γ) we set ω′′e := g(Arg(z′′(v1)− z′′(v2)))dArg(z′′(v1)− z′′(v2)),

(iii) for any edge e =
v1 v2

• •// ∈ Eint(Γ) we set Ωe := ω′e ∧ ω′′e .

The wedge product of 1-forms in the formula for ΩΓ is taken with respect to the chosen orderings (up to an
even permutations) in the sets Ein(Γ) and Eout(Γ). The integral

CΓ :=

∫
Ck;m,n

ΩΓ

3The real lines X and Y are equipped with their standard total orders.
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converges for any graph Γ ∈ Gk;m,n.
Then the required bialgebra structures in �•V [[~]] which quantizes the given Lie bialgebra structure ν
consists of compatible multiplication map,

?~ : �•V ⊗�•V −→ �•V [[~]]
(f1, f2) −→ f1 ?~ f2

and comultiplication map,
∆~ : �•V −→ �•V ⊗�•V [[~]]

f −→ ∆~(f)

and is given explicitly by

f1 ?~ f2 = f1f2 +
∑
k≥1

~k

k!

∑
Γ∈Gk,1,2

CΓΦΓ(f1, f2, ν
qua, . . . , νqua)

and

∆~(f) = ∆0(f) +
∑
k≥1

~k

k!

∑
Γ∈Gk,2,1

CΓΦΓ(f1, f2, ν
qua, . . . , νqua)

where ∆0 is the standard cocommutative coalgebra structure in �•V .
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