Expansions: A Loosely Tied Traverse from Feynman
Diagrams to Quantum Algebra

Geometric, Algebraic, and Topological Methods for Quantum Field Theory,
Villa de Leyva, Colombia

Dror Bar-Natan, July 2011,

http://www.math.toronto.edu/ drorbn/Talks/Colombia-1107/

Abstract. Assuming lots of luck, in six classes we’ll talk about

SNl

Each class will be closely connected to the next, yet the first and last will only be very loosely related.

The u—v—w & p Stories

sjouy[-N

Topology

Virtual KOs —

Combinatorics

Arrow diagrams and

Low Algebra

Finite dimensional

Perturbed Gaussian integration in R™ and Feynman diagrams.

Drinfel’d associators and knotted trivalent graphs.

w-Knotted objects and co-commutative Lie bi-algebras.

could explain

High Algebra

Likely, quantum

Chern-Simons theory, knots, holonomies and configuration space integrals.

Finite type invariants, chord and Jacobi diagrams and “expansions”.

My dreams on virtual knots and and quantization of Lie bi-algebras.

could explain, gaps remain

< | “algebraic”, “not v-Jacobi diagrams, | Lie bi-algebras, groups and the

5 embedded”; KOs modulo 67" and representations, and | Etingof-Kazhdan
9 | drawn on a surface, | various “directed” associated spaces. theory of

% | mod stabilization. STUs and IH Xs, quantization of Lie
| etc. bi-algebras.

\1’ Ribbon 2D KOs in | Like v, but also Finite dimensional The Kashiwara-

2 | 4D; “flying rings”. with “tails co-commutative Lie | Vergne-Alekseev-
5 Like v, but also commute”. Only bi-algebras (g x g*), | Torossian theory of
o | with “overcrossings | “two in one out” representations, and | convolutions on Lie
“ | commute”. internal vertices. associated spaces. groups / algebras.

T “Acrobat towers” Poisson structures. | Deformation

9 with 2-in many-out quantization of

§' vertices. poisson manifolds.
ot

2

more gaps then explains

Probably
related to 4D
BF theory.

‘mystery
Graph
Homology

The
“original”
graph
homology.

Studied.

Configuration space
integrals are key, but
they don’t reduce to
counting.

Video and more at http://www.math.toronto.edu/"drorbn/Talks//Tennessee-1103/

Work of

Cattaneo.

Studied.


http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/
http://www.math.toronto.edu/~drorbn/Talks//Tennessee-1103/

Stonehenge

It is well known that when the Sun rises on midsummer’s morning
over the "Heel Stone" at Stonehenge, its first rays shine right
through the open arms of the horseshoe arrangement. Thus
astrological lineups, one of the pillars of modern thought, are
much older than the famed Gaussian linking number of two knots.

. [ The signed Stonehenge
(D, K} = (pairing of D and K ) )

Thus we consider the generating function of all stellar coincidences:

1 framing-
Z(K):= lim ———(D,K)zD - | dependent |e A(0)
N—o0 QCC!( )
3-valent D e counter-term

Theorem. Modulo Relations, Z(K) is a knot invariant!

When deforming, catastrophes occur when:

A plane moves over an An intersection line cuts The Gauss curve slides
intersection point — through the knot — over a star —
Solution: Impose THX, Solution: Impose STU, Solution: Multiply by
_ _ _ _ a framing—dependent
X iﬁ U X counter—term.
(see below) (similar argument) (not shown here)
AN The THX Relation /

<@> the red star is your eye.

y

It all is perturbative Chern—Simons—Witten theory:

/ DA holk (A) exp
g

-connections

ﬁ/tr (A/\dA+2A/\A/\A>]
47 3
3

R
5 Y wYem - ¥ Dig(p)

D: Feynman D: Feynman
diagram diagram
Rk 3
ﬁ
;
Shiing—shen Chern James H Simons

Oporto Meeting on Geometry, Topology and Physics, July 2004
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From Stonehenge to Witten Skipping all the Details

LETV

Dror Bar—Natan, University of Toronto

Recall that the latter is itself an astrological construct: one of

the standard ways to compute the Gaussian linking number is to
place the two knots in space and then count (with signs) the
number of shade points cast on one of the knots by the other knot,
with the only lighting coming from some fixed distant star.

The Lk( OO )= %Z (signs)

Gaussian

. . vertical

linking chopsticks

number

Carl Friedrich Gauss lk=2
Dylan Thurston

N :=# of stars . A(0) oriented vertices

:= # of chopsticks :=Span AS: \?/.FY =0
e :=#ofedgesof D & more relations
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This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto—0407

More at http://www.math.toronto.edu/ drorbn/Talks/Oporto-0407/
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From Stonehenge to Witten — Some Further Details
Oporto Meeting on Geometry, Topology and Physics, July 2004

Stonehenge
UMM

Dror Bar—Natan, University of Toronto

We the generating function of all stellar coincidences: Dylan Thurston

framing-
1 N =# of stars A(O . -
Z(K):= lim Z (D, K)zD - | dependent | e A(O) . ©) oriented vertices
N-00 2¢ !( ) ¢ :=# of chopsticks =S AS: -0
3-valent D e counter-term o ofed cp pan : \T/+ =
¢ -=wotedgeso & more relations
(D,K)g := (Th.e.SIgnedeS tonjl;nge) : * . * count When deforming, catastrophes occur when:
pairig o an s \F‘; e - with A plane moves over an An intersection line cuts The Gauss curve slides
intersection point — through the knot — over a star —
D= - Solution: Impose IHX, Solution: Impose STU, Solution: Multiply by

— _ — _ a framing—dependent
X éﬁ U X counter—term.
Wy(D) i D i

R3 D: Feynma.n D: Feynman
diagram diagram

Theorem. Modulo Relations, Z(K) is a knot invariant!

/DAholK(A)exp i—k/tr (A/\dA+§A/\A/\A) —
o T

-connections

Related to Lie algebras

B U T |/

w

ar snydog

xyl = xy — yx [Ixylzl=[xly.z]l=[y.[x.z]]
>< 1 More precisely, let g = (X,) be a Lie algebra with an
2 orthonormal basis, and let R = (v,) be a representation. Set
4 = ([a, b],c Xovg = ™ v
The Miller Institute knot — Fate {la. b)) or Z o
and then 8

Definition. V is finite type (Vassiliev, Goussarov) if it vanishes on
sufficiently large alternations as on the right v B
Theorem. All knot polynomials (Conway, Jones, etc.) Wg, R: ah — Z fabcTﬁ T; Taﬂ
,: av'ba’ c

are of finite type.
yp ‘ abeafy

Conjecture. (Taylor’s theorem) Finite type invariants Goussarov o

separate knots.
Theorem. Z(K) is a universal finite type invariant! Planar algebra and the Yang—Baxter equation
(sketch: to dance in many parties, you need many feet). Vassiliev

Wy,r o Z is often interesting:

\/b
c/ d

g=sl(2) — = & The Jones polynomial

' } The HOMFLYPT polynomial
< Przytycki

The Kauffman polynomial

RiLRIS R = Ry RIS RE

W Reshetikhin
a(b(ed)) (ab)(cd) ’ Turaev u
a(b(cd)) / \
o @b ““ﬁ 7"“‘“” Kauffman’s bracket and
(a(be))d . . P = A
(e (o the Jones polynomial C/ﬂ ” T( )\ ) - :)"/ ) ()

<X D= <V> AL S Tadesd,

- }n-"u

ca)b
\//7 c(a) ac‘)b <Ok>: (q+q_;)l< <D\ > =<J2\J> - qfﬁ)
(ab)c a(b( a(cb) Drmfeljd j"{L )= & - qn;zn- <L > v;?q/<?9\> +9 </2\$ >

(Non) count  (32,57) fird =-9)(>

"God created the knots, all else in topology is the work of man." This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto—0407

Parenthesized tangles, the pentagon and hexagon

More at http://www.math.toronto.edu/ drorbn/Talks/Oporto-0407/
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Knotted Trivalent Graphs, Tetrahedra and Associators
HUJI Topology and Geometry Seminar, November 16, 2000
Dror Bar—Natan

Goal: Z:{knots}—>{chord diagrams}/4T so that S i
t = g : Modulo the relation(s): < = i >
/\
~——

(+more)

z Claim. With @ := Z(4), the above relation becomes equivalent
to the Drinfel'd’s pentagon of the theory of quasi Hopf algebras.

The Miller Institute knot

Pr oof.

Extend to Knotted Trivalent Graphs (KTG’s):
% é NV T

Need a new A A
relation: =0
Easy, powerful moves:
L= 0XK T
forget /Tup\ ‘ l ‘
@ miles @ Tl T2 3 4
—
away 3.
SRS V.V
connect i ——

Using moves, KTG is generated by ribbon twists A v
and the tetrahedrorA : .. 2 N

|
A plant connect T ﬂ‘\ 1 1
. T Casien@)-Ge1eA)N®) e At
|sotop 4) |50top|es
Further directions:
1. Relations with perturbative Chern—Simons theory.
2. Relations with the theory of 6j symbols

P = (221 -(10AR”1)(®)- (10 @) € A(T4)

_ ) 3. Relations with the Turaev-Viro invariants.
forget A que. blueprint 4 can this be used to prove the Witten asymptotics conjecture?
d: computed 5. Does this extend/improve Drinfel'd’s theory of associators?

This handout is at http://www.ma.huji.ac.il/~drorbn/Talks/HUJI-001116

unZ|ps

More at http://www.math.toronto.edu/ drorbn/Talks/HUJI-001116/
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T3, v, and W Kiiom) X (10polozy, Tow wlgebra, aml Righ algebra)
Dror

> e The Bigger Picture...
i3 virtual s for welded, weakly v, and warmup;|
[vn "rws { zf) /“'” )0) © (weknots) v—knotsOC) o e O
’K&’?‘k;"‘(“‘g‘?‘”“’“"f"“““ onvolutions The Orbit
i? fi) Yol Nt ><\2>'< statement , ~ . Method
a A
£ L Y \,,Pm(/|nm) 3 V
]
P Group-Algebra Subject
o statement flow chart
H Unitary
HS
statement .
‘ e ; : Free Lie
v statement
}/l L, Vh Algebraic
statement ‘
fnite i :‘:‘;ol-[ Lie algebiea g, therq Alekseev
= : i .
J| Diagr -ammatic.— Lorossian
" statement statement
: !
5 » |[Knot-Theoretic True
lekseev, Toros-
statement sian, Meinrenken

Convolutions on Lie Groups and Lie Algebras and Ribbon 2—KnBtglaimer: ["God created the knots, all else ﬁ
Rough edges topology is the work of mortals. S =g |
Dror Bar—Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn—0908-cmain! Leopold Kronecker (modified)

hat are w-Trivalent Tangles? (PA :=Planar Algebra)

b (O fman 10, )X )
0 legs

}:PA 7, A |R23, R4 - @-/K-Q(Q
P =)

knots
&links

{
{

wlT=

trivalent
tangles

Alekseev

Torossian

2

trivalent _pA W- ‘ ’ unary w-
w-tangles [ generators |relations | operations
The w—generatons\. = O )@ Brokensurface =OO =
Q N g @& @msjmml: & B

= - y = () -
\( - @ - >2/<< = N} =
% >X< -f<N- eN-
Dim. reduc.
Crossing H OO ¢ Virual crossing Movier © O &
T Vertices
)& smoot

omomorphic expansions for a filtered algebraic structure K:

ops—K = Ko > Ky D K D K3
4 lz
ops—grkC := /Co/IC1 D ]C1/IC2 ©® ]Cz//Cg D /Cg//C4 D ...
IAn expansion is a filtration respecting Z : K — grC that
“covers” the identity on gr/C. A homomorphic expansion is
lan expansion that respects all relevant “extra” operations.

D...

A Ribbon 2- Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and

/-4 B RK

>i<

iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let i be the ideal
generated by differences (the “augmentation ideal”), and let
ICm, := ((K1)™) (using all available “products”).

he w-relations 1nclude R234, VR1234, M, Overcrossings
Commute (OC) but not UC, IVQ = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

"An Algebraic Structure"
0= (2
e~ .
@ N

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

objects of
kind 3

s [ = jA\— yet ”%

C: N e
/N7
o Challenge.
_eT ,T, as_ﬂ_e %%Dothe
: Reldemelster|
<|W 1 —tw
T — <|>W but ~_ _/
| Reldemelster Wmter
[%2]
>5 <
Q=
c ®© — = — =
28 [ | % @ ﬂ ﬂ
L
£9 AN N
= Unzip along an annulus Unzip along a disk

xample: Pure Braids. PB,, is generated by z;;, “strand ¢
goes around strand j once”, modulo “Reidemeister moves”.
A, := gr PB,, is generated by ¢;; := z;; — 1, modulo the 47T
relations [ti;, it +t;x] = 0 (and some lesser ones too). Much
happens in A,, including the Drinfel’d theory of associators.

The set of all
b/w 2D projec-

tions of reality

Just for fun.

7\

K/KL— K/K2— K/K3 — K/K4 —

Our case(s).
Z: high algebra

given a “Lie”
algebra g

A=
griC

“Z/l (9)77
solving finitely many
equations in finitely
many unknowns

IC is knot theory or topology; gr/C is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

low algebra: pic-
tures represent
formulas

..F'Hfaﬁﬂ

K/K1 @K1/K2®Ko/K3B Ka/Kab Ka/KsP Ks/Ke®

An expansion Z is a choice of a
“progressive scan” algorithm.

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am|
IAlso see http://www.math.toronto.edu/~drorbn/papers/WKO/

I Il
R ker(K/Ks—K/Ks)

Video and more at http://www.math.to

ronto.edu/ drorbn/Talks/Bonn-0908/


http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Convolutions on Lie Groups and Lie Algebras and Ribbon 2—-Knots, Page 2

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

K
X

(1)

From wTT to A*. gr,, wI'T := {m—cubes}/{(m+1)

forget
topology
Polyak

w-Jacobi diagrams and A. A”(Y 1) =2 A¥(117) i

cubes}

Vassiliev

Goussarov

—

Diagrammatic statement. Let R = expH € A% (71). There

exist w € AY(T) and V € A¥(17) so that

w

O=

deg=13#{vertices}=6

WA
oAt At

Diagrammatic to Algebraic. With (z;) and (¢7) dual bases of
g and g* and with [aci7acj] > bF;xy, we have A — U via

{(Ig)/U( g) = S(g*) the obvious projection, with S the an-
tipode of U (Ig), with W the automorphism of (Ig) induced
by flipping the sign of g*, with r € g* ® g the identity element
and with R = e” € U(Ig) ® U(g) there exist w € S(g*) and
V e U(Ig)®? so that

(1) V(A®1)(R) = R®R?V in U(Ig)®% @ U(g)

(2) V- -SWV =1 (3) (e® ‘)(VA(w)):u)%w

k \ . ﬁ

T T /><\ Penrose Cvitanovic

w w T

d1m g
- Z bi o' wnrm ' € U(Ig)
i’j»k7l7m’n:1
Unitary <= Algebraic. The key is to interpret & (Ig) as tan-
Algebraic statement. With Ig := g* x g, with ¢ : U(lg) — gential differential operators on Fun(g):

® © € g* becomes a multiplication operator.

e r € g becomes a tangential derivation, in the direction of
the action of ad z: (z¢)(y) = ¢([z,y]).

o c:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.

Unitary = Group-Algebra. // wf+yer+y¢(x)1/)(y)
- <W:I:+ya W:1;+yew+y¢(x)w(y)>:<Vw:1:+y7 V€$+y¢(m)w(y)wilf+3/>

Unitary statement. There exists w € Fun(g)” and an (infinite
order) tangential differential operator V defined on Fun(g, x
g,) so that

(1) Verty = ¢2evV (allowing U(g)-valued functions)
(2) Vv (3) Vwyiy = wawy

=(wawy, €YV I (2)P(Y)wa 1 y) = (wWawy, e e?d(x) Y (y)wrwy)
[eers@iw.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then

Group-Algebra statement. There exists w? € Fun(g)® so that

for every ¢, w € Fun(g)® (with small support), the following

holds in L{ (shhh, w? = j1/2)
2 z+y o y
//¢ Wopy® //¢ Jwyete
gxg axg (shhh this is Duflo)

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately,
let G be a finite dimensional Lie group and let g be its Lie
algebra, let 7 : g — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ®(f)(z) := ]1/2( ) f(expx). Then if f,g € Fun(G) are
IAd-invariant and supported near the identity, then

Q(f)x2(g) = ©(f x9).

(Fun(G),*) 2 (A,-) via L: f — > f(a)r(a). For Lie (G, g),
(9. +) D2 25 o7 ¢ S(g) Fun(g) ——> S(g)
e f e e
(G,) 3 e ——>e* € U(g) Fun(G) ——U(qg)
with Loty = [4(z)edr € S(g) and Li® " = [1(z)e

Z)(g) Given ¢; € Fun(g) compare o1

d—1 ( 1*’(#2 II’IZ/{( )

% in G : //wl Vb (y)e™e? *in g: /¢1 Yo (y)e™ Y

(1) » @1 (1) and

(shhh, Lg/; are “Laplace transforms”)

We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.

e u-Knots, Alekseev-Torossian, ® BF theory and the successful
and Drinfel’d associators. religion of path integrals.

® The simplest problem hyperbolic geometry solves.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/
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w—-Knots from Z to A @ —
Dror Bar—Natan, Luminy, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/

The Bracket-Rise Theorem. A" is isomorphic to Prof.

2
SO0 oo

IAbstract T will define w-knots, a class of knots wider than
ordinary knots but weaker than virtual knots, and show that
it is quite easy to construct a universal finite invariant Z of
w-knots. In order to study Z we will introduce the “Euler
Operator” and the “Infinitesimal Alexander Module”, at the
end finding a simple determinant formula for Z. With no
doubt that formula computes the Alexander polynomial A,
except I don’t have a proof yet.

@ (2in 1 out vertices) \ [__, __,
STU, AS,

e and THX

relations

\/

STU:

AR,
\ /,X

M*X AN TSN

—

STU3 =TC: 0

Tubes in 4D. y = o )p Brokensurface =OOH
Q N @& />2Dsymbol: -
y - - y ] @ -

>\\( - @ - >>/2< - 5) =
% /<< = ®) = Dim. reduc. & O -
Crossing & (02 £ Virtual crossingiovier © O &

Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist. Habiro - can you do better?

The Alexander Theorem.  T;; = |low(#j) € span(#i)|,
1 s; = sign(#i), d; = dir(#4i)
S = diag(szdz)a

%

IA Ribbon 2-Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and
. disk Do with Dy N OB = dD2, modulo isotopies of S alone.

7-& % RRK-K
R s N

\

A=det (I+T(I—-X%)).
01111010
00101000
01001000

7= 01001010
01010111 |°
01010010
00010100
00010100

X F=diag(+,X, +, X, X, +, X, +

Conjecture. For u-knots, A is the Alexander polynomial.
Theorem. With w : 2% + wj, = (the k-wheel),

Z = N exp guw <—w <1Og<@[[x]] A(e’”))) Z=N-A"1(e?)

mod wiw; = W4y,

Proof Sketch. Let E be the Euler operator, “multiply anything by

W—Knots.
— cA (Y7 )/ Rra3, 0C ><>< g
pA (M 37 [ Re3 VRi123, D,0C

W R YR A |

its degree”, f — zf’ in Q[z], so Ee® = ze® and

Bz = + -

'We need to show that Z7'EZ = N’ — tr ((I — B)*lTSe*”S) w1,
with B = T'(e~®% — I). Note that ae’—e’a = (1—e*1?)(a)e® implies
ifﬁ_*_a%:_: 0 = *_fﬁfﬂl*e”)_f}a

l:’f:._ _J:’ﬁ_ G _h_ _C’%n_—_fﬂzﬂ—eé‘”)_h_
NS NS
Y - e o [ G ey

The Finite Type Story. With X := X —-X
set Vi, :={V:wK — Q: V(&™) =0}.

arrow diagrams

>9D <m_>9 D) /(

@ Vm/vmfl
%duality

)'Z("H_l) — 0

§< >§Tc}i )>< AY = D/ R < oredy — ﬁltered) wK
Soforg el Lo
Q 4T in this box

NS AV 4

AV 4 AV 4
B e Vo N

S SRy, g
N-0-9 D-Q-° &&

so with the matrices A and Y defined as

Al g 1 2 YJ

. N Y’ 2 NN
we have EZ — N” = tr(SA), A = —BY — Te~

with

1

2

wl, and Y =

+

#¢ "God created the knots, all else in
‘=  topology is the work of mortals."
Leopold Kronecker (modified)

BY + Te *Sw;. The theorem follows.

So What? e Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)
o New (?) formula for Alexander, new (?) “Infinitesimal Alexander
Module”. Related to Lescop’s arXiv:1001.44747

o An “ultimate Alexander invariant”: local, composes well, behaves
under cabling. Ought to also generalize the multi-variable Alexander
ipolynomial and the theory of Milnor linking numbers.

o Tip of the Alekseev-Torossian-Kashiwara-Vergne
The Kashiwara-Vergne conjecture and  Drinfeld’s

iceberg (AT:
associators,

Y

i [arXiv:0802.4300).
< |®* Tip of the v-knots iceberg.
- [polynomial invariants.

May lead to other polynomial-time
“A polynomial’s worth a thousand exponentials”.

% ‘, S=CT
www.katlas.org The knet Jelas

Also see http://www.math.toronto.edu/ drorbn/papers/WKO/

Video and more at http://www.math.toronto.edu/ drorbn/Talks/Luminy-1004/


http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/

18 Conjectures Theorem. For u-knots, dim V,,/V,,—1 = dim W,, for all n.
Dror Bar-Natan, Chicago, September 2010 Proof. This is the Kontsevich integral, or the “Fundamental Theorem of
http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/[Finite Type Invariants”. The known proofs use QF T-inspired differential
Abstract. I will state 18 = 3 x 3 x 2 “funda- [geometry or associators and some homological computations.
mental” conjectures on finite type invariants of 55 Tles. The following tables show dim V,/V,_1 and dim W, for n =
ivarious classes of v1rtua-l knots. This done, I will .5 for 18 classes of v-knots:
state a few further conjectures about these con-

. . relations\skeleton round (Q) long (—) flat (X =X)
Jfgi‘éﬁi?gigi};}fe:; ?;:;;%%2512&232 t}.mW these | = dard mod R1_[0,0,1,4,17 o [0,2,7,42,246 «  [0,0,1,6,34 s |
Following “Some Dimensions of Spaces of Finite R2b R2c R3b |no R1 1,1,2,7,29 2,5,15, 67, 365 L0280
Type Invariants of Virtual Knots”, by B-N, Ha.| | Praid-like mod R1 |0,0,1,4,17 e |0,2,7,42,246 = 0,0,1,6,34 o
lacheva, Leung, and Roukema, http //WWW math. R2b R3b no R1 1,2,5,19,77 2,7,27,139,813 1,2,6,24, 120 |
toronto.edu/~drorbn,/ g R2 only mod R1 |0, 0,4, 44, 648 0,2, 28, 420, 7808 0,0,2,18,174
bapers/v-Dims/. R2b R2c no R1__|1,3,16, 160, 2248 |2, 10,96, 1332, 23880 |1, 2,9,63, 570

LRHB by Chu 18 Conjectures. These 18 coincidences persist.

Circuit Algebras

Comments. 0,0,1,4,17 and 0,2,7,42,246. These are the “stan-
dard” virtual knots.

J
cpP Q 2,7,27,139,813. These best match Lie bi-algebra. Le-
K Q ung computed the bi-algebra dimensions to be >

2,7,27,128.
A J-K Flip Flop Infincon HYS64T64020HDL-3.7-A 512MB ram |[®@®®. We only half-understand these equalities. Vogel
1,2,6,24,120. Yes, we noticed. Karene Chu is proving all about
his, including the classification of flat knots.

IDefinitions

R1 ~7 _~R3b~_"
v}C = /\ p > /\/ = /\)1 N1, 1,2, 8, 421258, 1824, 14664, ..., which is probably http://www.
N 4 research.att.com/ njas/sequences/A013999.
\ > <R2b> R2c>® O or / What about w? See other side. What about flat .and round?
What about v-braids? I don’t know. Likely fails!
N NS
R/// OTK \/\ The True [......|.......]....... )
Yy = (/T Count " One bang! and five compatible

I=1 =N _ . . - AT | transfer principles.
N is one thing we measure. . .

G I “arrow diagrams” Vi /Vin-1
Y e i \ Bang. Recall the surjection 7 : A, = D,,/RY — 77 /I"T1. A
N «‘ duality

G oussarov-Polyak-Viro filtered map Z : v — A = @ A, such that (grZ) o7 =1 is

}2{ =X called a universal finite type invariant, or an “expansion”.
REP — D, =CAx H H> " /I Theorem. Such Z exist iff 7 : D,/RE — /77! is an

— ”_ n
R/———J S XXX isomorphism for every class and every n, and iff the 18 con-

7
exact’ jectures hold true.

RI: —_'_Q—_: 0 R2c: >< = The Big Bang. Can you find a “homomorphic expansion” Z
R2b: |»|—|—|9|= 0 ¢ — an expansion that is also a morphism of circuit algebras?

_ Perhaps one that would also intertwine other operations, such

R3b: + o }_H + H—' + as strand doubling? Or one that would extend to v-knotted
NP _ trivalent graphs?

=X |9|+|(—|_ 0 e Using generators/relations, finding Z is an exercise in solving

W, = (D /RE)* = (A,)* is the other thing we measure. .. [equations in graded spaces.
The Polyak Technique e In the u case, these are the Drinfel’d pentagon and hexagon

R fails in  lequations.
vK = CAq < Ezi >/ R°® ={8T,etc.} (1o ucase lo In the w case, these are the Kashiwara-Vergne-Alekseev-
Torossian equations. Composed with 7; : A — U, you get

g 9
that the convolution algebra of invariant functions on a Lie
group is isomorphic to the convolution algebra of invariant

<n( o<n i1 [functions on its Lie algebra.
s Js 2 computable space! { CAg )R —vk/T e In the v case there are strong indications that you’d get the

B /r /r equations defining a quantized universal enveloping algebra
qoosree T and the Etingof-Kazhdan theory of quantization of Lie bi-
RD == bottoms” of D I"/I”_H
n relations in R° n algebras. That’s why I'm here!

Warning! > <R2b> ch}@ > R2b> < R_2c>@’
~N

Video and more at http://www.math.toronto.edu/ drorbn/Talks/Chicago-1009/

RP =

74 "God created the knots, all else in
‘=  topology is the work of mortals."
) Leopold Kronecker (modified)

www.katlas. org ne Krcr’/ s

Edi
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Lecture 2 Handout

More on Chern-Simons Theory and Feynman Diagrams
Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

At A= hgr =4 sty b= 7

20) = (D4t hdi (8 gwﬂf“%“mm)
Ae (K3, ) <s(a)

whire trghol 4)= trg (14 fLs AL3(5)

Trowt) 7 1s
ot oA M’S,l ATEYAR -

GUAJI Tavia~/ance : CStA) 15 r'r;wf/o.qf' wnder”
Ao A+8h, Pa=—(dc+b[A,cT) , C&LK,9)

Tn Chern- sl'noﬂs) W/ Fl4):=4=9; A") g
bt = f b (A1) + ZMArA + BN

+C (o +aJA)C
So Lt bave

¥ A boson/c quadratic tum r'fWo[V/'/lj (ﬁ)

¥4 Fomionic yaadatic fum invelVing T, C .
¥ A calic infernction of 3 A%

F A cubtc prc vih<.

Back to e J/WI;U bears . . .
Jupposc Llxc) on R 15 reciaf waber o
k—élr\chs/on,\[ ﬁ/auﬂ - wf Lit a/jtéfc\_,g <97
knd Ceppost FiRN—> RE 15 Swch Pt F=o
S A _C(,CIL/o") OF 'fZe E-aclron:

LK

= #ﬁ%@?
T’Z\ L ?OW

l,;x U [ €M) Jet (i)

" Pt,/ﬂ/éﬁ{"ﬁ
- ) 9) flaary e
J”:{XJ’J?‘ 6,4, ¢ DFK/[I)} 4171'1'/":‘7/‘09/1

R ke 2

°

X FwnnJ A ~nd g \\)Iozf’ln'h\jn VV%/ZL} “1”17 .

AF-}M Madh Crun cArU

=242

m= =0 r[j nnqﬁ-./)

where g[D) s Cons%/uwh} a8 Follows:

e J,b ab (- )k oA
5 2 C'o7<+ R&|[x~y/3 '
ot L5 /@w
LHrlx i .
, LGS
y — L -mc Sk J:ls Kmle\f[S)
_rl
I
L (= 991 For b
_—< — 2—77_-f‘4‘E &LCA?C%—A—’,C\?(,M ~J %ap
émc*")

}gj ~ L/t of « mif‘»c/t) thi boils oo +°r
N Con/‘/auf/WL/aq Space Iﬂﬁj/’vg M/A/(A /’l ’73’!4

(5t 5 3 () = det R 24" v;[/1”y,'/)-(/1”:f,(x))

Can by "T(,JHLLJ +o A pru- Imo\()t &‘ou/rf

Bezin )
Ftrhiavv'é \/ﬂ\/‘/&é”ﬂj 5#’ Cf(
A/)"’/"Commq{-/'r:?

ol){.-{- DL(JC)"F FT35)¢+

the ar‘ljl’l’“e J’{”\"’J;I:n

Nch(J/)

.. BoﬂL T v g 0‘4"7L ofF Sfenm For 11"‘7\]1772,_..

Calxa Geral

R

"God created the knots. all else in
_ topology is the work of mortals."

Leopold Kronecker (modified) www katlas.org The knet

de Deposutos

knote

Ronks [i'ke

2011-07 Page 1
Video at http://www.math.toronto.edu/ drorbn/Talks/Colombia-1107/
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Lecture 3 Handout

The Basics of Finite-Type Invariants of Knots

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

Defintion. A Inet aarrenT S Ay Canctisor
Whast oomamn s {kno?’l’]’. K(a//y/ wl mtan oo
M F«mCIL/ﬁV) Whogt fa{;;-/— spad 15
btnaa/;%mJ@L/cj ¢

C:Zf(@j/)] f/\:;

A

1
N =

A=
\/K/ /7Z[Z:f

Eywrast fo L_u-h/cl, Vst f(-x%—’—’ &77/

Fulinr’ ﬂ\tofbl")/ and cha/ CZO/J/’rzq.?[!Zf 7o
3

Cormpate JC—/DCU 72 in uo Jithoot Wiy

R" -
ind hict fo didua he Volwpt of Sﬂi the

(n~1) <1 mt ngronal Pl
Exercist. 1. Deferrmine The \‘WL,D,/,,L S ” W,

EXm//L Tht Cof’f»/»‘j /7°{7ﬂ0f’)%'\/ IS al'vﬂn
5 5

T (R )-c(X)=2c (00
and [ k=)
c(eg)-{, o

of ﬂ_.( ;«,._77-, CotlPFic et of ﬂ.t C‘onh/:j

polynomisd nnd \ecify Bt K& Sati Pl YT,
2. LLM"? Séf'?ﬂ"\//\'-’e ﬂ\éoh'fr ‘fZ‘ \ﬁﬂ(\f /0/]/}0[’)/26

And do Tt St Form IR CotbFiE vats
Theortm. (Tht Fendamesrtnd Theorrm)

Ecery “\A/t@’l*.(j.rﬁm", Ie. u/ug Uinvar

Ext/(@t,_ Pl'ck Yyou~ /Cm/oqf/'# bark
A COM/W)L@ ﬁl Caqw‘:y ﬂo/jaOM/Z‘/

INTERLINK.

Fnction Wl W/ 0N ’4‘":{46”:(;“4}/L///

Is da wtth duvcivalla of a dgpe MR

Of ;7L§ D{?o'

nveriont: Vu' FV ot WEwy

Dekrinition, Ax
\/: fnets > A
CGan b Lx'f'b/)J&J to
NknoTs w/ doutle poids”

Dctndion. \/ s of Fqpe 1 iF Alwns
\/[W):O [ﬂ/'ﬂé “/déﬂomﬁ/,/)

Cavu't(?’u/(. Finie 7Lj/<, /i\/a//mzig Stparst fnefs,

Thortm. I6 C(k)= 2 Vo(k)27 fler U,

¢ of 71“7/7{ m .

Proof. c(57)=C(5)-c(N)=2c(1[) o

A \ .

using V(5C)=v/(¥: J-V(52). (Think “ibatiation®)

31
4
10

m 0
dim A7, |
dim A, |1
dim Py, [0

1 314 6
0 3 9
1 6 19
| 2 D

Theortm, A+
Proof
O)-D=-9=-CD,
Proposition. TAC Eundaryertal The
holds (CE thirt witS an wpansimy

ZK—A 4 1 KIS

b

bl
27
GO
12

9
44

104
18

:’ﬁ_\’/ A{Moﬂ)’\\lj

10
80
184

27

11
132
316!

39 | 5!

q
14
33

8

[V

=
[v sl W]

[
[SLE S}

1
3
|

g ]

3
*7

Lat Vbt of *Jﬂ m tha V7 1S congted:
VX - X X)) =VIX - XX)
r
So W, i= 7= \//m;sgwf is rellya Lotion

on m-c%/J A/%J/ﬁm_g'; \/\/\/1 i@} —_— /4»
Clnm. W, sitichiac the YT Slutio, .

Wy ((\T—(—@"(/j’f%) =0
Proof-. \/(//':) = \/(/Q—If—lf—) -
¥ .2 =y X -.xX n-_
2011-07

Video at http://www.math.toronto.

M- 51‘/@“/@// e
2//<)T D/c+

/\fbl\;/
A&j/(,(j.

In[}= << KnotTheory"

Proof
W55 A

N Y
J

Also gou my old 24,

Non fhe Vassiliev

Knet [Avariants”
(3o,j’e \,\/(,[ Ernd .. )

Page 1
edu/~drorbn/Talks/Colombia-1107/
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Lecture 4 Handout

Low and High Algebra in the

u" Case

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

T he é/f) pictact, ‘U Caclt,

T Mj me% )
=
L Zn °? C/Loo;l_
kna% * ﬂc hor g / chx Y (/(/ 9 )
M

0 -}-C J/ﬁj ram

whits 41

,b WAAN

Wy)

> oo 4
@3 E!@ Ulg)*>

/JL, au[(jiéf& lau Ol_/e(jG.éfc\
Vq"/J fac‘/ l\jjt Lra,
_\ X y X ¥y X y x y N )
= o= = iy s B
LL> s & z Nz g
xyl = xy — yx [[xylZ=x[y.z]l-[y.[x.z]] 8
More precisely, let g = (X,) be a Lie algebra with an
orthonormal basis. and let R = (v,) be a representation.
Set ;
Save := ([a,b],¢) Xavg = Z TE
and then 2
i Y, B
Woa Y S rarty
abeoidn
o

Excrsice. Find « Pt mitlod fo Lind
Wy o (D) whin Q}?f)//; , R=)R"
Ts it velch) fo the Cowny polynomill

A “HOW‘OMoffA/'C [Expansion” 2Kk
IS an Xgan /o That /h‘%/ﬁ//nes
all m/@\/ﬁo% m/goérm/& ops. LE
K 1 Einly prsutd ) Finding 2
< High Algelra

Univesd Regresintstion The /9.
Taspirvs 49 fllx,90) = P)P(G) =Pl P1),
set U(9) = Cwords ia 0 2/ Frey) 3¢y
* 5/ch ~p of Y whends 710 (/{_/@),
# J0: U0~ Wlg)™™ by Nwes
L/J'JHI'@ "ooas mat be for Rk,
Exvese. \itl, 9 =<x.y/ (<] =x,
deferming (/([{ﬂ) G Kjumf/}%f//f'l.

JRikhon bt} YUY : jf*((g"oo)f/
fiss

\,\/Lb/l Rihbon mens % /
=

Aajl_é/f\/( kf\ﬁz ’T})Lof:j

and

A/@O) ——/—)A(Oo) > O

+<(O“0) A(oo)\
. \k((?:(,) ) —2Z— 5u0)

28] ¢ {ux: H==pe)jcAloo)

ML

“il =0, Polbws from O \)l/

Low dlyebrn. A(ff)— ulg)®*v

- b ’ — Z [‘ALc(XK?;J )
Ybkwie, A(D) — W) =

A1) 1%

2011-07
Video at http://www.math.toronto

An Associator: ((AB)C)D —= (AB)(CD)

Q\A&n"’ﬁm /4(7‘5”\-3 “roof okyt” %,1 [ALI:TA)\
| deld(g)®? , : (11a):
(AB)( A(BC) (A(BC))D A(B(CD))
satistying the “pentagon”. 1|,-_\|}q,\\\ /q;
A((BC)D)
D1-(1A1)D- 1D — (A11)D-(11A)D ve
Driardd

3

The hexagon? Never heard of it. g

“Lm/\/exfgvf W)/'Va/fﬁ/ Ve ﬂha(jo@

See Also. BV %kDencso, arXyv: 1103.189%

Page 1

.edu/~drorbn/Talks/Colombia-1107/

11


http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Lecture 5 Extras

Review Material (mostly)

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

* count
with
signs

._ [ The signed Stonehenge
(D, K)q := (pairing of D and K :

Thus we consider the generating function of all stellar coincidences:

T he é,/;c) pictact, ‘W Cact,

(T“opcﬂozj CO"lé”Z \%M/Cit‘

A

. 4 oo
framing- ? Ly/ﬂo,{/&? Choosy
Z(K)=lim 3 %(D K)qD- | dependent | e A(©) | anL clwp‘ g IHX N (/(/ @)
Novoo, o 02 (G ) counter-term etc. 'J’ o rarm s
¢
Theorem. Modulo Relations, Z(K) is a knot invariant! h /'JL) ﬂ\/[(? (e N ﬂow OU():? ebre_
When deforming, catastrophes occur when: q 7\ a_
A plane moves over an An intersection line cuts The Gauss curve slides La\‘, a[D ¢ L/’\ . ( /) y (/(- ( @ ) Via,
intersection point — through the knot — over a star —

Solution: Impose IHX, Solution: Imposc STU, Solution: Multiply by

> Xp Xy X
\ fo (HEjeie AN X d - g (“@ )
I H X ié \-__/ \Zg// SM}-{(:)IQ::)C ;:W/-Z/ ‘I)C g abc <y XJ
(see below) (similar argument) is = Y=o . ‘ @
It all is perturbative Chern—Simons—Witten theory: ?;i’ "Q?g\;:: %( ,p‘k \,\//j(‘/ A( 7\,) ) "ﬁ u( g ) TQ
oA holxc(4) exp [: { (“d‘H ;‘“\ An A) :éf'w@:ﬁ;;) 74‘(/(\,'\ ) 15 “M/}/\/& /5(/{ K{ﬂ/'\/a/fﬁ/ 44 ﬂwf//Q
= %a‘:: 7 /
—>de¥ - g(D)XZ (D) —>D Fy - DiE(D & N: 'QP'R :!?m \/\/l[ﬂ\‘l; d z
agram
Dekinition, /4/1 —"’@ { ] LN u[(a)
% fmtwat”;f:‘u \ A
Can bt LX'I'GMJMJ to
NknoTs w/ double ,o«/#r % 1

wsig V(5)=v(¥)=/ \ﬂ
DCFM/‘?'/oﬂ. \/ 1S of 7”jﬂ¢ m if M/’”jj
\/(W)—O (ﬂ/né /oénowrj)
C"Ut{"“/( =iarte 7’:7/(, /m/a/ﬂw/_s Syarsre knots,
Theoretr. IF C[k) Z [k)gm e ]/

f¢ of %j/;f m.

Proof. c(57)=C()-c(X)=2c()])

(Think ‘J/FFcrz tiation ”)

= = 4

Hopvl\oﬂ\off‘ I E;(/m}/o‘? 2 Kok
IS an Wpansion Mot ivtrfiines

m/e\//\r)YL ﬂ//ﬁoé/f‘/& 0/S. s
=ors F//]/Hj p/@sw@l ) Finding Z
< I-l/:jk /)/\9(’.@/«‘

/’/0/705/?/"04 The Endaryertal] Then
ho/ls (CE thm weidts an LXPan iy

ZK\%A@ cf. IE K
M =59uler e
2)= Dt highs degrets

An Associator: ((AB)C)D —= (AB)(CD)
Q\AM‘?L(/IM ,4(7&4/4\,1( “roof olyut” (A11)®
Deld(g)®s 1 (11A)
(‘AB)(' ela) :l(B(-)

(A(BCYH)YD A(B(CD))

(IAI)‘N ﬂ‘f'

A((BC)D)

satisfying the “pentagon™,

PL-(1A1)P-1P = (A1L)D-(11A)D ve.
Driag) P

The hexagon? Never heard of it.

See Also. BN kDencso, arXyv: 1103. 189
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