Fast Khovanov Homology Computations
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dx = dx"dy

Signs?
What is it? A cube for each knot/link projection; / / \

1 é dy dxNdz —= dx"dy"dz

Vertices: All fillings of @ with ) ( or with : . \ \ /

dz —= dyNdz
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Edges: All fillings of I X @=@ with [ X) ( = |l with I* @ PreCISely
DA ] ) N

Where does it live? In Kom(Mat(<Cob> /{S, T, G, NC})) / homotopy ¥
Kom: Complexes Mat: Matrices Cob: Cobordisms <...>: Formal lin. comb. /]
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Complex simplification:
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The Reduction Lemma. If ¢ is an isomorphism then the complex
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Moo What else is it good for? :
It’s local!
1. A localized relation with Kauffman’s bracket. is isomorphic to the (direct Sum) Complex
2. Easily generalizes to surfaces, virtuals, etc. @ AN %_'_ Y
3. Better understanding of functoriality. Q ﬂ &Y @ ( 0 ) ( ¢ 0 ) )
4. Removing G and replacing NC with 4Tu yields a more general theory! o] s { : } 0 e—n¢79 { : ] ( 0 v ) [o]
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See also http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/



