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Objects:  non-associative words in the letters +, —
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The monoidal category 7, of quasi-tangles

Objects:  non-associative words in the letters +, —

Morphisms: framed, oriented tangles 7 in [0,1]*
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The monoidal category 7, of quasi-tangles

Objects:  non-associative words in the letters +, —
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The monoidal category 7, of quasi-tangles

Objects:  non-associative words in the letters +, —

Morphisms: framed, oriented tangles 7 in [0,1]*

(+-)
\ /\3
7= ]/2 € Morr, ((+-), (+=-)(+-)))
(=) (+-
Composition: vertical gluing mom = 2

Tensor product: horizontal juxtaposition 71 ® 7 :=



Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold

A Jacobi diagram on X is a finite graph whose vertices are either
@ trivalent and oriented,

@ or, univalent and embedded into X.

X:=0 TaTs




Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold

A Jacobi diagram on X is a finite graph whose vertices are either
@ trivalent and oriented,

@ or, univalent and embedded into X.

X:=0 TaTs

Q - {Jacobi diagrams on X}
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The monoidal category A of Jacobi diagrams on 1-manifolds

Objects:  associative words in the letters +, —
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The monoidal category A of Jacobi diagrams on 1-manifolds

Objects:  associative words in the letters +, —

Morphisms: Jacobi diagrams on oriented 1-manifolds

S MOI’A(—+, _+)

€ Mor 4(—+,+—)

D,
D,

Composition: vertical gluing D, o Dy :=

Tensor product: horizontal juxtaposition D; ® D, 1=

Let A' C A be the subcategory spanned by Jacobi diagrams without free
component.




Fix an associator ® € Q((X, Y)).
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Jacobi diagrams derived from an associator

Fix an associator ® € Q((X, Y)).

Consider its image ® € A(]]]) by the algebra homomorphism

QUX,Y) — A(LL) CMora(+++,+++)

X —

o | H



Jacobi diagrams derived from an associator

Fix an associator ® € Q((X, Y)).

Consider its image ® € A(]]]) by the algebra homomorphism

QX V) — AL € Mora(t + +, ++ +)

X —

o | H

and define
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The Kontsevich integral (in its combinatorial version)

Theorem (Bar-Natan'97, Cartier'93, Le—Murakami'96, Piunikhin'95)

There is a unique tensor-preserving functor Z : Tq — A" which behaves
well under orientation-reversal of components and cabling of ‘“vertical”
components,




The Kontsevich integral (in its combinatorial version)

Theorem (Bar-Natan'97, Cartier'93, Le—Murakami'96, Piunikhin'95)

There is a unique tensor-preserving functor Z : Tq — A" which behaves
well under orientation-reversal of components and cabling of ‘“vertical”
components, and such that
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where a, u € A(]) satisfy a- u = v = Z(unknot).




The Kontsevich integral (in its combinatorial version)

Theorem (Bar-Natan'97, Cartier'93, Le—Murakami'96, Piunikhin'95)

There is a unique tensor-preserving functor Z : Tq — A" which behaves
well under orientation-reversal of components and cabling of ‘“vertical”
components, and such that

Z( (ir/i) ) _

(++)

)
z( X

(++)

a

€A (}Q) C Mor 4(++, ++)

a

e A (X) C Mor 4 (++, ++)

(+(++)

) :

z( /] ) e A(LL]) c Mora(+++,++4)
) =
) =

(+H)+)

€ A(f\) C Mor (@, +-)

{%

e A(\J) c Mory(+-,2)

where a,u € A(]) satisfy a-u=v = Z(unknot). (Eg. a:=.|, u:=v.)




@ Review of the Kontsevich integral
© Review of the LMO invariant
© Construction of the LMO functor

0 The LMO homomorphism
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The monoidal category 7,Cub of quasi-tangles in homology cubes

A homology cube is a compact oriented 3-manifold C such that
0C 2 9[0,1]® and H.(C; Q) ~ H.([0,1]3; Q). J
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A homology cube is a compact oriented 3-manifold C such that
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The monoidal category 7,Cub of quasi-tangles in homology cubes

A homology cube is a compact oriented 3-manifold C such that
dC = 9[0,1]® and H.(C; Q) =~ H.([0,1]3; Q).

Objects:  non-associative words in the letters 4, —

Morphisms: framed, oriented tangles 7 in homology cubes C

(G, 7m)
(G, 1)

Tensor product: horizontal gluing (Ci,71)®(G,72):=[(C, 1) (&) 12)

Composition: vertical gluing (G, m2) 0 (Cy,711) ==

There is a “short exact sequence” Tq—— TqCub ——= Cub .




The LMO invariant

Theorem (Le-Murakami-Ohtsuki'98)

There is a tensor-preserving functor Z : TqCub — A which extends the
Kontsevich integral:

To—— ToCub > Cub

J/Z Z Z
A ~

! A AF@)




The LMO invariant

Theorem (Le-Murakami-Ohtsuki'98)

There is a tensor-preserving functor Z : TqCub — A which extends the
Kontsevich integral:

Tor ToCub s Cub
[
Al A A(Vz)

Z : T,Cub — Ais universal among “finite-type invariants”:




The LMO invariant

Theorem (Le-Murakami—Ohtsuki’98)

There is a tensor-preserving functor Z : TqCub — A which extends the
Kontsevich integral:

Tq TqCub Cub
N
Al A .A(VQ)

Z : T,Cub — Ais universal among “finite-type invariants”: using
surgery, one can define a filtration

QToCub = Fo(QTCub) > Fy(QT,Cub) > Fy(QT,Cub) > - --

s.t. Z is filtration-preserving and Gr Z is an isomorphism (Le'97 for Cub).
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Kirby's theorem

Theorem ( )
{ framed oriented tangles L LI C [0,1]* } partial surgery TCub
where L is a link with invertible linking matrix B, Y




Kirby's theorem

Theorem ( )
{ framed oriented tangles L LI C [0,1]* } partial surgery TCub
where L is a link with invertible linking matrix B, Y

LuT B surgery along L

@) (2) (punctured RP3, @)

0O ([0, 1]3, trivial string)

@Q <(1) (1)) ([0, 113, trivial string)




Kirby's theorem

Theorem (Kirby'78)

{ framed oriented tangle L LI T C [0,1]* }
where L is a link with invertible linking matrix B, } partial surgery

TCub

moves Kl & KlI =

cCo <ﬁ> 1%) A cO C M \(

LuT B, surgery along L

2 unctured RP3, &
D 2 | (p :

() ([0, 1]3, trivial string)

@@ ((1) é) ([0, 1]3, trivial string)




(C,7) : quasi-tangle in a homology cube RS Z(C,7) e A(r)
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Construction of the LMO invariant

(C,7) : quasi-tangle in a homology cube RS Z(C,7) € A(r)

LU7 C [0,1]® : surgery presentation of (C,T)
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Construction of the LMO invariant

(C,7) : quasi-tangle in a homology cube RS Z(C,7) € A(r)

LU7 C [0,1]® : surgery presentation of (C,T)
Z(L¥ U ) := (attach a copy of v to every L-comp. of Z(LUT)) € A(LUT)

Fact (Le-Murakami?~Ohtsuki'95)
Z(L” U T) behaves well under the move KII.

Fact (Bar Natan—Garoufalidis—Rozansky—Thurston’02)

There is a diagrammatic analogue of the Gaussian integration

[ ALUT) = — 5 A(7).

Zo(L,7) = [ Z(L” U T) is invariant under KII.

Zo(L,T)
Zo( O @)+ 1 Z( OO, @)o-1)

Z(C,7) = is invariant under KI,

belongs to A(2)
where (04 (L),o_(L)) is the signature of By.



@ Review of the Kontsevich integral
© Review of the LMO invariant
© Construction of the LMO functor

@ The LMO homomorphism
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3-dimensional cobordisms

For all g € N, fix a model surface of genus g:

- /IOV 0L/
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3-dimensional cobordisms

For all g € N, fix a model surface of genus g:

- /I TRL 7

Ag = (0a,...,ag) is a Lagrangian subspace of Hi(Fg; Q).

A cobordism from Fj to F, is a compact oriented 3-manifold whose
boundary consists of three parts:

@ the top boundary: a copy of Fp;
@ the bottom boundary: a copy of —F;

o the vertical boundary: an annulus connecting 0F to 0F;.




3-dimensional cobordisms

For all g € N, fix a model surface of genus g:

- /I TRL 7

Ag = (0a,...,ag) is a Lagrangian subspace of Hi(Fg; Q).

A cobordism from Fj to F, is a compact oriented 3-manifold whose
boundary consists of three parts:

@ the top boundary: a copy of Fp;
@ the bottom boundary: a copy of —F;

o the vertical boundary: an annulus connecting 0F to 0F;.

It is Lagrangian if it satisfies certain homological conditions which involve
Ag and Ap.

v
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The monoidal cat. 7T,LCob of quasi-tangles in Lagrangian cobordisms

Objects: non-associative words in the letters o, +, —
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€ Mor, ccob(w, v)




The monoidal cat. 7¢LCob of quasi-tangles in Lagrangian cobordisms

Objects: non-associative words in the letters o, +, —

Morphisms: framed, oriented tangles 7 in Lagrangian cobordisms M

€ Mor, ccob(w, v)

(— +)
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Composition: vertical gluing (Ma, 7)o (M1, 71) := (V. 7)
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The monoidal cat. 7¢LCob of quasi-tangles in Lagrangian cobordisms

Objects: non-associative words in the letters o, +, —

Morphisms: framed, oriented tangles 7 in Lagrangian cobordisms M

€ Mor, ccob(w, v)

(— +)
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The monoidal cat. 7¢LCob of quasi-tangles in Lagrangian cobordisms

Objects: non-associative words in the letters o, +, —

Morphisms: framed, oriented tangles 7 in Lagrangian cobordisms M

€ Mor, ccob(w, v)

(— +)

(M, 11)
(M2, 72)

Composition: vertical gluing (Ma, 7)o (M1, 71) :=

Tensor product: horizontal gluing (My,71)®(Ma,72) :=|(M1,71)|(M2,72)

There is a an embedding  T4Cub —— TqLCob . J
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Colored Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold, C : a finite set

A C-colored Jacobi diagram on X is a finite graph whose vertices are either
@ trivalent and oriented,
@ or, univalent and embedded into X,

@ or, univalent and colored by C.

X ::Ta Tba C:= {17273’4} i




Colored Jacobi diagrams on 1-manifolds

X : an oriented 1-manifold, C : a finite set

A C-colored Jacobi diagram on X is a finite graph whose vertices are either
@ trivalent and oriented,
@ or, univalent and embedded into X,

@ or, univalent and colored by C.

1 1
______ : NN
X =11, C:=1{1,2,3,4} =y 2
o A
-
a a1
Q - {C-colored Jacobi diagrams on X}
X):=
A(CX) AS, IHX, STU
S R HED AR
' I ' ' Pl RSP AR —_—

AS IHX STU
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The monoidal category %A of top-substantial Jacobi diagrams

Objects: pairs (g, w) where g € N and w is an associative word in +, —



The monoidal category A of top-substantial Jacobi diagrams

Objects: pairs (g,

w) where g € N and w is an associative word in +, —

Morphisms: colored Jacobi diagrams on oriented 1-manifolds

1+ 1+ 2+ 2+ 3+ 4+

/ /

2+ 3++ -

X X ;—:1€A({1+ LATru{lT,...,5 ), ><)

X Morigy( (4,+-), (5,—+))




The monoidal category A of top-substantial Jacobi diagrams

Objects: pairs (g, w) where g € N and w is an associative word in +, —

Morphisms: colored Jacobi diagrams on oriented 1-manifolds

1\+1\+ ot ot 3+ 4t ot 3t —

sk \/ s
Ty X’/\JGA({ﬁ"--v“}U{l7-~-v5}v ><)

Pl [
’ 7 ! \

1"1- 2= 3~ 5 5- = 4+ X Morigy( (4,+-), (5,—+))

. . Y of all ways of
vertical gluing
. b O D1 = <— gluing i~ -vertices of D;
& contraction

Composition:
with it-vertices of Ds, for all i



The monoidal category A of top-substantial Jacobi diagrams

Objects: pairs (g, w) where g € N and w is an associative word in +, —

Morphisms: colored Jacobi diagrams on oriented 1-manifolds

1+1+ 2+2+ 3+ 4+ 2+ 3++ _

X % e o X)

1-1-2-3- 5 5- X Morgy((4,4-), (5,—+) )
v
Y of all ways of
.. vertical gluin D
Composition: giuing h o Dy 1= ing i~ -verti

. <— gluing i~ -vertices of D;
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The monoidal category A of top-substantial Jacobi diagrams

Objects: pairs (g, w) where g € N and w is an associative word in +, —

Morphisms: colored Jacobi diagrams on oriented 1-manifolds

1+1+ 2+2+ 3+ 4+ 2+ 3++ _

X % e o X)

1-1-2-3- 5 5- X Morgy((4,4-), (5,—+) )
v
Y of all ways of
.. vertical gluin D
Composition: giuing h o Dy 1= ing i~ -verti

. <— gluing i~ -vertices of D;
& contraction

with it-vertices of Ds, for all i

. horizontal juxtaposition o
Tensor product: % “shifte’ of colors DL @ D2 =

There is an embedding A —— *A . J




The LMO functor

Theorem (Cheptea—Habiro—M.'08 for LCob)

There is a tensor-preserving functor Z: TqLCob — A which extends
the LMO invariant:
TqCub —— T LCob

Ar— ¥

Furthermore, (a reduction of) Z is universal among finite-type invariants.
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@ The general case with tangles is considered mainly by Nozaki'l5 and
partly by Katz'15.



The LMO functor

Theorem (Cheptea—Habiro—M.'08 for LCob)

There is a tensor-preserving functor Z: TqLCob — A which extends
the LMO invariant:

TqCub —— T LCob

Ar0— '

Furthermore, (a reduction of) Z is universal among finite-type invariants.

<

@ The general case with tangles is considered mainly by Nozaki'l5 and
partly by Katz'15.

@ There exist other TQFT-like extensions of the LMO invariant by
Murakami-Ohtsuki'97 and Cheptea—Le'07.
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Construction of the LMO functor (1/3)

Let (M, 1) € Mort, ccos(w, v).




Construction of the LMO functor (1/3)

Let (M,T) € MOI’qucob(W, V).

Attach a 2-handle to M along every curve §; at the top, and along every curve
«; at the bottom, and replace every e by (+—).




Construction of the LMO functor (1/3)

Let (M,T) € MOI’qucob(W, V).
Attach a 2-handle to M along every curve §; at the top, and along every curve
«; at the bottom, and replace every e by (+—).

Obtain a quasi-tangle v U 7 in a homology cube C, where 7 consists of the
co-cores of the 2-handles and 7 is the initial tangle.




Construction of the LMO functor (2/3)

(M,7) € Morr, ceon(w, v) s Z(M,7) € Morsq ((g, w'), (f, V)

g:=f#{e'sinw}, w' :=(ass. word in +,— def. by w)

where f:=f{e'sinv}, v/ :=(ass. word in +,— def. by v)
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Construction of the LMO functor (2/3)

(M,7) € Morr, ceon(w, v) RS Z(M,7) € Morsq ((g, w'), (f, V)

g:=f#{e'sinw}, w' :=(ass. word in +,— def. by w)

where fi=f{e'sinv}, v :=(ass. word in +, — def. by v)

Consider the diagrammatic analogue of the PBW isomorphism:

A({1H,. gt u{lm, . ) % A(yur)

Z(M,7) := x'Z(C,yUT) € More ((g, W), (f, V"))




Construction of the LMO functor (2/3)

(M,7) € Morr, ceon(w, v) RS Z(M,7) € Morsq ((g, w'), (f, V)

g:=f#{e'sinw}, w' :=(ass. word in +,— def. by w)

where f:=f{e'sinv}, v/ :=(ass. word in +,— def. by v)

Consider the diagrammatic analogue of the PBW isomorphism:

A({1H,. gt u{lm, . ) % A(yur)

Z(M,7) := x"'Z(C,yUT) € Morea ((g, w), (f,v')) ... is not functoriall




Construction of the LMO functor (3/3)

(M, 7) € Morr, ccon(w, v) ~» Z(M,T) € Morea((g, w'), (£, V"))

g:=f#{e'sinw}, w' :=(ass. word in +,— def. by w)

where f:=f{e'sinv}, v/ :=(ass. word in +,— def. by v)



Construction of the LMO functor (3/3)

(M, 7) € Morr, ccon(w, v) ~» Z(M,T) € Morea((g, w'), (£, V"))

here 877 f{e'sin w}, w' := (ass. word in +, — def. by w)
where ¢ . g{e'sin v}, v/ :=(ass. word in +, — def. by v)
Claim

There is a unique element T, ,» € Mores ((g,w’), (g, w')) such that
Z(M,7) := Z(M,7) 0 T, defines a functor Z : T,LCob — A.




Construction of the LMO functor (3/3)

(M, 7) € Morr, ccon(w, v) ~» Z(M,T) € Morea((g, w'), (£, V"))

g:=f#{e'sinw}, w' :=(ass. word in +,— def. by w)

where f:=f{e'sinv}, v/ :=(ass. word in +,— def. by v)

Claim

There is a unique element T, ,» € Mores ((g,w’), (g, w')) such that
Z(M,7):=Z(M,T) 0T, defines a functor Z : T,LCob — A.

it o1kt g'et ete"
Set o A
H
.
h
H '
= — ot
T = |Ta=.1h e e
g.w’
’ T
!
1717171 g e g8~ —/_/

w!

where T(x, y) € A({x, y}) is defined in terms of Z( H ) and BCH:
y y oy

P:even 7Y 1 i 1 vy y 1 Lo
T(X,y) ( = ) exp, (:“X ) |_|<®__ ‘:“;':‘ _— ‘l\.{'—l,/"‘ + = T 4 )J
& X x




For all g € N, set F, := F, U (2-disk).
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The case of closed surfaces (1/2)

For all g € N, set I/-_; = Fg U (2-disk).

There is a category TqLCob with

@ objects: non-associative words in the letters 4+, —, o;
@ morphisms: framed, oriented tangles 7 in Lagrangian cobordisms M
between closed surfaces;

(M, 1)

e composition: vertical gluing (Ma, 7)o (My, 1) := (Vo 72) |
2,12




The case of closed surfaces (1/2)

For all g € N, set I/-_; = Fg U (2-disk).

There is a category TqLCob with
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The case of closed surfaces (1/2)

For all g € N, set I/-_; = Fg U (2-disk).

There is a category TqLCob with

@ objects: non-associative words in the letters 4+, —, o;

e morphisms: framed, oriented tangles 7 in Lagrangian cobordisms M

between closed surfaces;

(M, 1)

e composition: vertical gluing (Ma, 7)o (My, 1) :=

(M2, 72) |

A There is no obvious monoidal structure on 7,LCob.

)

The attachment of a 2-handle defines a functor 7,LCob —» 7@ .
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The case of closed surfaces (2/2)

For all f,g € N and for all associative words v, w in 4+, —, the subspaces
of Morr%((w,g)7 (v, f)) spanned by diagrams of the form

define an ideal Z of the category 4.  Set B4 = BA/T.

Theorem (CHM'08 for LCob)

There exists a unique functor Z - TqLCob — A such that

ToLCob —2— A

|

ToLCob %y TA




So far..
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The monoid of string-links in homology cylinders

Let g,n e N.
A homology cylinder of genus g is a cobordism M from F, to F, with the
same (rational) homology type as F, x [0, 1].

An n-strand string-link 7 in M is an unframed tangle in M consisting of n
non-permuting strands running from top to bottom.

SCylg n = {n—strand string-links in homology cylinders of genus g}

€ SC_)/IQ’:),

There is a similar monoid §C\yl if the surface F; is replaced by I/-_;. J

g,n
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The algebra of symplectic Jacobi diagrams

n

Set o ~ = K
Q . Jacobi diagrams on | - - - | without free 1,
A< whose free univalent vert. are colored by Hi(Fg; Q) and totally ordered
&:n AS, IHX, STU-like, L, FI
where L - L : : :
W s e M = <;‘J —o
L .‘.<‘<“<.‘. H B '
Xy ¥y X X+y X y
STU-like L Fl

There is an associative multiplication o on Ag :
)




The LMO homomorphism

Theorem (CHM'08 & HM'09 for n = 0)

The LMO functor Z induces monoid homomorphisms

SCylg.n Z‘“'">A<

d |
Sl A

which are universal among finite-type invariants.
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The LMO homomorphism

Theorem (CHM’'08 & HM'09 for n = 0)

The LMO functor Z induces monoid homomorphisms
SClgn L AS,

A
Sl . » AS,

which are universal among finite-type invariants.

——
Let A;" be the subspace of A({1*,...,g%},] --- ])/FI spanned by
Jacobi diagrams without free * g .
~ i ~
V(M,T) € SClgn, Z(M,T) = exp,, <Zi ) uZzY(M, 1)
t H,_/

i=1 GA;,,
8,n
Be..
Br- e
o

Set Z< : =10 ZY where ¢ : AY = Az is defined by

Q-7 >

= a
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Application of the LMO homomorphism to some groups (1/2)

Each of the following groups G embeds into a monoid M of string-links in
homology cylinders, and it is thus mapped to a diagrammatic algebra A:

G M A
fundamental group 7T1(’/'—;) SOyl 1 | Aga
pure braid group PB,,(T-_;) SCyl, .Z;,,
Torelli group Z(Fy) SGlg o A;O

A This map Z<~ : G — A depends on the associator ® and
the system of meridians & parallels (v, ..., ag, B1,...,0g) on Fg.
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Application of the LMO homomorphism to some groups (2/2)

In every case, the algebra homomorphism Z< : Q[G] — A is
filtration-preserving, hence a graded homomorphism:

GrZ<:GrQ[G] — GrA~ A

G A GrQ[G] GrZ Injectivity of Gr Z<?
m(Fs) | A, | 7Y with H = Hi(Fy Q) hs h- J YES
(Labute’70)
—~ ~ T(H®n .
PB,(F) | AS, Tquad & cubic Ty € >1 | A h JJ . J probably YES
(Bezrukavnikov'94, rin OK if g =1 and
Nakamura—Takao—Ueno'95) (Humbert'12) n € {2,3} (Katz'15)
—~ ~ T(A3H/wAH zZ.
Z(Fg) Ao Touad L cubicray & =3 XNy Nz=Y 7
(quad. & cubic rel.) X OK ifg > 6 in deg< 3
(Hain'97) (HM'09) (Hain’97+Morita’'99)

After “homotopic” reduction, Z< : m1(Fz) — A;l is a symplectic
expansion built from ¢ (M'12).

After “homotopic” reduction, Z< : PBg(/?l) — ng recovers Enriquez’
formulas building an elliptic associator (®,X(®),Y(®)) from ¢ (Katz'15).
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