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Abstract. We develop a theory of equivariant factorization algebras on varieties with an action of
a connected algebraic group G, extending the definitions of Francis-Gaitsgory [FG11] and Beilinson-
Drinfeld [BD04] to the equivariant setting. We define an equivariant analogue of factorization
homology, valued in modules over H

Gpptq, and in the case G � pC�qn we prove an equivariant local-
ization theorem for factorization homology, analogous to the classical localization theorem [AB95].
We establish a relationship between C� equivariant factorization algebras and filtered quantiza-
tions of their restrictions to the fixed point subvariety. These results provide a model for predictions
from the physics literature about the Ω-background construction introduced in [Nek03], interpreting
factorization En algebras as observables in mixed holomorphic-topological quantum field theories.

In the companion paper [But20b], we develop tools to give geometric constructions of factorization
En algebras, and apply them to define those corresponding to holomorphic-topological twists of
supersymmetric gauge theories in low dimensions. Further, we apply our above results in these
examples to give an account of the predictions of [CG18] as well as [BLL�15], and explain the
relation between these constructions from this perspective.
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1. Introduction

We begin with some overarching remarks about the background and motivation for the present
work, as well as its companion paper and formal sequel [But20b], which we call Parts I and II,
respectively. In Section 1.3 we give a detailed overview and summary of Part I. In Section 1.4 we
outline the complementary results of Part II, and in Section 1.5 we give a brief description of the
future directions of this project. Together, these results will comprise the Author’s thesis.

1.1. Background: Factorization algebras, representation theory, and quantum field the-
ory. Factorization algebras were introduced by Beilinson and Drinfeld in [BD04] as a model for
algebras of observables in two dimensional chiral conformal quantum field theories, defined in the
language of algebraic geometry. Factorization algebras in this setting generalize vertex algebras to
global objects defined over algebraic curves, vaguely analogous to sheaves on them. A generaliza-
tion of the theory of factorization algebras to higher dimensional varieties was also given in [FG11],
analogously modeling holomorphic quantum field theories in higher dimensions, which by definition
generalize the holomorphic behaviour of observables in chiral conformal field theories in two real
dimensions. From the beginning, the development of this theory was motivated by the essential
connection between chiral conformal field theory and representation theory of affine Lie algebras.

An analogue of factorization algebras defined over smooth manifolds in the language of alge-
braic topology was proposed by Lurie in [Lur08], as an example of a class of extended topological
field theories in the mathematical sense defined therein, and pursued by Ayala, Francis, Lurie, and
collaborators in [AF15, AFR15, AFT16, Lur09a, Lur12]. Factorization algebras in the topologi-
cal setting analogously generalize algebras over the little n-discs operad, and again describe the
algebras of observables in topological quantum field theories of dimension n. In the case n � 1
these are equivalent to usual (homotopy) associative algebras, a central topic of study in classical
representation theory.

Thus, there is a natural dictionary between predictions of quantum field theory or string theory,
which have led to groundbreaking ideas in a variety of areas of mathematics, and statements in
representation theory phrased in terms of factorization algebras. This dictionary is both a primary
motivation and the main source of new ideas for this series of papers.

The work of Costello [Cos11] and Costello-Gwilliam [CG16] established such a dictionary in a
more analytic context, constructing a variant of factorization algebras defined over smooth manifolds
in terms of the differential geometric input data of a Lagrangian classical field theory satisfying
certain ellipticity requirements together with a choice of renormalization scheme. These ideas were
very influential for the present series of papers, and have led to many other developments following
this paradigm [Cos13, CS15, BY16, GW18, ES19, SW19, ESW20].

The present series of papers also closely follows the program of Ben-Zvi, Nadler, and collabora-
tors, which gives approaches to many facets of geometric representation theory in terms of extended
topological field theory and derived algebraic geometry [BZN09, BZFN10, BZN13, BZG17, BZN18].
In particular, the use of sheaf theory in constructing extended topological field theories from geom-
etry is a central theme of the present series of papers, which is borrowed from loc. cit.. Further, the
derived stacks and sheaf theories defined on them which are relevant for our constructions can often
be predicted from statements about the shifted symplectic geometry of the spaces of solutions to
the Euler-Lagrange equations in the relevant classical field theories. This relies on a family of ideas
about functoriality of shifted geometric quantization, closely related to those in loc. cit., which I
learned from Pavel Safronov [Saf20].
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Finally, the circle of ideas and mathematical technology around the local geometric Langlands
correspondence [ABC�18], derived geometric Satake correspondence [BF08], and Coulomb branch
construction [BFM05, BFN18, BFN19b], provided a collection of mathematically well-understood
examples and established techniques which were crucial for the technical underpinning for the
present series of papers. In particular, we follow the sheaf theory foundations given in [GR14a,
GR14b, Gai15, GR17a, GR17b, Ras15a, Ras15b, Ras20b] and references therein. These ideas can
naturally be interpreted in certain holomorphic-topological twists of supersymmetric quantum field
theories, as we explain below. These interpretations have also been studied in a more mathematical
context, for example in [EY18, BZN18, EY19, EY20, RY19], and I have benefited greatly from
ongoing discussions with Justin Hilburn and Philsang Yoo about these ideas. In particular, the
forthcoming papers [HY], [GY], and [HR] will also contain some of their ideas that we follow in the
present work.

In terms of the various perspectives we have just discussed, we can summarize an underlying goal
of this series of papers as follows:

We develop a dictionary between factorization algebras and quantum field theory in the mixed
holomorphic-topological setting, using a synthesis of the chiral and topological variants of factoriza-
tion algebras; examples of interest are given by factorization compatible sheaf theory constructions,
motivated by shifted geometric quantization of spaces of solutions to equations of motion in su-
persymmetric gauge theories, and using tools from geometric representation theory and derived
algebraic geometry.

1.2. Motivation: Holomorphic-topological twists of supersymmetric quantum field the-
ories and Ω-backgrounds. The more broad goal of this series of papers is to use this dictionary to
formulate and prove results from a particular family of interconnected predictions of string theory,
at the intersections of affine representation theory [KW07, GW09, Gai18, BPRR15], enumerative
geometry [AGT10, Nek16, NP17, GR19], low-dimensional topology [GGP16, DGP18, Wit12], and
integrable systems [Nek03, NS10, NW10]. These ideas are centred around the six dimensional
N � p2, 0q superconformal field theory, sometimes called “theory X”, which is an elusive, non-
Lagrangian quantum field theory that morally describes fluctuations of M5 branes in M theory
(which we remind the reader are geometric objects supported on six dimensional spaces). This
theory is considered on a spacetime of the form C �M , for C a smooth algebraic curve and M a
smooth four manifold, and this gives rise to natural predictions relating chiral factorization algebras
over the curve C with the differential topology of the four manifold M , or the enumerative geometry
of sheaves in the case M � S is a smooth algebraic surface over C.

As an intermediate step, we establish analogous predictions from three and four dimensional gauge
theories following [BDG17, CG18, BLL�15], which correspondingly relate to the representation
theory of classical Lie algebras, and of quantizations of symplectic singularities more generally
[BDGH16], as well as to more classical aspects of enumerative geometry [BDG�18] and integrable
systems [NS09, CWY18].

Similar ideas have been studied extensively in mathematics already in both of the above contexts,
often explicitly motivated by the same physics considerations; for example [FG06, Ara18, Bra04,
SV13, MO19, BFN14, Neg17, RSYZ19, FG20, BD99, BFN18, BZG17, Cos13] are a few which have
been influential in our understanding of this family of ideas, ordered roughly corresponding to the
physics references above.
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The preceding predictions are nominally phrased in terms of string theory and supersymmetric
quantum field theory, which are notoriously difficult to understand and often not yet defined math-
ematically, but an important common feature of these results from the physical perspective is that
they often factor through mixed holomorphic-topological twists of the relevant quantum field the-
ories. As a result, these theories are expected to be amenable to descriptions in terms of algebraic
geometry and topology, and in particular the algebras of observables of these theories are expected
to correspond to objects in the synthesis of chiral and topological factorization algebras mentioned
above that we study in the present work. This is the fundamental reason for the effectiveness of
the mathematical tools considered in the present work in the relevant physics context.

However, there is another salient feature of many of the physical constructions and corresponding
mathematical interpretations mentioned above, which has not been codified mathematically in our
explanation so far: in the seminal paper [Nek03], Nekrasov introduced a construction in quantum
field theory called an Ω-background, an additional structure on a partially topological quantum
field theory which (when it exists) deforms the given theory in a way that enforces rotational
equivariance with respect to a fixed S1 action on the underlying spacetime. A primary consequence
is that cohomological calculations in Ω-deformed topological field theories are given by the analogous
calculations in equivariant cohomology.

Moreover, motivated by the localization theorem in equivariant cohomology, we expect these
calculations should in some sense localize to the fixed points of the underlying S1 action, after passing
to an appropriate localization Krεsrf�1s of the base ring Krεs :� H

S1ppt;Kq. In fact, calculations
in the algebras of observables of the Ω-deformed theories localize to calculations in (families over
Krεsrf�1s of) algebras of observables over the fixed point locus. Furthermore, such families of
algebras of observables have been observed in [NS09, NW10] to define filtered quantizations of the
algebra specialized at the central fibre over Krεs.

In the present work, formally Part I of the series, we establish the foundations of the theory of
equivariant factorization algebras in the mixed chiral-topological setting. Moreover, in this language
we give an account of the equivariant localization and quantization phenomena associated with the
Ω-background construction in holomorphic-topological quantum field theory described above. We
give an overview of these results presently in Section 1.3.

In the companion paper [But20b], formally Part II of the series, we develop methods for con-
structing examples of equivariant factorization algebras corresponding to holomorphic-topological
twists of supersymmetric gauge theories, and apply the results of Part I in these examples. We give
a preview of the results of Part II in Section 1.4 below.

1.3. Overview of Part I. In this subsection, we give an overview of the results of the present
work.

1.3.1. Overview of Chapter 1. The first chapter recalls the basics of the theory of algebraic fac-
torization algebras and its relation to vertex algebras, following [BD04] and [FG11]. None of this
material is original, but we hope that the relatively concrete summary given here will help make
the subject more accessible for the reader. We postpone a detailed overview until Section 3.

1.3.2. Overview of Chapter 2. In Chapter 2, we begin by establishing the elementary foundations
of the theory of equivariant factorization algebras A P AlgfactpXqG on algebraic varieties X with the
action of a connected algebraic group G. There is a key vector space valued invariant of factorization



6 DYLAN BUTSON

algebras called factorization homology, which defines a functor»
X

: AlgfactpXq Ñ Vect ,

analogous to sheaf cohomology. The factorization homology of factorization algebras generalizes
the spaces of conformal blocks of vertex algebras and Hochschild homology of associative algebras.
In Section 18, we define an equivariant analogue of factorization homology» G

X
: AlgfactpXqG Ñ H

Gpptq-Mod ,

and in the case G � pC�qn, we prove an equivariant localization theorem in this context:

Theorem 1.3.1. Let A P AlgfactpXqG be an equivariant factorization algebra. The natural map» G
XG

ι!A
�
ÝÑ

» G
X
A

induces an equivalence over the localization H
Gpptqrf�1

k s.

Once correctly formulated, the proof of this statement follows straightforwardly from the results
of [GKM97]. Nonetheless, it provides an important link between higher dimensional factorization
algebras on X, which are often subtle to understand algebraically due to their homotopical nature,
and lower dimensional factorization algebras on XG, which can be identified with more familiar
objects such as associative algebras or vertex algebras.

Next, we carry out a basic study of the algebraic structure of equivariant factorization algebras in
the simplest examples, explain relations to algebras over variants of the framed little n-disks operad,
and give an account in this language of the relationship to deformation quantization predicted in
the physics literature, as described above. The latter proceeds as follows:

In general, the restriction of an equivariant factorization algebra

ι!A P AlgfactpXGqG � AlgfactpXGq{H
Gpptq

defines a family of factorization algebras on XG parameterized by H
Gpptq, since G acts trivially on

XG. The case when G � C� corresponds to the usual Ω-background construction, and we show that

a C� equivariant factorization algebra A P AlgfactpXqC
�

induces a family of factorization algebras

ι!A P AlgfactpXC�q{Krεs over Krεs � H
C�pptq, which defines a filtered quantization of the central

fibre. For simplicity, we consider factorization algebras which are Ga equivariant, or equivalently
topological, along A1

(1.3.1) AlgfactpX � A1qGa � Algfact
E2

pXq so that AlgfactpX � A1qGa�Gm � Algfact

ES1
2

pXq

the additional Gm equivariance is equivalent to a framed, or S1 equivariant, enhancement of the E2

structure.
In Section 23, we explain an application of the Goresky-Kottwitz-MacPherson Koszul duality

result [GKM97] to equivariant operads, in the sense of [SW03]. In this example, it gives an equiv-
alence between S1 equivariant E2 algebras and algebras over (a two-periodic variant of) the zeroth
Beilinson-Drinfeld operad BDu0
(1.3.2)

AlgES1
2
pPerfKq � AlgBDu0 pD

b
fgpKrusqq and similarly AlgES1

n�2
pPerfKq � AlgBDunpD

b
fgpKrusqq ,
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where Krus � H
S1pptq. In general, algebras over the operad BDun define graded quantizations of

Pn�2 algebras to En algebras, over the base ring Krus. A similar result was announced in [BBZB�20]
as to appear in [BZN]. The preceding equivalences also extend to factorization objects, so that in
summary we have:

Theorem 1.3.2. There are equivalences of categories

AlgfactpX � A1qGa�Gm � Algfact

ES1
2

pXq � Algfact
BDu0 pXq ,

such that the latter intertwines the functors of forgetting the ES1

2 structure and taking the homology
P2 algebra, with restriction to the generic and central fibres tu � 1u and tu � 0u, respectively.

The latter category is equivalent to that of (two-periodic) filtered quantizations of (shifted) Coisson
algebras to chiral factorization algebras on X, by the chiral Poisson additivity theorem of Rozen-
blyum. Thus, equivariant factorization algebras A P AlgfactpX � A1qGa�Gm induce quantizations

ι!A P AlgfactpXq{Krεs.
Finally, we explain the manifestation in this language of the physical principle of equivariant

cigar reduction, which plays a central role in our applications of interest in Part II [But20b], as we
explain below.

Consider an S1 equivariant factorization E2 algebra

A P Algfact

ES1
2

pXq and define A0 :� oblvE0

ES1
2

A P AlgfactpXq .

Note that A0 is canonically a module over A in the E2 sense, so that there is a module structure

(1.3.3) A0 P CHpAq-ModpAlgfactpXqq or equivalently a map CHpAq Ñ CHpA0q

in the category Algfact
E1

pXq of factorization E1 algebras. In these terms, we have the following

additional structure relating the factorization ES1

2 algebra and the corresponding factorization BDu0
algebra, which has a geometric interpretation in physics as the equivariant cigar reduction principle,
pictured in Figure 1:

CC�
 pAq P Algfact

E1
pXq{Krus

ý

Au P AlgfactpXq{Krus

X � R2
u X � R¥0

X

Algfact

ES1
2

pXq Q A

Algfact
BDu0 pXq Q Au Au P AlgfactpXq{Krus

Figure 1. The equivariant cigar reduction principle
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Proposition 1.3.3. The family of factorization algebras Au P AlgfactpXq{Krus underlying the factor-

ization BDu0 algebra corresponding to A P Algfact

ES1
2

pXq under Theorem 1.3.2, admits a canonical

module structure

Au P CC�
 pAq-ModpAlgfactpXq{Krusq such that Au|tu�0u � A0 P CHpAq-ModpAlgfactpXqq ,

its restriction to the central fibre agrees with the module structure of Equation 1.3.3, where
CC�

 pAq P Algfact
E1

pXq{Krus denotes the negative cyclic chains on A, considered as a family of factor-

ization E1 algebras over Krus � H
S1pptq with central fibre CHpAq P Algfact

E1
pXq .

In Part II of this series of papers [But20b], the preceding proposition provides an explanation
of the relationship between the construction of chiral algebras corresponding to four dimensional
N � 2 superconformal field theories in [BLL�15], which we give a mathematical account of in
terms of equivariant factorization algebras, and the construction of boundary chiral algebras for
(holomorphic-)topological twists of three dimensional N � 4 theories following [CG18], which is the
other central topic of Part II.

1.4. Preview of Part II. In the companion paper and formal sequel [But20b] to the present
work, we develop methods to give geometric constructions of equivariant factorization En algebras
corresponding to holomorphic-topological twists of supersymmetric gauge theories equipped with
an Ω background.

The first main example of interest is the three dimensional A model gauge theory which occurs
as a topological twist of three dimensional N � 4 supersymmetric gauge theory. A factorization
E1 algebra ApG,Nq P Algfact

E1
pCq describing the local observables of the three dimensional A model

gauge theory on C � R with gauge group G and matter representation T_N was introduced in
[BFN18]. Moreover, it is explained in loc. cit. that this construction also gives a filtered quanti-
zation of a graded Poisson algebra, which in good cases describes a quantization of the symplectic
singularity which is dual to T_Y in the sense of symplectic duality [BLPW14], or three dimensional
mirror symmetry [IS96]; the latter was the original motivation for the construction.

The relationship between these results is an example of the equivalence of Theorem 1.3.1:

Theorem 1.4.1. [BFN18] For C � A1, the factorization E1 algebra

ApG,Nq P Algfact
E1

pA1qGa�Gm � AlgES1
3
pVectKq � AlgBDu1 pDpKrusqq ,

admits a canonical Ga �Gm equivariant structure and thus, under the equivalence Theorem 1.3.1,
defines a filtered quantization of a (2-shifted) Poisson algebra to an associative (or E1) algebra.

Concretely, passing to Gm equivariant (with respect to loop rotation) Borel-Moore homology in the
definition of ApG,Nq in [BFN18] gives a quantization of the homology P3 algebra, which they view
as a graded commutative algebra with Poisson bracket of degree �2. We also explain an analogous
construction of the three dimensional B model in [But20b], which gives a filtered quantization of
T_Y itself by this mechanism.

The next main topic is the factorization algebra DchpY q P AlgfactpCq on C of chiral differential
operators on Y � N{G, and its relationship to the three dimensional A model above, culminating in
a proof in this language of the prediction of Costello-Gaiotto from [CG18] that the three dimensional
A model admits a boundary condition with local observables described by DchpY q.

Remark 1.4.2. For Y a scheme the construction of DchpY q requires a trivialization of the determi-
nant gerbe [KV06], which for Y � N{G we identify with a lift of the GO action on DchpNq to an
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action of ĝ at level �Tate. Physically, this corresponds to the requirement that the corresponding
four dimensional N � 2 theory is superconformal.

Our formulation of the prediction of interest from [CG18] is, under the hypotheses of the preceding
remark, the following:

Theorem 1.4.3. [But20b] The chiral differential operators on Y � N{G admits a canonical module
structure

DchpY q P ApG,Nq-ModpAlgfactpCqq

over the factorization E1 algebra ApG,Nq P Algfact
E1

pCq on C constructed in [BFN18].

DchpY q P AlgfactpCq
ý

ApG,Nq P Algfact
E1

pCq

C � R¥0

This result corresponds to the statement that the three
dimensional A model to Y admits a chiral boundary con-
dition, so that the algebra of local observables ApG,Nq
of the three dimensional theory on C � R¥0 acts on the
chiral algebra DchpY q of boundary observables on C, as
pictured on the right.

We also construct a family of factorization E1 alge-
bras CpY q~ P Algfact

E1
pXq{Kr~s over Kr~s, with generic fibre

CpY q~|t~�1u � ApG,Nq the factorization E1 algebra of the
three dimensional A model, and central fibre that of the
holomorphic-B twist. Moreover, we show that the module structure on DchpY q over ApG,Nq given
above extends to one over CpY q~,

(1.4.1) DchpY q~ P CpY q~-ModpAlgfactpCq{Kr~sq ,

where DchpY q~ P AlgfactpCq{Kr~s is the filtered quantization of chiral differential operators to Y .
Further, we use the theory of equivariant factorization algebras developed in the present work

to give a mathematical account of the construction of chiral algebras corresponding to 4d N � 2
superconformal gauge theories introduced in [BLL�15]. For Y satisfying the hypotheses of Remark
1.4.2, we have:

Theorem 1.4.4. [But20b] There is a natural factorization ES1

2 algebra FpY q P Algfact

ES1
2

pCq such that

FpY q ÞÑ DchpY qu under the equivalence Algfact

ES1
2

pCq � Algfact
BDu0 pCq

of Theorem 1.3.2, where DchpY qu P Algfact
BDu0 pXq is the (two-periodic) filtered quantization of the

factorization algebra of chiral differential operators to Y .

Further, we explain the relation of this construction with our formulation of the predictions of
[CG18], via the equivariant cigar reduction principle described in Proposition 1.3.3. Let CpY qu P

Algfact
E1

pCq{Krus denote the two-periodic variant of the family of factorization E1 described above:

Theorem 1.4.5. [But20b] There is an equivalence of families of factorization E1 algebras on X

CC�
 pFpY qq

�
ÝÑ CpY qu P Algfact

E1
pCq{Krus ,

such that under the equivalence of Theorem 1.3.2, the module structure of the preceding proposition

FpY qu P CC�
 pFpY qq-ModpAlgfactpCq{Krusq identifies with DchpY qu P CpY qu-ModpAlgfactpCq{Krusq ,

equipped with the module structure recalled in Equation 1.4.1 above.
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The preceding theorem identifies the equivariant S1 reduction CC�
 pFpY qq of the holomorphic-B

twist of four dimensional N � 2 gauge theory with the deformation CpY qu from the holomorphic-
B twist to the A twist of three dimensional N � 4 gauge theory. It also identifies the family of
boundary conditions for the former induced by the ‘cigar tip’ as in Proposition 1.3.3, with the family
of boundary conditions for the latter whose local observables are the filtered quantization of the
factorization algebra of chiral differential operators, as in Equation 1.4.1.

1.5. Preview of future directions. The other main intended application of the results devel-
oped in the present work is to establish a variant of the AGT conjecture in the factorization set-
ting, and construct an approximation to the conjectural vertex algebras VOArM4s introduced in

[GGP16, DGP18, FG20] via factorization homology. Analogous to the ES1

2 enhancement of the
chiral differential operators claimed in Theorem 1.4.4 above, we expect the following:

Proposal 1.5.1. There is a canonical ES
1�S1

4 enhancement of the principal affine W-algebra

W̃pglrq P AlgfactpC � A2qG
2
a�G2

m � Algfact

ES1�S1

4

pCq

as a factorization algebra on any smooth algebraic curve C.

The structures on Gm equivariant factorization algebras outlined above and established in the
present work are thus expected for Wpglrq in two distinct, compatible ways; Figure 2 is the analogue
of Figure 1 in this setting.

In fact, we expect that Wpglrq P Algfact
Efr

4
pXq is framed, and assuming this we can make the

following definitions:

Definition 1.5.2. Let M4 and N3 be oriented manifolds of dimensions 4 and 3. We define

WpM4, glrq �

»
M4

W̃pglrq P AlgfactpCq and ApN3, glrq �

»
N3

W̃pglrq P Algfact
E1

pCq .

By the tensor excision theorem for factorization homology proved in [Lur09a, AF15], these factor-
ization algebras would necessarily satisfy the following ‘gluing construction’:

C � R2
ε � R2

δ C � R�2
¥0

C � R¥0

C � R¥0

C

Figure 2. The S1 � S1 equivariant E4 enhancement of Wpglrq
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Corollary 1.5.3. For M4 � M�
4 YM�

4 a collar-gluing presentation with M�
4 XM�

4 � N3 � R we
have

WpM�
4 , glrq,WpM�

4 , glrq P ApN3, glrq-ModpAlgfactpCqq

and moreover there is a canonical equivalence

(1.5.1) WpM�
4 , glrq b

ApN3,glrq
WpM�

4 , glrq
�
ÝÑWpM4, glrq .

Remark 1.5.4. The vertex algebras WpM4, glrq are an approximation to the conjectural algebras
VOArM4s proposed in [GGP16, DGP18, FG20], which are meant to encode rich information about
the differential topology of M4 (or the enumerative geometry of sheaves on S, in the case that M4

is given by a smooth algebraic surface S). In general, we expect there is a map

WpM4, glrq Ñ VOArM4, glrs ,

but the latter is typically much larger: in the setting of the preceding corollary, an analogous
gluing construction has been conjectured for VOArM4s, but with the tensor product replaced by
a ‘vertex algebra extension’, of which the tensor product formula of Equation 1.5.1 gives only the
first summand. On M4 � R4 both constructions give the principal affine W algebra, but its more
exotic gluing construction makes VOArM4s a much more interesting invariant in general.

From the perspective of the more common constructions of W algebras associated to algebraic
surfaces in terms of enumerative geometry, this discrepancy corresponds to the fact that the algebra
of modes WpM, glrq

as is built from Hecke modifications on the moduli of instantons (or torsion free
sheaves in the case of an algebraic surface S) supported at points, while the conjectural VOArM4s
should also encode modifications along two dimensional submanifolds (or algebraic curve classes).

For S a smooth, toric algebraic surface, the equivariant localization formula for factorization
homology given in Theorem 1.3.1 applied to calculate WpS, glrq gives the following:

Corollary 1.5.5. The natural map defines an equivalence

(1.5.2)
â
sPSG

Wpglrqεs,δs
�
ÝÑWpS, glrqε,δ as modules over Krε, δsrf�1

k s.

This is illustrated in Figure 3 below in the case that S � P2 with the usual pC�q2 action.

WpP2, glrqε,δ

Wpglrqε,δ

Wpglrq�δ,ε�δ

Wpglrqδ�ε,�ε

Figure 3. Equivariant localization formula for WpP2, glrq
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Moreover, toric surfaces S are equivariantly formal [GKM97], and for such spaces there is a
refinement of the classical localization theorem [CS74, GKM97]. The goal of our in progress project
is to use an analogous enhancement in factorization homology to calculate WpS, glrq, refining the
description of Equation 1.5.2 above. In fact, we also have a proposal for a similar construction (and
partial generalization) of the full VOArM4s in the case that M4 � S is a smooth toric algebraic
surface occuring as a reduced divisor in a toric Calabi-Yau threefold, though this is the topic of a
separate project.

1.6. Acknowledgments. I am especially thankful to Kevin Costello, for first introducing me to
so many of the ideas underlying this series of papers, as well as to Sam Raskin, for patient expla-
nations about various more technical aspects. I would also like to thank David Ben-Zvi, Alexander
Braverman, Davide Gaiotto, Justin Hilburn, Surya Raghavendran, Pavel Safronov, Brian Williams,
and Philsang Yoo for useful discussions.

2. Conventions

2.1. General conventions and notation. The required notations are introduced, together with
the relevant definitions, in the many appendices to the present work. In this subsection, we briefly
recall some of the most commonly used notation.

We fix a base field K of characteristic zero, which we occasionally assume to be given by the
complex numbers K � C. We typically use X to denote a smooth algebraic variety over K of
dimension dX . In such cases, we let OX denote the sheaf of regular functions, DX the sheaf of

differential operators, and ωX � ΩdX
X rdXs the dualizing sheaf of X

Moreover, we let DpXq denote the category of D modules on X; the theory of such is reviewed
in Appendix A.2. In particular, given a map f : X Ñ Y of algebraic varieties, there are induced
functors, denoted by

f� : DpXq Ñ DpY q and f ! : DpY q Ñ DpXq ,

given by the pullback and pushforward of D modules.
We let DpAq denote the derived category of modules over an algebra A, and similarly DbpAq,

D�pAq, and DfgpAq its bounded, bounded above, and finitely generated variants.
We let OppCq denote the category of (by default symmetric) operads internal to a symmetric

monoidal category C; the theory of such is reviewed in Appendix C.1. For O,O1 P OppCq, we let
AlgOpO

1q � HomOppCqpO,O
1q denote the category of O algebras internal to the operad O1. We let

Ass, Comm, Lie, and P1 denote the associative, commutative, Lie, and Poisson operads. Further,
we let En denote the little n-disks operad, Pn the corresponding shifted Poisson operad, and BDn
the Beilinson-Drinfeld operad, as recalled in appendices C.4, C.5, and C.6, respectively.

Throughout, whenever possible we work in the framework of cocomplete DG categories and stable
infinity categories, following [Lur12] for example.

Warning 2.1.1. We often fall short of a complete explanation at the level of homotopical precision
typical in the study of such categories. This series of papers is ultimately about concrete objects,
like vector spaces or sheaves, and the algebraic structures they carry, and we carefully establish
our results along these lines. However, for the purposes of exposition we occasionally use more
categorical language in situations where we have not established a precise enough setting for their
careful interpretation. We hope that this will not be a cause of confusion for the reader, and we
have included many similar warnings throughout the text.
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2.2. Notation around partitions and diagonal embeddings. We record here various notations
related to certain index categories of finite sets, which are used throughout the text.

Let fSet denote the category of (possibly empty) finite sets with arbitrary maps of sets π : I Ñ J ,
and fSetsurj denote the category of non-empty finite sets with surjective maps π : I � J .

Remark 2.2.1. The category fSetsurj parameterizes a diagram whose colimit defines the moduli
space of non-empty finite subsets RanX of a space X, while the category fSet is used analogously
to describe the moduli space of possibly empty finite subsets RanX,un of a space X; see definitions
4.1.2 and 4.3.1.

These conventions are also be used in a closely related way in the definition of operads, recalled
in Appendix C.1; the relation is for example apparent in the results of Section 20.

We identify a surjective map π : I � J , a morphism in fSetsurj, with a J-coloured partition of I,
given by

I �
§
jPJ

Ij where Ij :� π�1pjq .

A general map π : I Ñ J , a morphism in fSet, is similarly equivalent to a J-coloured partition of
I, given by

I �
§
jPJ

Ij �
§

jPimpπq

Ij \
§
jPIπ

Øj where Ij :� π�1pjq and Iπ � Jzimpπq .

Here the subsets of I corresponding to certain colours j P J are allowed to be empty, while still
recorded in this combinatorial model. We also encode this data equivalently by the induced surjec-
tion

απ :� π � 1Iπ : I \ Iπ � impπq \ Iπ � J .

For each π : I Ñ J , we define a corresponding diagonal map

∆pπq : XJ Ñ XI pxjqjPJ ÞÑ pxπpiqqiPI .

If π : I � J is a surjection, then ∆pπq : XJ ãÑ XI is a closed embedding, while if π : I ãÑ J is
injective, ∆pπq : XJ � XI is smooth over XI . In general, ∆pπq is smooth over its image with fibre

XIπ . In the case π : I Ñ tptu, we use the notation ∆pIq � ∆pπq : X Ñ XI for the small diagonal
embedding.

For each surjection π : I � J we define a corresponding diagonal complement

jpπq : Upπq ãÑ XI Upπq � tpxiqiPI |xi � xj if πpxiq � πpxjqu .

For example, for π : I Ñ tptu this gives Upπq � XI , while for π � 1I : I � I this gives Upπq equal
to the complement of all partial diagonals in XI . Note that Upπq is not in general complementary
to the image of ∆pπq.

In the case π � 1I : I Ñ I, we use the notation U pIq � Up1Iq and jpIq � jp1Iq : U pIq ãÑ XI for
the complement to the union of all partial diagonals in XI .

2.3. References to the companion paper. As we have mentioned, this paper is the first among
at least two papers in this series, and we will systematically refer to propositions, definitions, etc.
from each of the companion papers in the other. In this paper, references to the present text are
given by red hyperlinks, such as 4.2.3 which refers to the remark of that enumeration. References
to Part II are given by turquoise hyperlinks (which link to the companion pdf if both files are in
the same folder) and their enumeration is prefaced by a II, such as II-4.2.3.
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Chapter 1

Factorization Algebras, Chiral Algebras, and
Vertex Algebras

3. Overview of Chapter 1

In this chapter, we review the theory of factorization algebras in the setting of algebraic geometry,
following [BD04, FG11, Ras15a], and explain the relationship of these objects to vertex algebras.
We also give an exposition of a few more specialized topics in the theory of chiral factorization
algebras which will be required in this series of papers. None of this material is original, but we
hope that the relatively concrete summary given here will help make the subject more accessible
for the reader.

3.1. General Overview: Local observables, the Ran space, and factorization algebras.
Recall from Section 1.1 that factorization algebras are algebraic objects defined over algebraic
varieties or manifolds, vaguely analogously to sheaves on them, which describe the algebras of ob-
servables of quantum field theories defined on these spaces. Factorization algebras can be defined in
the language of algebraic geometry or topology, and the resulting objects generalize vertex algebras
and usual (associative) algebras, respectively. Indeed, these can be interpreted as the algebras of
observables of chiral conformal field theories in real dimension two, or topological field theories in
real dimension one, respectively.

Higher dimensional factorization algebras on algebraic varieties describe the local observables of
holomorphic field theories, which by definition generalize the holomorphic behaviour of observables
in chiral conformal field theories in two real dimensions. Similarly, higher dimensional topological
factorization algebras generalize algebras over the little n-disks operad En, which are reviewed in
Appendix C.4. The results of this paper emphasize applications using factorization algebras in
the setting of algebraic geometry, which we will sometimes call the chiral setting. We now give a
heuristic overview of the definition of factorization algebras in the context of algebraic geometry:

The starting point for the definition of factorization algebras on an algebraic variety X is a space
RanX called the Ran space of X, which is by definition the moduli space of non-empty, finite subsets
txiu � X, which we record heuristically as

RanX � t txiu � X u .

A factorization algebra is meant to describe the algebra of local operators of a quantum field
theory, and this data can naturally be interpreted as defining a sheaf over the space RanX : to each
point x � txiu P RanX corresponding to a finite subset txiu � X, assign the vector space

Atxiu :� t observables local to the collection of points txiu u .

In particular, on the copy of X ãÑ RanX corresponding the singleton subsets txu � X, the vector
spaces Ax :� Atxu are just the usual family of vector spaces describing the spaces of local operators
over each point x P X, which defines the vector space underlying the corresponding vertex algebra
in the case that X is of complex dimension one.

The fact that these vector spaces glue together to define a sheaf over RanX encodes the condition
that given two distict points x0, x1 P X, as x1 approaches x0 there should be a gluing map

Atx0,x1u ù Ax0 .
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As we will see, the correct data to prescribe this sheaf over RanX is not a map of the underlying
vector spaces, but rather a meromorphic family of products with poles concentrated along the
diagonal x0 � x1, as expected from operator product expansions in two dimensional chiral conformal
field theories.

There is one more natural condition to impose on this sheaf A on RanX , called factorizability,
which corresponds to the notion of locality in quantum field theory: for distinct points x0 � x1

away from the diagonal, the space of observables local to the set tx0, x1u should be equivalent to
the tensor product

Atx0,x1u � Ax0 bAx1 ,

of the space of observables local to x0 with the space of observables local to x1. In the limit as x1

approaches x0, we can combine this identification with the gluing map above to obtain a map

Yx0 : Ax0 bAx0 ù Ax0

which describes the operator product expansion of observables in an infinitesimal neighbourhood
of each point x0 P X. In the case that X is of complex dimension one, this will recover the usual
vertex operator structure map of a vertex algebra.

The first several sections of this Chapter are devoted to filling in the mathematical content of this
heuristic description, carefully identifying the resulting algebraic structures, and comparing them
with the more concrete structures in the theory of vertex algebras. The latter sections treat more
specialized topics which will be required in the present work and its sequel Part II [But20b].

3.2. Summary. We now give a summary of each of the sections in this chapter. None of the results
of this chapter are new: we follow [BD04] and [FG11] throughout.

3.2.1. The Ran space and the category DpRanXq. In Section 4, we give a more mathematically
detailed description of the space RanX , and define the category of D modules DpRanXq on RanX ,
which is the appropriate variant of sheaf on RanX to define factorization algebras corresponding to
usual holomorphic field theory.

3.2.2. Monoidal structures on DpRanXq. In Section 5, we recall several monoidal structures on the
category of D modules on RanX and their basic properties.

3.2.3. Factorization algebras. In Section 6, we recall the definition of factorization algebras in terms
of the monoidal structures of the preceding section.

3.2.4. Chiral algebras. In Section 7, we recall the definition of chiral algebras in terms of the
monoidal structures of Section 5. These are equivalent to factorization algebras, as we recall in
Section 14 below.

3.2.5. Chiral algebras and vertex algebras. In Section 8 we recall the equivalence between weakly
Ga equivariant chiral algebras on A1 and vertex algebras.

3.2.6. OPE algebras. In Section 9 we recall the notion of OPE algebras, which gives the most direct
generalization of the operator product expansion map of vertex algebras to a global operation
defined over algebraic curves. Further, we recall that these are equivalent to chiral algebras.

3.2.7. Chiral algebras and topological associative algebras. In Section 11, we recall the ‘algebra of
modes’ construction, which from a chiral algebra A defines a topological associative algebra Aas

x at
each point x P X.
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3.2.8. Lie�, Comm!, and Coisson algebras. In Section 10 we recall the analogues of Lie algebras,
commutative algebras, and Poisson algebras in the chiral setting, under the analogy that chiral
algebras correspond to usual associative algebras. Further, in the weakly Ga equivariant case on
A1, we identify these with vertex Lie algebras, commuative vertex algebras, and vertex Poisson
algebras, respectively.

3.2.9. Chiral enveloping algebras. In Section 12, we recall the analogue of the universal enveloping
algebra construction in the chiral setting, which for a Lie� algebra L constructs a chiral algebra
UchpLq which satisfies the analogous universal property. We also explain the translation of this
construction to the vertex algebra setting. We also recall a variant of the construction that is
twisted by an appropriate notion of central extension of the Lie� algebra L, and its analogue in
the vertex algebra setting. This allows us to recover many familiar examples such as the affine
Kac-Moody and Virasoro vertex algebras.

3.2.10. BRST reduction of chiral algebras and vertex algebras. In Section 13, we outlined the theory
of BRST reduction of chiral algebras following [BD04], and relate it to the notion of BRST reduction
of vertex algebras described in [FBZ04].

3.2.11. Francis-Gaitsgory chiral Koszul duality. In Section 14, we give a concrete explanation of
the equivalence of chiral algebras and factorization algebras in complex dimension one, and outline
the general proof of this fact given in [FG11].

4. The Ran space and the category DpRanXq

Let X P SchK be a scheme over K; we will primarily be interested in the case when X is a smooth,
finite type variety over K � C.

4.1. The Ran space. Following the heuristic descriptions in Subsection 3.1, we wish to define
the moduli space of non-empty finite subsets of X, called the Ran space RanX of X. The basic
idea for constructing RanX is that it should be glued together from various powers XI of X as
follows: it should contain a copy of X corresponding to the space of one point subsets of X, glued
diagonally into a copy of Sym2X corresponding to the space of two point subsets, which is further
glued diagonally into a quotient of Sym3X (which identifies e.g. px, x, yq with px, y, yq, as both are
representatives of tx, yu � X) corresponding to the space of three point subsets, and so on. We
summarize this gluing procedure in the putative definition

(4.1.1) RanX � colim

�
��� X

∆ // X2

S2




////// X3


 



S3


 ////////// . . .

�
��� .

We now formalize this construction:
Recall from 2.2 that fSetsurj denotes the category with objects given by non-empty finite sets I

and morphisms given by surjections π : I � J . There is a natural fSetsurj,op diagram in Schft, given
by

(4.1.2) X : fSetsurj,op Ñ Sch by

#
I ÞÑ XI

rπ : I � Js ÞÑ r∆pπq : XJ ãÑ XIs
,

where ∆pπq : XJ Ñ XI is the corresponding diagonal embedding, defined in 2.2.
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Remark 4.1.1. The bijections in fSetsurj,op induce an Sn automorphism group at each object I with
|I| � n.

We now state the formal definition of the space RanX . We encourage the reader not familiar with
the technical notions mentioned to ignore them; as we explain in Remark 4.1.4 below, our exposition
in the remainder of the text is formally independent of the actual definition of RanX .

Definition 4.1.2. The Ran space of X is the pseudo indscheme presented by

RanX � colim
IPfSetsurj,op

XI � colim

�
. . .ÐXI ∆pπq

ÐÝÝÝ XJÐ . . .

�
,

the colimit of the diagram in Equation 4.1.2, evaluated after composing with the Yoneda embedding
Sch ãÑ PreStk.

Remark 4.1.3. A pseudo indscheme is a prestack presented as a (not necessarily filtered) colimit of
schemes under closed embeddings. The maps in the diagram of Equation 4.1.2 are evidently closed
embeddings, but the index category fSetsurj,op is not filtered, so RanX does not define an ind scheme
in the usual sense.

Remark 4.1.4. The category DpRanXq will be defined in 4.2.1 below, without explicit reference
to the preceeding definition of RanX ; see remarks 4.2.2 and 4.2.4. In general, the foundational
definitions and results in this paper will be stated in terms of the category DpRanXq, in a way that
is similarly formally independent of the definition of the underlying space RanX .

Remark 4.1.5. There exist canonical maps ∆I : XI Ñ RanX with images RanX,¤n for |I| � n that
define a filtration of RanX by finite dimensional subschemes, and corresponding stratification of
RanX by subschemes RanX,n parameterizing subsets of X of cardinality n.

4.2. The category DpRanXq of D modules on RanX . Following further the discussion in 3.1,
our initial object of interest is the category of D modules on the Ran space RanX of X. In terms of
the heuristic summarized in Equation 4.1.1, a D module A P DpRanXq on RanX should be specified
by:

 a D module A P DpXq on X;
 a D module A2 P DpX

2q on X2, an S2 equivariant structure on A2, and an isomorphism
∆!A2 � A;

 a D module A3 P DpX3q on X3, an S3 equivariant structure on A3, and isomorphisms
∆pπq!A3 � A2 for each ∆pπq : X2 ãÑ X3 corresponding to π : t1, 2, 3u � t1, 2u;

and so on. Thus, following [BD04] and [FG11], we make the following definition:

Definition 4.2.1. An object A P DpRanXq is an assignment

I ÞÑ AI P DpX
Iq rπ : I � Js ÞÑ r∆pπq!AI

�
ÝÑ AJ s

defined for each finite set I P fSet and surjection π : I � J .
A morphism f : AÑ B between A,B P DpRanXq is given by an assignment

I ÞÑ rfI : AI Ñ BIs rπ : I � Js ÞÑ

∆pπq!AI //

∆pπq!pfIq
��

AJ

�

w�
fJ

��
∆pπq!BI // BJ

defined for each finite set I P fSet and surjection π : I � J .
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An object A P DpRanXq is called coherent, regular holonomic, ... if AI P DpX
Iq is such for each

I P fSet.

Remark 4.2.2. The preceding definition is evidently independent of the definition of RanX in 4.1.2,
in keeping with Remark 4.1.4.

Remark 4.2.3. The preceding definition of the category of D modules on RanX can be formalized

DpRanXq � lim
IPfSetsurj

D!pXIq � lim

�
. . .Ñ DpXIq

∆pπq!
ÝÝÝÑ DpXJq Ñ . . .

�
,

where D! : Schop Ñ DGCatcont is as defined in Appendix II-B.6.

Remark 4.2.4. In [Gai12] and [Ras15a], the pseudo indscheme RanX is defined as above, and the
definition of its D module category is given in terms of a general definition of the category of D
modules on such spaces. A proof of the equivalence of this approach with the above is given in
Section 8 of [Ras15a], for example.

Remark 4.2.5. There are canonical functors

∆I,! : DpRanXq Ñ DpXIq and ∆I
� : DpXIq Ñ DpRanXq ,

which correspond heuristically to pullback and pushforward along the diagonal embedding ∆I :
XI ãÑ RanX , as the notation suggests.

Remark 4.2.6. The functors of 4.2.5 for |I| � 1 are denoted ∆main :� ∆I . In this case, the
functors ∆main

� ,∆main,! define inverse equivalences DpXq � DpRanXqX , by Kashiwara’s lemma,
where DpRanXqX denotes the full subcategory on D modules supported on the main diagonal.

Example 4.2.7. There is a canonical object ωRanX P DpRanXq defined by the assignment

I ÞÑ
�
ωXI P DpXIq

�
rπ : I � Js ÞÑ

�
∆pπq!ωXI

�
ÝÑ ωXJ

�
.

4.3. Unital D modules on RanX . We introduce a ‘unital’ variant of the above notion of D
module on RanX . The additional data of the unital structure will be used to define the notion
of unital factorization algebra, and this data will correspond to the the unit of a vertex algebra
under the equivalence of Section 8, and similarly the unital structure on the En operad under the
equivalence of Section 20.

Definition 4.3.1. An object A P DpRanX,unq is an assignment

I ÞÑ AI P DpX
Iq rπ : I Ñ Js ÞÑ r∆pπq!AI Ñ AJ s

defined for each (possibly empty) finite set I P fSet and map π : I Ñ J , such that the maps
corresponding to surjections π : I � J are isomorphisms.

A morphism f : AÑ B between A,B P DpRanXq is given by an assignment

I ÞÑ rfI : AI Ñ BIs rπ : I Ñ Js ÞÑ

∆pπq!AI //

∆pπq!pfIq
��

AJ

�

w�
fJ

��
∆pπq!BI // BJ

defined for each I P fSet and π : I Ñ J .
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Remark 4.3.2. For a non surjective map π : I Ñ J , the factorization

I
π̄
ÝÑ impπq ãÑ J induces an identification ∆pπq!AI � ∆pπ̄q!AI b ωXIπ .

In particular, for π : I ãÑ J injective, or further in particular for π : Ø Ñ J , the assignment of the
preceding definition is required to give maps

(4.3.1) AI b ωXIπ Ñ AJ and ωXJ Ñ AJ ,

respectively.

Remark 4.3.3. The structure maps which are not necessarily invertible are evidently not inter-
pretable as gluing data for a sheaf on a usual space. However, we will describe an analogous
geometric interpretation of DpRanX,unq as the category of D modules on a lax prestack RanX,un in
Section II-2.2, following [Ras15a].

Remark 4.3.4. There is evidently a natural forgetful functor DpRanX,unq Ñ DpRanXq defined by

restricting the above assignments along the inclusion fSetsurj
ãÑ fSet.

Example 4.3.5. There is a canonical object ωRanX,un
P DpRanX,unq defined by the assignment

I ÞÑ
�
ωXI P DpXIq

�
rπ : I Ñ Js ÞÑ

�
∆pπq!ωXI

�
ÝÑ ωXJ

�
.

5. Monoidal structures on DpRanXq and operad structures on DpXq

5.1. The b! monoidal structure. The b! monoidal structure on DpRanXq is in principle just the
symmetric monoidal structure defined on DpY q for any scheme Y as Definition A.2.6; in keeping
with Remark 4.1.4, we make the following formal definition:

Definition 5.1.1. The b! monoidal structure on DpRanXq is defined by

b! :DpRanXq
�2 Ñ DpRanXq pA,Bq ÞÑ pAb! BqI � AI b

! BI P DpXIq ,

b!
jPJ : DpRanXq

J Ñ DpRanXq pAjq ÞÑ pb!
jPJA

jqI � b!
jPJA

j
I P DpXIq .

together with the coherence isomorphisms given by the analogous product of those for A and B.

Proposition 5.1.2. The functors ∆I
� : DpXIq Ñ DpRanXq and ∆I,! : DpRanXq Ñ DpXIq of 4.2.5

are symmetric monoidal with respect to the b! monoidal structure on each category.

Corollary 5.1.3. The functors ∆main
� : DpXq Ñ DpRanXq and ∆main,! : DpRanXq Ñ DpXq define a

natural symmetric monoidal equivalence DpXq! � DpRanXq
!
X .

5.2. The b� monoidal structure. The space RanX is naturally a commutative monoid object
under the operation Y : Ran�2

X Ñ RanX of union of finite subsets; this structure is discussed more
formally in Section II-2.3, but only motivational in this section. The union map equips DpRanXq
with an additional monoidal structure, as follows:

The b� monoidal structure on DpRanXq is defined geometrically by push forward along the union
map of the exterior product

Y� �b : DpRanXq
�2 Ñ DpRanXq ,

and similarly for higher arity monoidal products. The union map is presented as the colimit of
maps RanX,¤n1 � RanX,¤n2 Ñ RanX,¤n1�n2 on bounded cardinality subsets, induced by the maps

XI �XJ Ñ XI\J . In keeping with Remark 4.1.4, we make the following formal definition:
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Definition 5.2.1. The monoidal structure b� : DpRanXq
�2 Ñ DpRanXq and its higher arity com-

ponents b� : DpRanXq
J Ñ DpRanXq are presented by the functors

DpXI1q �DpXI2q Ñ DpXI1\I2q pMI ,MJq ÞÑMI bMJ ,

�jPJDpX
Ij q Ñ DpXIq pMIj q ÞÑ bjPJMIj .

It is difficult to write an explicit expression for the above monoidal product in general. However,
we have the following results from [FG11] and [GL19]:

Proposition 5.2.2. For each A,B,Aj P DpRanXq, there are canonical mapsà
π:I � t1,2u

AI1bBI2 Ñ pAb� BqI and
à

π:I � J

bjPJA
j
Ij
Ñ pb�

jPJA
jqI .

Proposition 5.2.3. Let A,B P DpRanXq. Then there is a canonical equivalence

jpIq�pAb� BqI � jpIq�

� à
I�I0YI1

∆!
I0,I1pAI0bBI1q

�
,

where jpIq : U pIq Ñ XI is the complement of the union of all partial diagonals, and ∆I0,I1 : XI ãÑ XI0 �XI1

is the diagonal embedding corresponding to the union map I0 \ I1 � I0 Y I1 � I. The analogous
statement also holds for higher arity tensor products.

Remark 5.2.4. The essential image DpRanXqX of the inclusion ∆� : DpXq Ñ DpRanXq is evidently
not closed under b�, so that b� does not restrict to a monoidal structure on DpXq. However, it
restricts to define an operad (or ‘pseudo tensor’, in the language of [BD04]) structure on DpXq, as
in Example C.1.11.

Definition 5.2.5. The b� operad structure on DpXq is defined by the inclusion DpXq ãÑ DpRanXq
�,

as in Example C.1.11.

Corollary 5.2.6. The functors ∆main
� : DpXq Ñ DpRanXq and ∆main,! : DpRanXq Ñ DpXq of

Remark 4.2.5 define an equivalence of operads between DpRanXq
�
X and DpXq�.

Example 5.2.7. The multilinear operations in DpXq� are given by

HomDpXq�ptMiu, Lq � HomDpXIqpbiPIMi,∆
I
�Lq .

For b P HomDpXq�ptL,Lu, Lq, the composition b � pbb 1q P HomDpXq�ptL,L,Lu, Lq is defined by

LbLbL
bb1
ÝÝÑ ∆�LbL � ∆12,3

� pLbLq
∆12,3
� pbq

ÝÝÝÝÝÑ ∆12,3
X ∆

p2q
� L � ∆

p3q
� L ,

where ∆12,3 : X2 Ñ X3 is defined by px, yq ÞÑ px, x, yq.

5.3. The bch tensor structure. The space RanX has an additional monoid structure in the
correspondence category, corresponding to the operation of disjoint union of finite subsets

Ran�2
X

jdisj
ÐÝÝ pRan�2

X qdisj
\
ÝÑ RanX ;

again, this structure is discussed more formally in Section II-2.3, but only motivational in this
section. The disjoint union correspondence equips DpRanXq with an another additional tensor
structure.

The bch tensor structure is defined geometrically as the exterior product, pulled back along jdisj,

and pushed forward along \, so that we define \��j
!
disj�b : DpRanXq

�2 Ñ DpRanXq, and similarly
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for higher arity tensor products. This composition can again be presented as the colimit of maps
of the finite cardinality subspaces, induced by maps on powers of X. Thus, as in the discussion
preceeding Definition 5.2.1 and in keeping with Remark 4.1.4, we make the following definition:

Definition 5.3.1. The tensor structure bch : DpRanXq
�2 Ñ DpRanXq and its higher arity compo-

nents bch : DpRanXq
J Ñ DpRanXq are presented by the functors

DpXI1q �DpXI2q Ñ DpXI1\I2q pMI ,MJq ÞÑ j�j
!pMI bMJq ,

�jPJDpX
Ij q Ñ DpXIq pMIj q ÞÑ jpπq�jpπq

!pbjPJMIj q ,

where j : U ãÑ X2 is the compliment of the diagonal, and jpπq : Upπq ãÑ XI is the partial diagonal
complement determined by π : I � J as defined in Section 2.2.

Remark 5.3.2. The functors j! � j� are canonically equivalent, and always defined for open em-
beddings. We use the notation j� throughout for the various open embeddings in this setting, in
keeping with the notation of [BD04] and [FG11].

Proposition 5.3.3. For each A,B,Aj P DpRanXq, there are canonical equivalences

pAbchBqI �
à

π:I � t1,2u

jpπq�jpπq
�pAI1bBI2q and pbch

jPJA
jqI �

à
π:I � J

jpπq�jpπq
�pbjPJA

j
Ij
q .

Remark 5.3.4. Note that any n-fold tensor product vanishes when restricted to XI for |I|   n.

Proposition 5.3.5. For each A,B,Aj P DpRanXq there are natural maps

Ab� BÑ Abch B and b�
jPJ Aj Ñ bch

jPJA
j ,

so that the identity defines an oplax symmetric monoidal functor DpRanXq
� Ñ DpRanXq

ch.

Remark 5.3.6. As for b�, the essential image DpRanXqX of the inclusion ∆� : DpXq Ñ DpRanXq
is evidently not closed under bch, so that bch does not restrict to a monoidal structure on DpXq,
but still defines an operad structure on DpXq, as in Example C.1.11.

Definition 5.3.7. Thebch operad structure onDpXq is defined by the inclusionDpXq ãÑ DpRanXq
ch,

as in Example C.1.11.

Corollary 5.3.8. The functors ∆main
� : DpXq Ñ DpRanXq and ∆main,! : DpRanXq Ñ DpXq of 4.2.5

define an equivalence of operads between DpRanXq
ch
X and DpXqch.

Example 5.3.9. The multilinear operations in DpXqch are given by

HomDpXqchptMiu, Lq � HomDpXIqpj
pIq
� jpIq,�pbiPIMiq,∆

pIq
� Lq ,

where jpIq : U pIq ãÑ XI is the compliment of the union of all partial diagonals, as defined in 2.2.
For µ P HomDpXqchptL,Lu, Lq, the composition µ � pµb 1q P HomDpXqchptA,A,Au, Aq is defined

by

j
p3q
� pjp3qq�pAbAbAq � j12,3

� j12,3�pj�j
�pAbAqbAq

j12,3
� j12,3�pµb1q
ÝÝÝÝÝÝÝÝÝÝÑ j12,3

� j12,3�p∆�pAqbAq

� ∆12,3
� pj�j

�pAbAqq
∆12,3
� pµq

ÝÝÝÝÝÑ ∆12,3
� ∆

p2q
� A � ∆

p3q
� A

where ∆12,3 : X2 Ñ X3 is defined by px, yq ÞÑ px, x, yq, U12,3 � tpx, y, zq|x, y � zu and j12,3 :
U12,3 ãÑ X3.
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Remark 5.3.10. There is a natural map of operads DpXq� Ñ DpXqch which is the identity on
objects and arity 1 morphisms, and defined on higher arity morphisms by the maps

HomDpXIqpbiPIMi,∆
pIq
� Lq Ñ HomDpXIqpj

pIq
� jpIq,�pbiPIMiq,∆

pIq
� Lq

induced by

biPIMi Ñ j
pIq
� jpIq,�pbiPIMiq ,

where the latter are given by the unit of the pjpIq,�, j
pIq
� q adjunction. These are intertwined with

the maps of Remark 5.3.5 via the equivalences of Corollaries 5.2.6 and 5.3.8.

6. Factorization algebras

Following the discussion in Section 1, a factorization algebra is given by the data of

 A sheaf A P DpRanXq on RanX , and

 an isomorphism jpIq�AI � jpIq�AbI1 for each I P fSet.

Evidently, we should require compatibility of the latter isomorphisms with the gluing maps ∆pπq!AI � AJ ,
but some care is required to carefully state the homotopy coherence data in this heuristic definition.
In this section, we give a formal definition of (non-unital) factorization algebra, following [FG11].

Example 6.0.1. A non-unital cocommutative coalgebra object A P CoCommnupDpRanXq
chq is an

object A P DpRanXq, together with a map AÑ Abch A and a compatible collection of higher arity
analogues. Concretely, the data of the map µ must be specified compatibly over XI for each I: For
|I| � 1 there is no data as pAbch Aqt1u � 0, but for |I| � 2, the required map is

A2 Ñ j�j
�pA1bA1q or equivalently j�A2 Ñ j�pA1bA1q .

More generally, the required maps AÑ bch
jPJA are specified over each stratum by maps

AI Ñ jpπq�jpπq
�pbjPJAIj q or equivalently jpπq�AI Ñ jpπq�pbjPJAIj q

for each I, J and π : I � J .

Note that for π � 1I , these are maps of the type required in the heuristic definition of factorization
algebra above, except that they are not necessarily equivalences. Thus, we make the following
definition:

Definition 6.0.2. A non-unital factorization algebra on X is a non-unital cocommutative coalgebra
object A P DpRanXq

ch such that the induced maps

(6.0.1) jpπq�AI
�
ÝÑ jpπq�pbjPJAIj q

are equivalences for each I, J and π : I � J .
A unital factorization algebra on X is an object A P DpRanX,unq with a non-unital factorization

algebra structure on its image in DpRanXq, and compatibility data with the unital structure on A;
see Remark 6.0.3.

Let AlgfactpXq denote the category of non unital factorization algebras, defined as the full subcate-

gory of CoCommnupDpRanXq
chq. Similarly, let Algfact

un pXq denote the category of unital factorization
algebras.



EQUIVARIANT LOCALIZATION IN FACTORIZATION HOMOLOGY I 23

Remark 6.0.3. The precise statement of the compatibility data is slightly involved, so we defer the
formal definition of the category of unital factorization algebras to Example II-2.4.4. For now, we
give the following example of the compatibility data: we require commutativity of the diagram

(6.0.2) A1 b ωX

��

// j�j
�pA1 b ωXq

��
A2

// j�j
�pA1 bA1q

and its higher arity analogues, where the vertical arrows are those from Equation 4.3.1.

Example 6.0.4. The dualizing sheaf ωRanX P DpRanXq of Example 4.2.7 defines a non-unital fac-

torization algebra ωRanX P AlgfactpXq, with structure maps

ωXI Ñ jpπq�jpπq
�pbjPJωXIj q

given by the unit of the pj�, j�q adjunction under the identification ωXIbωXJ � ωXI\J .
Similarly, the dualizing sheaf ωRanX,un

P DpRanX,unq of Example 4.3.5 defines a non-unital fac-

torization algebra ωRanX,un
P Algfact

un pXq.

Proposition 6.0.5. The b! monoidal structure on DpRanX,unq induces a symmetric monoidal struc-

ture on Algfact
un pXq, such that ωRanX,un

is the tensor unit.

Proof. We postpone the proof until that of Proposition II-6.0.7, which is the first place it is essen-
tially used. �

Let Algfact
un pXqb! denote the symmetric monoidal category of unital factorization algebras in the b!

monoidal structure.

Definition 6.0.6. A non unital factorization algebra A P AlgfactpXq is called commutative if the
inverse of the equivalence 6.0.1 extends to a map

bjPJAIj Ñ AI

for each I, J and π : I � J . A unital factorization algebra A P Algfact
un pXq is called commutative if

it is commutative as a non unital factorization algebra.

7. Chiral algebras

In this section we define the category of chiral algebras, which is equivalent to the category of
factorization algebras, as we recall in Section 14. A chiral algebra is more closely analogous to
a global analogue of the notion of vertex algebra, and in Section 8 we exhibit an equivalence of
categories between weakly translation invariant, unital chiral algebras on A1 and vertex algebras.
Again, we follow the approach of [FG11], and in turn [BD04], throughout this section.

Example 7.0.1. A Lie algebra object L P DpRanXq
ch is an object L, together with a map µ :

Lbch LÑ L and its higher arity analogues. Concretely, the data of µ must be specified compatibly
over XI for each I. For |I| � 1 there is no data since pLbch Lqt1u � 0, but for |I| � 2 the required
map is

µ : jpπq�jpπq
�pL1bL1q Ñ L2 .

More generally, for each J we require maps µJ : bch
jPJLÑ L which are specified on XI by maps

µpπq : jpπq�jpπq
�pbjPJLIj q Ñ LI
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for each I, J and π : I � J .

Definition 7.0.2. A (non-unital) chiral algebra on X is a Lie algebra object L P LiepDpRanXq
chq

such that underlying object L P DpRanXqX is supported on the image of the main diagonal ∆main :
X Ñ RanX .

A unital chiral algebra on X is an object L P DpRanX,unq with a non unital chiral algebra
structure on its image in DpRanXq, and compatibility data with the unital structure on L; see
Remark 7.0.5.

Let AlgchpXq denote the category of chiral algebras, defined as the full subcategory of LiepDpRanXq
chq.

Similarly, let Algch
unpXq denote the category of unital chiral algebras.

Remark 7.0.3. Concretely, the condition L P DpRanXqX is the requirement that

LI � ∆
pIq
� A for some A P DpXq

for each I P fSet, where ∆pIq : X ãÑ XI is the small diagonal embedding, as defined in Section 2.2.
Evidently, for such objects the data of the chiral Lie algebra structure maps are given by maps

(7.0.1) µpπq : jpπq�jpπq
�pbjPJ∆

pIjq
� Aq Ñ ∆

pIq
� A

for each I, J and π : I � J . This is essentially the same statement as Corollary 7.0.7 below.

Warning 7.0.4. We change notation and write A P AlgchpXq instead of denoting it by the underlying
object L � ∆main

� A P DpRanXqX .

Remark 7.0.5. Again, the precise definition of the unit compatibility data is not given here. In
Example II-2.4.4, we give the formal definition of a unital factorization algebra, and we formally
define a unital structure on a chiral algebra to correspond to that on a factorization algebra under
the equivalence AlgfactpXq � AlgchpXq of Section 14. For now, we give the following example of the
compatibility data: we require commutativity data for the diagram

(7.0.2) j�j
�pAb ωXq //

��

∆�A

j�j
�pAbAq // ∆�A

and its higher arity analogues, where the vertical map is that induced by the unit map of Equation
4.3.1.

Proposition 7.0.6. The forgetful functor Algch
unpXq Ñ AlgchpXq admits a left adjoint, defined on the

underlying D module by the functor A ÞÑ ωX `A.

The resulting unital chiral algebra A` ωX P Algch
unpXq is called the free unital chiral algebra on A.

The following is a formal consequence of the definition of chiral algebra:

Corollary 7.0.7. A non unital chiral algebra is equivalent to a Lie algebra A P AlgLiepDpXq
chq

internal to the operad DpXqch, by Corollary 5.3.8.

Remark 7.0.8. In particular, we can summarize the above maps 7.0.1 in terms of the Lie algebra
structure maps

µI P HomDpXqchptAuiPI , Aq � HomDpXIqpj
pIq
� jpIq,�pbiPIAq,∆

pIq
� Aq .
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Definition 7.0.9. A non unital chiral algebra A P AlgchpXq is called commutative if the composition

bjPJ∆
pIjq
� AÑ jpπq�jpπq

�pbjPJ∆
pIjq
� Aq

µpπq
ÝÝÝÑ ∆

pIq
� A

vanishes for each I, J P fSet and π : I � J , where the first map is the unit of the pj�, j�q-adjunction
and the second is the chiral algebra structure map µpπq from equation 7.0.1. A unital chiral algebra

A P Algch
unpXq is called commutative if it is commutative as a non unital chiral algebra.

Remark 7.0.10. In terms of the corresponding Lie algebra operad DpXqch, this is equivalent to the
vanishing of the composition

biPIAÑ j
pIq
� jpIq,�pbiPIAq Ñ ∆

pIq
� A

for each I P fSet.

8. From chiral algebras to vertex algebras

Warning 8.0.1. Throughout this section, all of the objects will be of cohomological degree zero (in
the heart of the relevant t-structure) and all the functors non-derived, in contrast with our general
conventions.

Let X � An be n dimensional affine space and let G � Gn
a act on An by translation. Fix global

coordinates xi on An and note the resulting identification of the algebra of differential operators
and its translation invariant subalgebra ΓpAn, DAnq � Krxi, Bxis and ΓpAn, DAnq

Gna � KrBxis. We
work with the left D module model for DpXq throughout this section and the next.

Consider the category DpAnqGna ,w of weakly translation equivariant D modules on An; see Section
15 for a breif review of equivariant D modules.

Remark 8.0.2. For each M P DpAnqGna ,w the space of translation invariant sections ΓpAn,MqG
n
a is

naturally a module for the translation invariant differential operators ΓpAn, DAnq
Gna . The original

object M can be recovered from this data as

M � ΓpAn,MqG
n
a bΓpAn,DAn qG

n
a ΓpAn, DAnq .

Remark 8.0.3. Given a choice of closed point ι0 : 0 ãÑ An, there is a natural identification

M0 :� ι!0M � ΓpAn,MqG
n
a

given by extending the element of the fibre to a translation invariant section over An; such a section
exists and is unique since An is a Gn

a torsor.
In particular, there is a canonical trivialization of M as an O module, such that the action of

differential operators is given by the usual action on functions OAn together with the KrBxis module
structure on M0:

M �M0 bKrBxi s Krxi, Bxis �M0 bK Krxis where Bxipmb fq � Bximb f �mb Bxif

for each m PM0 and f P Krxis.

In summary, we have the following:

Proposition 8.0.4. There is an equivalence of categories

(8.0.1) DpAnqGna ,w
� // DpKrBxisqoo defined by M ÞÑM0 VbK Krxis Ð[ V .

Now, we consider the case when X � A1 and state the main result of this section, following
Chapter 3.6 of [BD04]; see Definition 17.0.6 for the notion of weakly equivariant chiral algebra.
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Theorem 8.0.5. There is an equivalence of categories between the category of weakly translation
equivariant chiral algebras on A1 and that of vertex algebras

Algch
unpA1qGa,w

� // VOAKoo defined by A ÞÑ A0 VbK Krxs Ð[ V,

where A P DpA1qGa,w is such that ∆main
� A � L P DpRanA1qGa,wA1 and A0 � ι!0A, as above.

Proof. Let L P AlgchpA1qGa,w be a weakly translation equivariant chiral algebra, A P DpA1qGa,w be
such that ∆main

� A � L P DpRanA1qGa,w, and let A � VbK Krxs for V P DpKrBsq the corresponding
complex of KrBs modules under the equivalence of Proposition 8.0.1 above.

The underlying vector space V P VectK defines the state space of our putative vertex algebra,
and the module structure ρ : KrBs Ñ EndKpVq is equivalent to the action of the generator T :�
ρpBq P EndpVq defines the translation operator. The unit map ωA1 Ñ L defines a distinguished
vector Ø P V such that T pØq � 0, which defines the unit for the vertex algebra V.

It remains to identify the weakly equivariant chiral algebra structure map

µ P HomDpA1qpGa,wq,chptA,Au, Aq � HomDpA2qGa,wpj�j
�pAbAq,∆�Aq

with a vertex operator map Y p�, zq : Vb2 Ñ Vppzqq satisfying the conditions in the definition
of vertex algebra, recalled in Definition E.1.3. The chiral algebra structure map can be written
explicitly in coordinates as a map

Vb2 bK Krx, y, px� yq�1s
b // VbK Krxs bK δx�y

which intertwines the action of Krx, y, Bx, Bys on each side. Here δx�y � px � yq�1Krpx � yq�1s is
the delta function D module on the diagonal.

Now, we apply Proposition 9.1.4 of the next subsection, just as in Example 9.2.9 but in the
special case X � A1, which implies there exist natural maps µ̄, µ̃ such that the following commutes

(8.0.2) Vb2 bK Krx, ys

ι
��

µ̃ // VbKrxs bK Kppx� yqq

q

��
Vb2 bK Krx, y, px� yq�1s

µ̄
44

µ // VbK Krxs bK δx�y

,

and moreover each of the three maps µ, µ̄, µ̃ is uniquely determined by the others; this is just the
diagram of Equation 9.2.2 in the case X � A1.

The maps µ, µ̄, µ̃ are all maps of weakly Ga equivariant D modules, and in particular µ̃ is
determined by its restriction to p0, 0q P A2, which defines

Y : Vb2 Ñ VbK Kppzqq

for z � px� yq, as desired. Moreover:

 The commutativity of the diagram 7.0.2 and its analogue with the arguements ωX and A
interchanged are equivalent to the conditions Y pØ, zq � 1V and Y pa, zqpØq P V rrzss with
Y pa, zqpØq|z�0 � a.

 The fact that µ̃ is a map of D modules is equivalent to the condition that rT, Y pa, zqs �
BzY pa, zq.

 The Jacobi identity for the chiral Lie bracket µ is equivalent to the mutual locality or
‘associativity’ condition of the vertex algebra; writing the Jacobi identity in coordinates
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in terms of the identifications above gives the well-known Jacobi type formulation of the
associativity axiom of vertex algebras.

Alternatively, the Theorem 9.2.10 of the following subsection in the case of X � A1, restricted to
the subcategories of Ga equivariant objects, implies these results. �

9. Operator product expansions

In this section we summarize the results of Section 3.8 of [BD04], a special case of which is recalled
in the preceding section.

Warning 9.0.1. Throughout this section, all of the objects will be of cohomological degree zero (in
the heart of the relevant t-structure) and all the functors non-derived, in contrast with our general
conventions.

9.1. Abstract preliminaries. We begin by recalling some abstract preliminary material, which
we recommend the reader skip, and return to only as necessary.

Let P a smooth algebraic variety. A DP -sheaf is a (not neccesarily quasi coherent) sheaf of
modules for DP over P in the etale topology. Let M̄pP q � DetpP q

♥ denote the abelian category of
DP -sheaves, in which DpP q♥ is a full subcategory.

Construction 9.1.1. Let i : Z ãÑ P be a closed embedding of a smooth subvariety with J � OP the
corresponding ideal sheaf. There is a functor ι� : M̄pP q Ñ M̄pZq defined by ι�F � ι�pF {J �F q, with
DZ module structure defined as usual.

The functor ι� admits a right adjoint ι̂� : M̄pZq Ñ M̄pP q. This functor is exact and fully faithful,
and its image is the full subcategory on objects which are complete along Z ãÑ P .

The analogue of the usual functor

ι� : M̄pZq Ñ M̄pP q is defined by ι�G � ι̂�Gb pι�ωZq
l .

This functor is exact, fully faithful, and agrees with the usual direct image functor when restricted
to DlpXq. Its image is the full subcategory on objects such that each local section is annihilated
by some power of J .

Construction 9.1.2. Let j : U ãÑ P denote the complementary open embedding to ι : Z ãÑ P , and
define

ι̃� : M̄pZq Ñ M̄pP q by ι̃�G � ι̂�Gp�q b j�OU .

For Z of codimension 1 in P , the short exact sequence

OP ãÑ j�j
�OP � ι�ι

�pOP q reduces to OP ãÑ j�pOU q � ι�pOZq

so that for each G P M̄pZq we obtain the exact sequence

(9.1.1) ι̂�G ãÑ ι̃�G � ι�G .

Example 9.1.3. Let Z be a smooth algebraic curve X, P � X �X, and ι � ∆ : X Ñ X �X. Then

∆̂�G � p�1
0 Gbp�1

0 OX
pp�1

0 OX bK Krrx� yssq � G0 bK Krrx� yss � G1 bK Krrx� yss

where x, y are local coordinates on X, Gi � p�1
i G, and similarly

(9.1.2) ∆̃�G � G0 bK Kppx� yqq � G1 bK Kppx� yqq

In particular, for Z � A1 we have ∆̂�G � GbKrxsKrxsrrx�yss � G1bKKrrx�yss � G2bKKrrx�yss
and ∆̃�G.
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We now state the key lemma which is used in the comparision of chiral structure of equation
7.0.1 and the operator product expansion maps of Definition 9.2.1 below. The latter is used in the
definition 9.2.8 of OPE algebras, which generalizes the notion of vertex algebras to global curves, and
is essentially equivalent to the notion of a bundle of vertex algebras in [FBZ04]. This comparison is
used in the proof of Theorem 9.2.10 below, which generalizes Theorem 8.0.5 of the previous section.

Proposition 9.1.4. Let G P M̄pZq, F P M̄pP q and suppose Z is codimension 1. Then the natural
maps

HompF b j�OU , ι̃�Gq � HompF, ι̃�Gq and HompF b j�OU , ι̃�Gq ãÑ HompF b j�OU , ι�Gq ,

are isomorphisms, where the former is given by precomposition with i and the latter by postcom-
position with q, as summarized in the diagram

(9.1.3) F

i
��

ϕ̃ // ι̃�G

q

��
F b j�OU

ϕ̄
99

ϕl // ι�G

where ϕ̃ and ϕl are the images of ϕ̄ under the two equivalences.

9.2. Operator product expansions. We now restict our attention again to the case that X is a
smooth algebraic curve.

Definition 9.2.1. Let tFiu, G P M̄pXq. The space of operator product expansion (OPE) operations
is defined as

OIptFiu, Gq � HompbiFi, ∆̃
pIq
� pGqq ,

where ∆̃
pIq
� :� ∆̂

pIq
� p�q b j

pIq
� OUpIq : M̄pXq Ñ M̄pXIq, and ∆̂

pIq
� � p∆pIqq̂� as defined in 9.1.1.

Remark 9.2.2. Note that ∆̃
pIq
� � p∆

pIq
� q̃� unless |I| � 2, where the latter is as defined in 9.1.2.

Proposition 9.2.3. For each π : J � I, there are natural composition mapsâ
iPI

OJiptHju, Fiq bOIptFiu, Gq Ñ HompbjPJHj , ∆̃
ptI,Juq
� Gq

for any tHj
i u, tFiu, G PMpXq, where ∆̃ptI,Juq � p∆̂pπq� � ∆̃

pJq
� p�qq b jpπq�OUpπq.

Remark 9.2.4. These maps do not define an operad stucture on DpXq♥ with multilinear maps
defined by OPE operations, as the composition of two OPE operations may fail to define another
OPE operation.

Remark 9.2.5. The above composition maps are still associative in the appropriate sense: there
is no ambiguity in preforming itterated compositions, although such compositions are valued in
generalizations of the spaces of operations, as in the preceeding proposition.

Remark 9.2.6. There is a natural inclusion ∆̃
pJq
� G ãÑ ∆̃ptI,JuqG giving an inclusion

(9.2.1) OJptHju, Gq � HompbjPJHj , ∆̃
pJq
� Gq ãÑ HompbjPJHj , ∆̃

ptI,Juq
� Gq

Definition 9.2.7. A collection of OPE operations γ b pbiδiq P
Â

iPI OJiptHju, Fiq b OIptFiu, Gq
compose nicely if γpδiq is in the image of the inclusion.

Definition 9.2.8. Let µ̃ P O2ptG,Gu, Gq a binary ope operation. Then
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 µ̃ is called associative if both µ̃bpµ̃b1Gq and µ̃bp1Gb µ̃q compose nicely, and their values
in O3ptG,G,Gu, Gq coincide.

 µ̃ is called commutative if it invariant under the natural transposition of factors isomorphism
on O2ptG,Gu, Gq.

An associative and commutative binary ope operation µ̃ P O2ptG,Gu, Gq is called an ope algebra
structure on G, and pG, µ̃q is called an OPE algebra.

A unit 1 for an ope algebra pG, µ̃q is a horizontal section 1 P G such that for each a P G we have

µ̃p1baq, µ̃pab1q P ∆̂�G � ∆̃�G, and both project to a P G under ∆̂�G Ñ G the cokernel of the

inclusion J∆ � ∆̂�G ãÑ ∆̂�G.

Example 9.2.9. Applying proposition 9.1.4 in the case P � X � X, Z � X and ι � ∆ with
F � Ll1bL

l
2 and G �M l, we obtain an isomorphism

O2pL1, L2;Mq � HompL1bL2, ∆̃�Mq � Hompj�j
�pLl1bL

l
2q,∆�M

lqbKλ2 � HomDpXqchpL1, L2;MqbKλ2 ,

where λ2 � Ksign P KrS2s-Mod is the sign representation. More generally there is a canonical
embedding, which is not an equivalence in keeping with Remark 9.2.4 above,

OIptL
l
iu,M

lq � HompbiL
l
i, ∆̃

pIq
� M lq ãÑ Hompj

pIq
� jpIq�pbiL

l
iq,∆

pIq
� M lqbλI � HomDpXqchptLiu,MqbλI

where λI � ωbIX b ω�1
XI , recalling j�j

�pF q � F b j�OU for F P M̄pXq.

In the case of interest when Ll1 � Ll2 �M l � Al, the analogue of the diagram 9.1.3 is given by

(9.2.2) AbA

i
��

µ̃ // ∆̃�A

q

��
j�j

�pAbAq

µ̄
99

µ // ∆�A

.

Now, the main result of Chapter 3.8 of [BD04] is the following:

Theorem 9.2.10. The isomorphism

O2ptA
l, Alu, Alq � P ch

2 ptA,Au, Aq

gives a bijection between the set of ope algebra structures on Al and the set of non-unital chiral
algebra structures on A, such that a flat section 1 P Al defines a unit for an ope structure if and
only if it defines a unit for the corresponding chiral algebra.

10. From Lie�, Comm! and Coisson to Lie, commutative, and Poisson vertex algebras

In Section 11, we recall that chiral algebras are closely related to topological associative algebras,
following Section 3.6 of [BD04]. In this section, we recall the chiral analogues of Lie, commutative,
and Poisson algebras, called Lie�, Comm!, and Coisson algebras, respectfully. Further, we show
that on X � A1 in the Ga equivariant setting, such objects are equivalent to Lie, commutative, and
Poisson vertex algebras, respectively, in analogy with the results of Section 8. We follow sections
2.3, 2.5, and 2.6 of [BD04] throughout.
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10.1. Overview. Recall that there are canonical maps of operads
(10.1.1)

Lie Ñ Ass Ñ Comm and corresponding functors AlgCommpOq Ñ AlgAsspOq Ñ AlgLiepOq

on algebras internal any operad O P OppVectKq. These functors are just the inclusion of commutative
algebras as a full subcategory of associative algebras, and the forgetful functor from associative to
Lie algebras given by remembering only commutators, respectfully. This sequence is ‘left exact’,
in the sense that the functor AlgCommpOq Ñ AlgAsspOq is the inclusion of the full subcategory on
objects whose image under AlgAsspOq Ñ AlgLiepOq have trivial Lie structure maps.

Poisson algebras also arise naturally in this setting: given a one parameter family of associative
algebras A~ P AlgAsspDpKr~sqq with central fibre A0 � A~|t~�0u P AlgCommpVectKq a commutative
algebra, there is a canonical lift A0 P AlgP1

pVectKq of A0 to a Poisson algebra. By definition, a
Poisson algebra is a commutative algebra with a Lie bracket t�, �u : A0 bK A0 Ñ A0 that acts as a
bi-derivation of the product, which in the setting at had is defined by

(10.1.2) t�, �u �
1

~
r�, �s~|t~�0u

where r�, �s~ : A~ bK A~ Ñ A~ is the commutator in A~.
In the following, we define the categories Lie�pXq, Comm!pXq and CoispXq of Lie�, Comm! and

Coisson algebras on a variety X. Further, we define functors

(10.1.3) Comm!pXq Ñ AlgchpXq Ñ Lie�pXq

analogous to those of Equation 10.1.1: The former will be the inclusion of Comm!pXq as the full

subcategory of AlgchpXq on objects whose image under the latter functor have trivial Lie� structure
maps, which are precisely the commutative chiral algebras of Definition 7.0.9.

Similarly, Coisson algebras are by definition Comm! algebras with an analogously compatible
Lie� bracket. Further, given a one parameter family of chiral algebras A~ P AlgchpXq{Kr~s with

central fibre A0 � A~|t~�0u P Comm!pXq commutative, there is a canonical lift A0 P CoispXq of A0

to a Coisson algebra, with Lie� bracket defined analogously as the first order approximation to the
associated family of Lie� algebras.

10.2. Lie� algebras. To begin, we recall the rudiments of the theory of Lie� algebras.

Definition 10.2.1. A Lie� algebra on X is a Lie algebra object in the operad DpXq� of D modules
on X with the � operad structure of Definition 5.2.5.

Let Lie�pXq � AlgLiepDpXq
�q denote the category of Lie� algebras on X.

Remark 10.2.2. Concretely, a Lie� algebra on X is given by a D module L P DpXq together with
iterated Lie bracket maps

bI : biPILÑ ∆
pIq
� L ,

in DpXIq for each I P fSet.

Example 10.2.3. Suppose that L � L̃D :� L̃ bOX DX P DpXq is an induced D module on L̃ P
QCohpXq. Then a Lie� structure on L is equivalent to a skew-symmetric bidifferential operator b P

PDiffpL̃, L̃; L̃q satisfying the Jacobi identity with respect to the usual composition of polydifferential
operators.
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Example 10.2.4. Let g be a finite type Lie algebra. Then L � gbKDX � gbKOXbOXDX P Lie�pXq
is naturally a Lie� algebra under the DX linear extension of the Lie bracket map on g. The
corresponding bidifferential operator in this example is the OX linear extension of the Lie bracket
to L̃ � gbK OX .

Example 10.2.5. Let θX be the tangent sheaf of X. Then the Lie bracket b P PDiffpθX , θX ; θXq is a
bidifferential operator which defines a Lie� structure on θX,D � θX bOX DX .

Remark 10.2.6. By Remark 5.3.10, there is a natural functor AlgchpXq Ñ Lie�pXq. Concretely, it
is the identity on the underlying D module on X, and sends the chiral structure map

j
pIq
� jpIq,�pbiPIAq

µI
ÝÑ ∆

pIq
� A to the composition biPIAÑ j

pIq
� jpIq,�pbiPIAq

µI
ÝÑ ∆

pIq
� L .

This is the desired analogue of the forgetful functor AlgAss Ñ AlgLie, as outlined in Equation 10.1.3.
Given a chiral algebra A P AlgchpXq, we denote its associated Lie� algebra by ALie P Lie�pXq.

10.3. Comm! algebras. We now recall the elementary definitions for the chiral analogue of the
theory of commutative algebras.

Definition 10.3.1. A Comm! algebra on X is a commutative algebra object in the symmetric
monoidal category DpXq! of D modules on X with the b! tensor structure of Definition A.2.6.

Let Comm!pXq � AlgCommpDpXq
!q denote the category of Comm! algebras on X.

Remark 10.3.2. Concretely, a Comm! algebra on X is given by a D module A P DpXq together
with commutative multiplication maps

mi : b!
iPIAi Ñ A

in DpXq for each I P fSet.

Remark 10.3.3. For each A P AlgchpXq, the natural excision exact triangle

(10.3.1) AbA
i
ÝÑ j�j

�pAbAq
q1
ÝÑ ∆�∆!pAbAqr1s induces

AbA

i
��

b

''
j�j

�pAbAq
µ //

q1

��

∆�A

∆�pAb! Aqr1s

m

88 .

Thus, we see that the chiral product map µ factors through a map m : Ab! AÑ A as indicated if
and only if the induced Lie� bracket map b vanishes. This is precisely the condition in the definition
7.0.9 of commutative chiral algebra.

In particular, this defines an equivalence Comm!pXq
�
ÝÑ AlgchpXqComm between the category of

Comm! algebras and that of commutative factorization algebras on X. Together with the above
discussion, this yields the desired proposition:

Proposition 10.3.4. The category Comm!pXq is equivalent to the full subcategory of AlgchpXq on
objects whose image under the forgetful functor to Lie�pXq have trivial Lie� structure maps.
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10.4. Coisson algebras and filtered quantizations. Next, we recall the definition of Coisson
algebra and the notion of a filtered quantization of a Coisson algebra to a chiral algebra.

Definition 10.4.1. A Coisson algebra R P CoispXq on X is a Comm! algebra together with a Lie�

bracket t�, �u : RbRÑ ∆�R which is a derivation of the Comm! product m : Rb! RÑ R.

Given a one parameter family of chiral algebras A~ P AlgchpXq{Kr~s with central fibre given by

A0 � A~|t~�0u P Comm!pXq a commutative chiral algebra, there is a canonical Coisson structure on
A0, defined by

(10.4.1) t�, �u :�
1

~
pb~q|t~�0u ,

where b~ : A0bA0 Ñ ∆�A~ is defined using the induced family of Lie� brackets, as the composition

A0 bA0 ãÑ A~ bA~
ι~ÝÑ j�j

�pA~ bA~q
µ~ÝÑ ∆�A~ .

The composition vanishes to first order in ~, so that the expression in Equation 10.4.1 is indeed
well defined; this follows immidiately from commutativity of A0.

Definition 10.4.2. A family of chiral algebras A~ P AlgchpXq{Kr~s with central fibre A0 P Comm!pXq
commutative is called a filtered quantization of the associated Coisson algebra.

10.5. Lie, commutative, and Poisson vertex algebras. Now, as in Section 8, we restrict to
the case X � A1 and describe the objects of the preceding subsection in the weakly Ga equivariant.

Warning 10.5.1. Throughout this section, all of the objects will be of cohomological degree zero (in
the heart of the relevant t-structure) and all the functors non-derived, in contrast with our general
conventions.

Recall the diagram of Equation 9.2.2 and the surrounding discussion in Example 9.2.9, which
establishes the equivalence between the chiral product map

µ : j�j
�pAbAq Ñ ∆�A and the map µ̃ : AbAÑ ∆̃�A ,

which is the global generalization of the operator product expansion of a vertex algebra. In par-
ticular, the diagram of Equation 8.0.2 which specializes that of Equation 9.2.2 in the special case
X � A1, together with the discussion in the proof of Theorem 8.0.5, explains the equivalence
between the chiral product map and the usual vertex algebra operator product structure map.

We now extend the vertical arrows of each of the diagrams in equations 9.2.2 and 8.0.2 by both
of the short exact sequences of equations 10.3.1 and 9.1.1, which yields the following:

(10.5.1)

∆̂�A

i1

��

VbK Krxs bK Krrx� yss

i1

��
AbA

i

��

µ̃ //

m̃

99

∆̃�A

q

��

Vb2 bK Krx, ys

m̃
44

i
��

µ̃ // VbKrxs bK Kppx� yqq

q

��
j�j

�pAbAq
µ //

q1

��

∆�A Vb2 bK Krx, y, px� yq�1s
µ //

q1

��

VbK Krxs bK δx�y

∆�pAb! Aq

m

99

Vb2 bK Krxs bK δx�y

m

44

.
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These diagrams summarize the interaction of the relations between chiral, Lie� and Comm! algebras
discussed in the preceding subsection, and the passage from chiral algebras to vertex algebras. In
particular, we use them to deduce the analogues of Theorem 8.0.5 in the commutative and Lie case:
applying the equivalence of Proposition 8.0.4 to weakly Ga equivariant Comm! and Lie� algebras,
we find the categories of such are equivalent to commutative vertex algebras and vertex Lie algebras,
respectfully:

Proposition 10.5.2. There is an equivalence of categories between the category of weakly translation
equivariant commutative chiral algebras on A1 and the category of commutative vertex algebras

Algch
unpA1qComm,pGa,wq

� // VOAComm
Koo defined by A ÞÑ A0 VbK Krxs Ð[ V,

where A P DpA1qGa,w is such that ∆main
� A � L P DpRanA1qGa,wA1 and A0 � ι!0A, as in Proposition

8.0.4.

Proof. We apply the proof of Theorem 8.0.5 in the commutative case: From the commutative
diagram 10.5.1, we see that the condition of commutativity of the chiral algebra µ�ι � 0 is equivalent
to the condition q � µ̃ � 0. Since the operator product structure map Y : Vb2 Ñ VbKKppzqq is just
the data of such a map µ̃ in the Ga equivariant case, q � µ̃ � 0 if and only if the operator product
structure map is nonsingular. This latter condition is precisely the definition of a commutative
vertex algebra. �

Remark 10.5.3. Alternatively, the category Comm!pXq is equivalent to the category of affine D
schemes on X. In the case X � A1, the Ga equivariant D schemes are by definition commuta-
tive algebra objects in DpA1q!,pGa,wq. Applying Proposition 8.0.4, we obtain an equivalence with
the category of commutative algebra objects in KrBs-Mod, which is equivalent to the category of
commutative vertex algebras by Proposition E.2.2.

Proposition 10.5.4. There is an equivalence of categories between the category of weakly translation
equivariant Lie� algebras on A1 and the category of vertex Lie algebras

Lie�pA1qGa,w
� // VLAKoo defined by L ÞÑ L0 VbK Krxs Ð[ V,

where L P DpA1qGa,w is the D module underlying the Lie� algebra and L0 � ι!0L, as in Proposition
8.0.4.

Proof. Again, the proof is essentially the same as that of Theorem 8.0.5. The bracket map

b : Vb2bKKrx, ys Ñ VbKKrxsbKδx�y is determined on generators by Y� : Vb2 Ñ VbKδx�y ,

by translation invariance. The latter is precisely the vertex Lie structure map, as desired. The
remaining properties are checked as in the proof of Theorem 8.0.5, though the computation appears
to be more involved to match the particular conventions from [FBZ04] which are listed in Definition
E.3.1. �

Remark 10.5.5. From the diagram of Equation 10.5.1 together with the above discussion, it is
apparent that the forgetful functor AlgchpXq Ñ Lie�pXq corresponds to remembering only the
singular part of the OPE, which is the usual forgetful functor from vertex algebras to vertex Lie
algebras.
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Example 10.5.6. Suppose L � L̃D an induced D module on a translation invariant OX module L̃
over X � A1, with fibre L̃0 at the point 0 P A1. Then we have

L0 � L̃0 bK KrBs

is a free KrBs module, so that the bracket map is determined on L̃0 by a map

b̃ : L̃b2
0 Ñ L̃0 bKrBs b δx�y .

This is equivalent to the data of a translation invariant bidifferential operator b̃0 P PDiffpL̃, L̃; L̃qGa,w,
as follows from Example 10.2.3.

Example 10.5.7. Let L̃0 � g a finite dimensional Lie algebra with Lie bracket bg : gb2 Ñ g. Then
the map

b̃0 � bg b 1 : L̃b2
0 Ñ L̃0 b 1b δ

p0q
x�y ãÑ L̃0 bKrBs b δx�y

defines a vertex Lie algebra, which corresponds to the Lie� algebra gbK DX P Lie�pXq of Example
10.2.4 under Proposition 10.5.4. Rewritten in terms of the vertex Lie structure map Y� : Lb2

0 Ñ L0 bK δx�y,
this reads

(10.5.2) Y�pJ
a
�1, zqpJ

b
�1q �

J
ra,bs
�1

z

where Ja�1 � ab 1 P gbKKrBs � L0 for each a P g, recalling δx�y � z�1Krz�1s so that δ0
x�y ÞÑ z�1.

Example 10.5.8. Let L̃ � θX be the tangent sheaf of X � A1. The Lie bracket of vector fields
defines a bidifferential operator b̃ P PDiffpθX , θX ; θXq so that L � θX,D defines a Lie� algebra on X.

For X � A1, we have θX � Krxs � Bx so that the fiber of L̃ over a fixed point L̃0 � K is one
dimensional. The Lie bracket is given by

b̃ : Krxsb2 Ñ Krxs bKrBs b δx�y f b g ÞÑ ppBxfqg � fpBygqq b δx�y

Now, applying the usual vertex algebra convention of fixing coordinates px, x � yq on X2, as in
Example 9.1.3, we have

Bx ÞÑ Bx � Bx�y By ÞÑ �Bx�y so that Bx � By ÞÑ Bx � 2Bx�y

and thus the corresponding vertex Lie structure map is given by

(10.5.3) Y�pl�2, zqpl�2q �
l�3

z
�

2l�2

z2
,

where l�2 � 1 P L0 � KrBs and l�3 � B P L0; this is chosen to match the usual notation for the
Virasoro algebra generator l�2 and its image under the translation operator l�3.

We can also combine the above results to deduce the analogous relation between Coisson algebras
and Poisson vertex algebras:

Proposition 10.5.9. There is an equivalence of categories between the category of weakly translation
equivariant Coisson algebras on A1 and the category of Poisson vertex algebras

CoispA1qGa,w
� // PVAKoo defined by R ÞÑ R0 VbK Krxs Ð[ V,

where R P DpA1qGa,w is the D module underlying the Coisson algebra and R0 � ι!0R, as in Propo-
sition 8.0.4.



EQUIVARIANT LOCALIZATION IN FACTORIZATION HOMOLOGY I 35

11. From Chiral algebras to topological associative algebras

In this section, together with the complementary Appendix D, we summarize the results of
Chapter 3.6 of [BD04] and the closely related paper [Bei07].

Warning 11.0.1. Throughout this section, all of the objects will be of cohomological degree zero (in
the heart of the relevant t-structure) and all the functors non-derived, in contrast with our general
conventions.

11.1. Modifications and topologies at a point on D modules. In this subsection, we sum-
marize the results of Section 2.1.13 of [BD04]. Throughout, let X be an algebraic curve, x P XpKq
a smooth, closed point inducing the complementary closed and open embeddings

ιx : txu ãÑ X j : Ux ãÑ X where Ux � Xztxu ,

and let M P DpXq♥ be a D module.

Definition 11.1.1. Define the space ΞxpMq of modifications of M P DpXq♥ at the point x P XpKq
by

ΞxpMq � tMξ ãÑ M a DX submodule | supppM{Mξq � txuu .

Following [BD04], we let h � dR0 : DpXq♥ Ñ ShcpXq denote the zeroth cohomology of the de
Rham sheaf functor, as in Definition A.4.4, and hx � ι!x : DpXq♥ Ñ K-Mod, so that hxpMq �
ι!xhpMq � hpMqx.

Proposition 11.1.2. For each ξ P ΞxpMq, we have a short exact sequence

hpMξqx ãÑ hpMqx � hpM{Mξqx .

Definition 11.1.3. The Ξ topology is the topology on hpMqx with basis of neighbourhoods of 0 given
by the subspaces hpMξqx � hpMq for each ξ P ΞxpMq.

Let ĥx : DpX; Topxq Ñ K-ModTop denote the functor taking M to the completion of hpMqx in
the Ξ topology. See Appendix D for a review and conventions regarding functional analysis.

Remark 11.1.4. The completion of hpMqx in the Ξ topology is given by

ĥxpMq � lim
ξPΞxpMq

hpMqx{hpMξqx � lim
ξPΞxpMq

hpM{Mξqx ,

by Proposition 11.1.2.

Proposition 11.1.5. Let V P K-Mod ãÑ K-ModTop be a discrete vector space. Then

HomK-ModTop
pĥxpMq, V q � HomDpXqpM, ιx�V q .

Definition 11.1.6. A topology on M at x is defined to be a topology Ξ?
xpMq on hpMqx that is coarser

than the Ξ topology.

Let DpX; Topxq denote the category of D modules M P DpXq♥ together with a choice of topology
Ξ?
xpMq on M at x, with morphisms given by maps of D modules inducing continuous maps on the

corresponding completed topological vector spaces. Let ĥx : DpX; Topxq Ñ K-ModTop denote the

functor of taking the completion ĥ?
xpMq P K-ModTop of hpMqx with respect to Ξ?

xpMq.

Remark 11.1.7. As in remark 11.1.4, we have

ĥ?
xpMq � lim

ξPΞ?
xpMq

hxpM{Mξq .
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11.2. From chiral algebras to topological associative algebras. We now recall the main result
facilitating the construction of topological associative algebras from chiral algebras, and its variants
for Lie�, Comm! and Coisson algebras.

Proposition 11.2.1. The functor ĥx : DpX; Topxq Ñ K-ModTop that assigned to M the completion
of hpMqx in the Ξ topology lifts to maps of operads

ĥx : DpX; Topxq
� Ñ K-Mod�Top

ĥx : DpX; Topxq
! Ñ K-Mod!

Top

ĥx : DpX; Topxq
ch Ñ K-Modch,s

Top

where the three operad structures on K-ModTop are as defined in remarks D.2.2, D.2.11, and Defi-
nition D.2.8, respectively.

The desired result follows from the preceding proposition:

Corollary 11.2.2. Let A P AlgchpXq be a chiral algebra on X, and let

Ξas
x pAq � tAξ ãÑ A a chiral subalgebra | supppA{Aξq � txuu .

Then Aas
x :� ĥxpA,Ξ

as
x q P AlgAsspK-Modch,s

Topq defines a topological associative algebra with respect

to the bch tensor structure.

We now state the analogues for Lie�, Comm! and Coisson algebras:

Corollary 11.2.3. Let L P Lie�pXq be a Lie� algebra on X, and let

ΞLie
x pLq � tLξ ãÑ L a Lie� subalgebra | supppL{Lξq � txuu .

Then LLie
x :� ĥxpA,Ξ

Lie
x q P AlgLiepK-Mod�Topq defines a topological Lie algebra with respect to the

b� tensor structure.

Corollary 11.2.4. Let R P Comm!pXq be a Comm! algebra on X, and let

ΞComm
x pRq � tRξ ãÑ R a Comm! subalgebra | supppR{Rξq � txuu .

Then RComm
x :� ĥxpR,Ξ

Comm
x q P AlgAsspK-Mod!

Topq defines a topological associative algebra with

respect to the b! tensor structure.

12. Chiral enveloping algebras of Lie� algebras

In Section 10, we recalled the notion of Lie� algebra on X, and explained that there was a forgetful
functor

AlgchpXq
p�qLie

ÝÝÝÑ Lie�pXq analogous to the functor AlgAsspOq
p�qLie

ÝÝÝÑ AlgLiepOq

from associative to Lie algebras given by remembering only commutators; these are defined naturally
internal to an ambient operad O, which we take to be VectK with its usual symmetric monoidal
structure for the remaining discussion.

The universal enveloping algebra of a Lie algebra can be understood as providing a left adjoint
U : AlgLiepVectKq Ñ AlgAsspVectKq to the above forgetful functor; for any associative algebra A P
AlgAsspVectKq, and Lie algebra g P AlgLiepVectKq, there are natural isomorphisms

HomAlgLiepVectKqpg, A
Lieq

�
ÝÑ HomAlgAsspVectKqpUpgq, Aq .
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In this subsection, we recall the chiral enveloping algebra functor Uch : Lie�pXq Ñ AlgchpXq, as
well as its unital and twisted variants, which satisfy the analogous adjunction

HomLie�pXqpL,A
Lieq

�
ÝÑ HomAlgchpXqpU

chpLq, Aq ,

naturally for each A P AlgchpXq and L P Lie�pXq.

Definition 12.0.1. Let L P Lie�pXq be a Lie� algebra on X. The non-unital chiral enveloping algebra

UchpLq P AlgchpXq of L is the non-unital chiral algebra corresponding to the non-unital factorization
algebra

C̃CE,b�
 p∆main

� Lq P AlgfactpXq where C̃CE,b�
 : AlgLiepDpRanXq

�q Ñ CoAlgCommnupDpRanXq
�q

denotes the reduced Chevalley-Eilenberg chains object internal toDpRanXq
�, and ∆main

� L P AlgLiepDpRanXq
�
Xq

is the Lie algebra object corresponding to L P Lie�pXq.

The (unital) chiral enveloping algebra Uch
unpLq P Algch

unpXq of L is the unitalization of the above
non-unital variant, in the sense of Proposition 7.0.6.

Remark 12.0.2. The object C̃CE,b�
 p∆main

� Lq P DpRanXq carries a natural non-unital, cocommuta-
tive coalgebra structure internal to DpRanXq

� as it is the reduced Chevalley-Eilenberg chains on a
Lie algebra object, which induces such a structure internal to DpRanXq

ch by applying the forgetful
functor on coalgebras given by Proposition 5.3.5. The fact that the resulting cocommutative coal-
gebra in the chiral tensor structure is factorizeable is demonstrated in the proof of Theorem 6.4.2
in [FG11].

Remark 12.0.3. The D module on X underlying the chiral algebra UchpLq is given by

UchpLq � ∆main,!C̃CE,b�
 p∆main

� Lqr�1s �
à
kPZ¡0

∆main!
Symk,b�p∆main

� Lq �
à
kPZ¡0

Symk
! pLq

where the first isomorphism follows from Proposition 5.2.3, and Symk
! denotes the symmetric power

of L P DpXq!. Similarly, the D module underlying the unital chiral enveloping algebra is given by

Uch
unpLq � Sym

! pLq .

We now state the anticipated universal property, which is proved in [BD04] and [FG11]:

Proposition 12.0.4. There is a natural equivalence

HomLie�pXqpL,A
Lieq

�
ÝÑ HomAlgchpXqpU

chpLq, Aq ,

for each A P AlgchpXq and L P Lie�pXq. The analogous statement holds for Uch
unpLq P Algch

unpXq.

Example 12.0.5. Suppose L � L̃D � L̃ bOX DX P Lie�pA1qGa,w an induced D module on a trans-

lation invariant OX module L̃ over X � A1, as in Example 10.5.6, so that the fibre at the point
0 P A1 is given by L0 � L̃0 bK KrBs.

The vertex algebra corresponding to the translation invariant chiral enveloping algebra A �
Uch

unpLq P Algch
unpA1qGa,w under Theorem 8.0.5 has underlying vector space given by

V � A0 � ι!0pSym
! pLqq � Sym

KpL̃0 bK KrBsq � Sym
KpL̃0 bK z

�1Krz�1sq .

Example 12.0.6. Let g be a finite type Lie algebra over K and L � gD P Lie�pXq be the induced

Lie� algebra, as in Example 10.5.7. The untwisted affine chiral algebra A0pgq � Uch
unpLq P Algch

unpXq
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is defined as the chiral enveloping algebra of L. In particular, the corresponding vertex algebra is
given by

V0pgq � Sym
Kpz

�1grz�1sq with Y pJa�1, zqpJ
b
�1q �

J
ra,bs
�1

z
as the singular part of the operator product map, where Ja�1 � abz�1 P V0pgq is the usual generator
corresponding to a P g. The defining property of the chiral envelope is that it is freely generated
subject to the relations imposed by the fixed singular terms, so the preceeding expression follows
by definition from Equation 10.5.2.

Example 12.0.7. Let L � θX,D P Lie�pXq be the Lie� algebra given by the induced D module on the
tangent sheaf θX under Lie bracket of vector fields, as in Example 10.5.8. The untwisted Virasoro
chiral algebra A � Uch

unpLq P Algch
unpXq is defined as the chiral enveloping algebra of L. In particular,

the corresponding vertex algebra is given by

Vir0 � Sym
Kpz

�1Krz�1sq with Y pl�2, zqpl�2q �
l�3

z
�

2l�2

z2

as the singular part of the operator product map, where l�2 � z�1 and l�3 � �2z�2 are the usual
Virasoro generators. As in the preceding example, this follows from the analogous Equation 10.5.3.

12.1. ωX extensions of Lie� algebras and twisted chiral enveloping algebras. We now
recall the variant of the results of the preceding subsection twisted by a central extension of the
relevant Lie algebra object.

Definition 12.1.1. Let L P Lie�pXq be a Lie� algebra on X. An ωX extension of L is a Lie� algebra

L5 P Lie�pXq fitting into a short exact sequence of Lie� algebras ωX ãÑ L5 � L.

Remark 12.1.2. An ωX -extension is necessarily central, as the canonical map

HomDpXq�pL,L;L5q
�
ÝÑ HomDpXq�pL

5, L5;L5q

is an equivalence.

Definition 12.1.3. Let L P Lie�pXq be a Lie� algebra on X with ωX extension L5 P Lie�pXq and

let 15 P H0
dRpL

5q be the unit section of ωX ãÑ L5. The twisted chiral envelope A � Uch
twpLq P

Algch
unpXq is the unital chiral algebra quotient of Uch

unpL
5q with kernel the ideal generated by 1�15 P

H0
dRpU

ch
unpL

5qq, where 1 is the unit section of Uch
unpL

5q.

Remark 12.1.4. The D modules underlying A � Uch
unpLq and Uch

twpLq are isomorphic, though not
canonically unless the extension is trivial.

The following is the corresponding universal property of the twisted chiral enveloping algebra
construction:

Proposition 12.1.5. There is a natural equivalence

tϕ P HomLie�pXqpL
5, ALieq | ϕp15q � 1Au

�
ÝÑ HomAlgchpXqpU

ch
twpLq, Aq ,

for each A P AlgchpXq and L P Lie�pXq, and ωX extension

Example 12.1.6. Let g be a finite type Lie algebra with non-degenerate, ad-invariant bilinear form
κ : gb2 Ñ K, and let L � gD P Lie�pXq be the induced Lie� algebra, as in Example 10.5.7. There is
a canonical ωX extension of L, called the Kac-Moody extension, and we define the affine Kac-Moody
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chiral algebra by Acpgq � Uch
twpLq P Algch

unpXq as the twisted chiral enveloping algebra corresponding
to the ωX extension determined by c � κ for c P K; see e.g. 2.5.9 in [BD04].

On X � A1, the corresponding vertex algebra has the same underlying vector space as in the
case c � 0, which reduces to Example 12.0.6; we have

Vcpgq � Sym
KpgbK z

�1Krz�1sq with Y pJa�1, zqpJ
b
�1q �

J
ra,bs
�1

z
�
c κpa, bq

z2

as the singular part of the operator product map.

Example 12.1.7. Let h be a finite type, abelian Lie algebra with non-degenerate bilinear form
κ : hb2 Ñ K. In this case, the affine Kac-Moody chiral algebra is called the Heisenberg algebra
HeiscpX, hq P Algfact

un pXq, and its corresponding vertex algebra is given by

Heiscphq � Sym
KphbK z

�1Krz�1sq with Y pJa�1, zqpJ
b
�1q �

c κpa, bq

z2

as the singular part of the operator product map.

Example 12.1.8. Let L � θX,D P Lie�pXq be the Lie� algebra induced from the tangent sheaf θX
under Lie bracket of vector fields, as in Example 10.5.8. There is a canonical ωX extension of L,
called the Virasoro extension, and we define the Virasoro chiral algebra by VircpXq � Uch

twpLq P

Algch
unpXq as the twisted chiral enveloping algebra corresponding to the ωX extension determined

by c � κ; see e.g. 2.5.10 in [BD04].
On X � A1, the corresponding vertex algebra has the same underlying vector space as in the

case c � 0, which reduces to Example 12.0.7; we have

Virc � Sym
Kpz

�1Krz�1sq with Y pl�2, zqpl�2q �
l�3

z
�

2l�2

z2
�

1
2c

z4

as the singular part of the operator product map.

Example 12.1.9. Let X be a smooth curve, ω
1
2
X be a spin structure on X, and V be a symplectic

vector space. Consider the D module V bK ω
1
2
X bOX DX P DpXq as defining an abelian Lie� algebra

LV P Lie�pXq. Then the bidifferential operator

ωV bK p�q ^ p�q P PDiffpω
1
2
X bK V, ω

1
2
X bK V ;ωXq ,

given by applying the symplectic form ωV : V b2 Ñ K together with the multiplication of algebraic
densities, defines an ωX extension of LV .

The chiral Weyl algebra WchpX,V q � Uch
twpLV q is defined as the twisted chiral enveloping algebra

corresponding to this ωX extension; see e.g. 3.8.1 in [BD04].
On X � A1, the corresponding vertex algebra is given by

WchpV q � Sym
KpV bK z

�1Krz�1sq with Y pϕv�1; zqϕw�1 �
ωV pv, wq

z

as the singular part of the operator product map, where ϕv�1 � v b z�1 PWpV q.

Example 12.1.10. For V � T �N � N `N_ a cotangent vector space with its canonical symplectic
form, a variant of the chiral Weyl algebra of the previous example can be defined independent
of a choice of spin structure. Consider instead the trivial Lie� algebra LN � L̃N,D induced from

L̃N � pN bK OXq ` pN_ bK ωXq together with the evident analogue of the above ωX extension.
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The resulting chiral algebra WchpX,N,N_q P Algch
unpXq is called the ‘β-γ system on N ’ or ‘linear

chiral differential operators on N ’. On X � A1, the corresponding vertex algebra is given by
(12.1.1)

WchpNq � Sym
Kp
�
N bK z

�1Krz�1s
�
`
�
N_ bK z

�1Krz�1s
�
�dzq with Y pϕn�1; zqϕ�,ξ0 �

ξpnq

z
,

and similarly with the roles of n and ξ exchanged, as the singular part of the operator product map,

where ϕn�1 � nb z�1, ϕ�,ξ0 � ξ b z�1 PWpV q for n P N and ξ P N_.

More generally, a chiral algebra WchpX,Mq P Algch
unpXq can be defined for any coherent D module

M , by taking LN �M`M� together with the canonical duality pairing x�, �yM P HomDpXq�pM,M�;ωXq,
where M� � DM P DpXq is the dual D module. The D module underlying this chiral algebra is
given by

WchpX,Mq � Sym
! pM `M�q � Sym

! pMq b! Sym
! pM

�q .

The previous construction corresponds to the special case M � N bK DX so that M� � N_ bK
ωX bOX DX .

13. BRST reduction of chiral algebras and vertex algebras

In this section, we again restrict to the case where X is a smooth algebraic curve.

Warning 13.0.1. Throughout this section, all of the objects will be of cohomological degree zero (in
the heart of the relevant t-structure) and all the functors non-derived, in contrast with our general
conventions.

Let L P Lie�pXq be a Lie� algebra on X such that the underlying D module of L is coherent, and
let L� � DL P DpXq denote the dual of the underlying D module. For simplicity, we also assume
L is torsion-free as an OX module, as this holds in all our examples of interest.

Definition 13.0.2. The chiral Clifford algebra ClchpX,Lq � WchpX,Lr1sq P AlgchpXq is defined as
the (graded) chiral Weyl algebra on the D module Lr1s.

Remark 13.0.3. The D module underlying this chiral algebra is given by

(13.0.1) WchpX,Lr1sq � Sym
! pLr1s ` L�r�1sq � Sym

! pLr1sq b
! Sym

! pL
�r�1sq .

Example 13.0.4. For L � L̃D on X � A1 an induced D module on a translation invariant OX
module L̃ with fibre L̃0 at 0 P A1, as in Example 12.0.5, the corresponding vertex algebra is given
by

ClchpLq0 � Sym
Kp
�
L̃0 bK z

�1Krz�1s
�
r1s`

�
L̃_0 bK z

�1Krz�1s
�
r�1s�dzq with Y pψa�1; zqψ�,ξ0 �

ξpaq

z
,

and similarly with the roles of a and ξ exchanged, as the singular part of the operator product map,

where ψa�1 � ab z�1, ψ�,ξ0 � ξ b z�1 P ClchpLq0 for a P L̃0 and ξ P L̃_0 .

Following [BD04], we denote by ClchpLqji the cohomological degree j summand of the ith PBW

filtration step of ClchpLq. Note this conflicts with the notation ClchpLq0 used above for the corre-
sponding vertex algebra, but we will not refer to the latter object again until Example 13.0.18 at
the end of this section.
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Definition 13.0.5. Let M P DcpXq be a coherent D module on X which is torsion free as an OX
module. The Tate extension glpMq5 P Lie�pXq is the ωX extension

ωX ãÑ glpMq5 � glpMq of glpMq � HomDpXq�pM,Mq �M b! M� P Lie�pMq

the endomorphism Lie� algebra glpMq P Lie�pMq, defined by

glpMq5 :� ∆!Cone

�
M bM�r1s

ι`x�,�yM
ÝÝÝÝÝÑ j�j

�pM bM�q `∆�ωX

�
where ι : MbM� Ñ j�j

�pMbM�q is the unit of the pj�, j
�q adjunction, and x�, �yM : M bM� Ñ

∆�ωX is the b� duality pairing.

Remark 13.0.6. The usual excision short exact sequence induces the sequence

∆�ωX ãÑ Cone

�
M bM�r1s

ι`x�,�yM
ÝÝÝÝÝÑ j�j

�pM bM�q `∆�ωX

�
� ∆�pM b! M�q

so that glpMq5 is an ωX extension of glpMq, by Kashiwara’s lemma

The Tate extension L5 P Lie�pXq of L P Lie�pXq is the ωX extension of L pulled back from the

extension of glpLq5 defined above under the adjoint action map of Lie� algebras LÑ glpLq.

Remark 13.0.7. By construction, the adjoint action extends to a map of Lie� algebras L5 Ñ glpLq5.

Remark 13.0.8. Agreement with usual Tate extension on topological Lie algebras

Proposition 13.0.9. The restriction of the Lie� bracket on ClchpLqLie to ClchpLq02 P Lie�pXq defines
an ωX extension given by

ClchpLq00 � ωX ãÑ ClchpLq02 � ClchpLq02{Cl
chpLq00 � Lb L� .

Moreover, ClchpLq02 � glpLq5 P Lie�pXq is canonically equivalent to the Tate extension.

Corollary 13.0.10. There is a natural morphism of Lie� algebras β : L5 Ñ ClchpLqLie given by the

composition L5 ãÑ glpLq5 � ClchpLq02 ãÑ ClchpLq.

Throughout the remainder of this section, let A P Algch
unpXq be a chiral algebra on X.

Definition 13.0.11. A BRST datum for A with respect to L is a map α : L5 Ñ ALie of Lie� algebras
on X such that αp15q � �1A.

Remark 13.0.12. Let α : L5 Ñ ALie be a BRST datum for A with respect to L. Then there is a
morphism of Lie� algebras

l0 :� α� β : LÑ Ab ClchpLq

where the sum descends to L since αp15q�βp15q � 0; we also abuse notation throughout by omitting

the superscript Lie where we have applied the forgetful functor p�qLie : AlgchpXq Ñ Lie�pXq. The

image impl0q � ClchpLq0 is concentrated in cohomological degree 0.
The map of D modules

l�1 : Lr1s Ñ Ab ClchpLq defined by Lr1s ãÑ 1A b ClchpLq�1
1 ãÑ Ab ClchpLq

extends l0 above to a map of Lie� algebras

l � l�1 ` l0 : Lr1s � LÑ Ab ClchpLq

where the former is the semidirect product of L with the abelian Lie� algebra Lr1s.



42 DYLAN BUTSON

Remark 13.0.13. Note that the tensor factor Sym
! pL

�r�1sq of the D module underlying ClchpLq,
as in Equation 13.0.1, can be identified with the underlying D module of the Chevalley-Eilenberg
cochains C

CEpLq P Comm!pXq on L P Lie�pXq, and in particular is equipped with a canonical
differential

δCE : Sym
! pL

�r�1sq Ñ Sym
! pL

�r�1sqr1s defined by δCE|L�r�1s � b� P HomDpXq!pL
�r�1s;L�r�1s, L�r�1sq1

the cohomological degree 1, arity one-to-two operation in the cooperad DpXq!,op, corresponding to
the two-to-one operation b P HomDpXq�pL,L;Lq underlying the Lie� bracket.

Now, we construct the so-called BRST charge as follows: Let

χ̃ � µ � pl0 b 1L�r�1sq � µ � pl�1 b δCE|L�r�1sq P HomDpXqchpL,L
�;Ab ClchpLq1r1sq

denote the arity two chiral operation defined by the given composition. We have the following key
lemma from 3.8.9 in [BD04]:

Lemma 13.0.14. The following arity two operations in the operad DpXq� agree:

b � pl0 b 1L�r�1sq � b � pl�1 b δCE|L�r�1sq P HomDpXq�pL,L
�r�1s;Ab ClchpLq1q .

The preceding lemma implies that χ̃ induces an arity two operation in the operad DpXq!

χ P HomDpXq!pL,L
�;Ab ClchpLq1r1sq � HomDpXqpLb L�;Ab ClchpLq1r1sq .

This allows us to make the following key definition:

Definition 13.0.15. The BRST charge corresponding to the BRST datum α is defined by

dα :� χp1Lq P ΓdRpX,Ab ClchpLq1r1sq .

Further, the BRST differential corresponding to α is defined by

dα :� bpχp1Lq b p�qq : Ab ClchpLq Ñ Ab ClchpLqr1s .

Theorem 13.0.16. [BD04] The BRST charge satisfies bpdα, dαq � 0 and thus d2
α � 0.

Definition 13.0.17. The BRST reduction of A by L via the BRST datum α is the DG chiral algebra

CBRSTpL;Aq :� pAb ClchpLq, dαq .

Example 13.0.18. Concretely, suppose that X � A1 and all the objects in the construction are
weakly Ga equivariant, as in sections 8 and 10.5. Then A is equivalent to a vertex algebra V, L is
equivalent to a vertex Lie algebra L0, and the vertex algebra corresponding to ClchpLq is given by

ClchpLq0 � Sym
Kp
�
L̃0 bK z

�1Krz�1s
�
r1s `

�
L̃_0 bK z

�1Krz�1s
�
r�1s � dzq ,

as in Example 13.0.4. Further, suppose for simplicity that L0 is as in Example 10.5.7, defined by
L̃0 � g a finite type Lie algebra.

Then the the BRST charge dα is given concretely by

Qα �
¸
i

ei�1 b ψ�,i0 �
1

2

¸
i,j,k

1b cijk ψ
�,i
0 ψ�,j0 ψk,�1 ,
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where i, j, k are indices labelling a basis for g and ψa�1 � a b z�1, ψ�,ξ0 � ξ b z�1 P ClchpLq0 for

a P L̃0 and ξ P L̃_0 . Heuristically, this is computed by making the following identifications:

µ � pl0 b 1L�r�1sqp1Lq �
¸
i

ei�1 b ψ�,i0 � singular terms , and

µ � pl�1 b δCE|L�r�1sqp1Lq �
1

2

¸
i,j,k

1b cijk ψ
�,i
0 ψ�,j0 ψk,�1 � singular terms ,

where the singular terms in each of the above expressions are equal so that the difference constitutes
a non-singular section, in keeping with Lemma 13.0.14.

14. Francis-Gaitsgory chiral Koszul duality: AlgfactpXq � AlgchpXq

14.1. Overview. In this section, we explain the correspondence between factorization algebras
A P AlgfactpXq and chiral algebras A P AlgchpXq, following [BD04] and [FG11] throughout. The
main idea is that the D module A underlying the chiral algebra is defined by

Ar1s � A1 � ∆main,!A P DpXq

the restriction of A P DpRanXq to the first stratum of the Ran space of X, and the chiral product
µ : j�j

�Ab2 Ñ ∆�A is equivalent to the data required to extend A1 to a factorizable sheaf A on
RanX . We begin with an outline of the equivalence in geometric terms, before describing the more
structured algebraic perspective that facilitates the proof.

The data of the D module on RanX underlying a factorization algebra A P AlgfactpXq is almost
completely specified by A1 � ∆main,!A, since the factorization data gives an identification of the
restriction of A2 � ∆t1,2u,!A to the complement of the diagonal with that of Ab2

1 :

(14.1.1) j�pA2q � j�pAb2
1 q ,

and similarly on higher cardinality products. From the excision sequence for A2,

∆�∆!A2 Ñ A2 Ñ j�j
�A2 ,

we see that the additional information required to reconstruct A2 from A1 is equivalent to the
boundary map

j�j
�pAb2qr2s � j�j

�A2 Ñ ∆�∆!A2r1s � ∆�Ar2s ,

which is precisely the desired chiral product map

µ : j�j
�pAb2q Ñ ∆�A

after identifying the restrictions of A2 to the diagonal and its complement with their descriptions
in terms of A as shown. Indeed, we can recover A2 as

(14.1.2) A2 � ker
�
j�j

�pAb2qr2s Ñ ∆�Ar1sr1s
�
.

Moreover, as we explain below, this sheaf extends coherently to A3 P DpX
3q satisfying the required

gluing and factorizability conditions if and only if µ satisfies the Jacobi identity.
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14.2. Cocommutative-Lie Koszul duality for DpRanXq
ch. We now explain the more struc-

tured algebraic perspective on this equivalence. Chiral algebras and factorization algebras are
formally defined as certain Lie and cocommutative coalgebra objects internal to the category
DpRanXq

ch of D modules on the Ran space of X with respect to the chiral tensor structure bch,
respectively. For a general well-behaved symmetric monoidal category Cb, there is a canonical
equivalence between Lie algebra and cocommutative coalgebra objects in it, given by the Chevalley-
Eilenberg chains functor

Cp�q : AlgLiepC
bq Ñ AlgCoCommpC

bq L ÞÑ CpLq � pSympLr1sq, dCEq

where the differential dCE is generated by the map Lr1s bLr1s Ñ Lr1sr1s given by the Lie bracket.
In [FG11] it is shown that the category DpRanXq

ch satisfies the hypotheses required to construct
such an equivalence, and moreover that the resulting functor induces an equivalence between the
full subcategories of chiral algebras and factorization algebras:

Theorem 14.2.1. [BD04, FG11] The Chevalley-Eilenberg chains functor on DpRanXq
ch induces

equivalences

AlgchpXq
� //

��

AlgfactpXq

��
AlgLiepDpRanXq

chq
� // AlgCoCommpDpRanXq

chq

such that the preceding diagram commutes.

We now outline the proof of the Theorem, emphasizing that the resulting equivalence reproduces
the geometric arguements given in the overview above. Let L P AlgLiepDpRanXq

chq be a Lie algebra
object with respect to the chiral tensor product. The free graded cocommutative coalgebra object
in DpRanXq generated by L is given by the Sn coinvariants of

C̃pLq �
à
nPN

Lr1sbn .

For notational simplicity, we describe the construction omitting the Sn coinvariants throughout. In
the case at hand, recall from Proposition 5.3.3 that

pbch
jPJLqI �

à
π:I � J

jpπq�jpπq
�pbjPJLIj q so that

CpLqI �
à
nPN

pLr1sbnqI �
|I|à
n�0

pLbnqIrns �
à

rπ:I � SsPfSetI{

jpπq�jpπq
�pbsPSLIsqr|S|s .

The Chevalley-Eilenberg differential on CpLq is defined over each I as follows: Fix π P HomfSetI{pT, Sq,
that is, πT : I � T, πS : I � S and π : T � S and such that πS � π � πT . We are interested in the
case |T | � |S| � 1, so for concreteness say πpt0q � πpt1q � s1 and πptiq � si for i � 2, ..., |S|. Then
we have a map

jpπT q�jpπT q
�pbtPTLItq � jpπT q�jpπT q

�
�
pLIt0bLIt1 qbpbs�s1LIsq

�
� jpπSq�jpπSq

�
�
jpπ̃qq�jpπ̃q

�pLIt0bLIt1 qbpbs�s1LIsq
�

Ñ jpπSq�jpπSq
�pbsPSLIsq

where π̃ : It0 \ It1 Ñ t1, 2u and the map is given by jpπSq�jpπSq
�pbpπ̃qb1q, where

bpπ̃q : jpπ̃qq�jpπ̃q
�pLIt0bLIt1 q Ñ LIs1
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is the chiral Lie algebra structure map. For fixed π : I Ñ T , summing over all such π : T � S defines
the component of the Chevalley-Eilenberg differential on the summand jpπT q�jpπT q

�pbtPTLItq of
CpLqI .

Now, suppose L P AlgchpXq, so that there exists A P DpXq such that L � ∆main
� A P DpRanXq,

or equivalently

LI � ∆
pIq
� A ,

for each I P fSetsurj. Then we have

jpπq�jpπq
�pbsPSLIsq � jpπq�jpπq

�pbsPS∆
pIsq
� Aq � jpπq�jpπq

�∆pπq�A
b|S| � ∆pπq�j

pSq
� jpSq�Ab|S|

so that

(14.2.1) CpLqI �
à

rπ:I � SsPfSetI{

∆pπq�j
pSq
� jpSq�Ab|S|r|S|s .

On the first stratum X ãÑ RanX of the Ran space, we have the desired equality

A1 :� CpLq1 � Ar1s ,

since the tensor powers of arity greater than one with respect to the chiral tensor structure van-
ish when restricted to the main diagonal, by Remark 5.3.4. Similarly, over X2 there are two
non-vanishing terms in the expression of Equation 14.2.1 for the homological Chevalley-Eilenberg
complex, given by

A2 :� CpLq2 �
�
j�j

�pAb2qr2s Ñ ∆�Ar1s
�
,

in agreement with Equation 14.1.2 from our geometric explanation. Finally, over X3 the Chevalley-
Eilenberg complex is given by

A3 :� CpLq3 �

�
��jt1,2,3u� jt1,2,3u,�pAb3qr3s Ñ

à
i�j

i,j�1,2,3

∆
xi�xj
� j�j

�pAb2qr2s Ñ ∆�Ar1s

�
�� .

This construction manifestly defines A3 P DpX3q compatibly extending A2 P DpX2q as defined
above, and the requirement that the differential squares to zero so that it actually gives a well
defined complex of D modules is equivalent to the Jacobi identity for the chiral product map µ.



46 DYLAN BUTSON

Chapter 2

Equivariant factorization algebras and the
localization theorem

In this chapter, we develop an analogous theory of equivariant factorization algebras, as outlined in
Section 1.3.2 of the introduction.

15. A review of equivariant D modules

We begin with a brief overview of the theory of equivariant D modules, paralleling the theory of
equivariant constructible sheaves recalled in Appendix B.1. Let G be an algebraic group, X a finite
type scheme over K, and fix an action of G on X. Let m : G � G Ñ G denote the multiplication
map, a : G�X Ñ X the action map, pX : G�X Ñ X the projection to X and pG : X �GÑ G
the projection to G.

Definition 15.0.1. A G equivariant structure on F P QCohpXq is an isomorphism α : aF
�
ÝÑ pXF

in QCohpG�Xq, together with commutativity of the diagram in QCohpG�G�Xq defined by

(15.0.1) pa � p1G � aqqM
� //

p1G�aq
α�

��

pa � pm� 1Xqq
M

pm�1Xq
α�

��
p1G � aqpXM

1QCohpGqbα

�
// p̃XM

,

where p̃X : G�G�X Ñ X is the projection to X.

Definition 15.0.2. A weak G equivariant structure on M P DpXq is an isomorphism α : a!M
�
ÝÑ

p!
XM of complexes of OGbDX modules, together with commutativity data for the analogue of the

diagram 15.0.1 in the category of complexes of OG�G bDX modules.

Let DpXqG,w denote the category of weakly G equivariant D modules on X.

Remark 15.0.3. Heuristically, a weak equivariant structure on aD module is an equivariant structure

on the underlying OX module such that for each g P G, the induced equivalence αg : a!
gM

�
ÝÑ M

lifts to an isomorphism in DpXq.

Definition 15.0.4. A (strong) G equivariant structure on M P DpXq is an isomorphism α : a!M
�
ÝÑ

p!
XM in DpG�Xq, together with commutativity data for the analogue of the diagram 15.0.1 in the

category DpG�G�Xq.

Let DpXqG denote the category of (strongly) G equivariant D modules on X.

Remark 15.0.5. Heuristically, a strong equivariant structure on a D module is a weak equivariant

structure such that the induced equivalences αg : a!
gM

�
ÝÑ M in DpXq are locally constant along

G. For G connected, the equivariant structure appears to be uniquely determined by the local
constancy condition, since it is fixed by the requirement αe � 1M , so that strong equivariance is a
property of the underlying D module, rather than a structure. This statement is true for a strict
D module, but not for a complex, as we explain more carefully below.
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Example 15.0.6. There is evidently a forgetful functorDpXqG Ñ DpXqG,w coming from the forgetful
functor DpGq Ñ QCohpGq. The additional data required to lift a weak equivariant structure to a
strong equivariant structure is as follows:

Let M P DpXqG,w and define the Lie derivative of M with respect to the G equivariant structure
by

Lp�q : gÑ EndShpX;KqpMq by LXpmq � BtαexpptXqpmq|t�0

for each m PM .
Let da : g Ñ ΓpX,TXq denote the infinitesimal action map and ∇M : ΓpX,TXq Ñ EndShpXqpMq

the connection underlying theD module structure which compose to define a map ∇dap�q : gÑ EndShpXqpMq.

For M P DpXq♥,pG,wq a weakly G equivariant D module concentrated in a single cohomological
degree, the weak equivariant structure defines a strong equivariant structure if Lp�q � ∇dap�q. The
map ∇dap�q is defined independent of the G equivariant structure, and the G equivariant structure

necessarily integrates the map Lp�q, so that a strong equivariant structure on M P DpXq♥ is unique
for G connected. The condition of its existence is the integrability of the representation Lp�q : g Ñ
EndShpXqpMq.

Now, for a general object M P DpXqG,w, let pM, dM q denote the underlying complex of D
modules. Then a lift to a strong G equivariant structure on M is equivalent to a homotopy triv-
ializing the difference of these endomorphisms, that is, a map h : g Ñ End�1

DpXqpM
q such that

Lp�q �∇dap�q � rh, dM s. Note that the difference Lp�q �∇dap�q P EndDpXqpMq.

Example 15.0.7. The dualizing sheaf ωX P DrpXqG and the constant sheaf ωXr�2dXs P D
rpXqG

admit canonical strongG equivariant structures for any action ofG onX, given by the identifications
a!ωX � ωG�X � p!

XωX .
Under the quasiisomorphism ωXr�2dXs � Ω

X,D of Proposition A.4.2, the induced strong equi-

variant structure on Ω
X,D P DrpXq is given by

h � ιdap�q : gÑ End�1
DrpXqpΩ


X,Dq � DiffpΩ

X ,Ω

Xr�1sq where

#
da : gÑ ΓpX,TXq

ιp�q : ΓpX,TXq Ñ End�1pΩ
X,Dq

are the infinitesimal action map and the interior product operation. The compatibility follows from
the Cartan formula, as the endomorphism LX �∆dap�q is given by the usual Lie derivative.

Example 15.0.8. For X � A1 we have ωX � Krxs and

Ω
A1,D � Krx, Bxs

mBxÝÝÑ Krx, Bxsr�1s ,

where mBx denotes the left multiplication map. For the action of G � Ga, the homotopy is given
by h � 1 : Krx, Bxsr�1s Ñ Krx, Bxs the identity map. For the action of G � Gm, the homotopy is
given by h � mx : Krx, Bxsr�1s Ñ Krx, Bxs.

Example 15.0.9. The category DpptqG is the category of complexes of G representations pV, dq P
ReppGqK together with a homotopy h : gÑ End�1pV q trivializing the infinitesimal action dρ : gÑ
EndVectKpV q, that is, such that rd, hs � dρ. There is a natural functor

DpptqG Ñ DpH
Gpptqq defined by pV, d, hq ÞÑ pVbKSympg_r�2sqG , du � db1g_�hξibmui

where ui P g
_r�2s are some choice of linear generators of cohomological degree 2, and ξi P g are

the corresponding dual basis.
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Proposition 15.0.10. The above functor DpptqG Ñ DpH
Gpptqq induces an equivalence DcpptqG �

Db
fgpH


Gpptqq, in keeping with Theorems B.1.10 and B.2.4.

Theorem 15.0.11. Let X be a smooth, finite type variety over C. For H a subgroup of G, there are
restriction and induction adjunctions:

ResGH : DrhpXq
G // DrhpXq

H : IndGH,�oo IndGH,! : DrhpXq
H // DrhpXq

G : ResGHoo

Moreover, there are natural functors as in A.3.1 and A.5.3 between the corresponding G equivariant
categoriesDG,rh, satisfying the same adjunctions adjunctions and relations, defined forG equivariant

maps f : X Ñ Y . These functors all commute with ResGH , while f� and f ! commute with IndGh,�,

and f! and f� commute with IndGH,!.

Definition 15.0.12. The G equivariant cochains functor is defined by C
G � π� : DpXqG Ñ DpptqG.

The G equivariant chains functor is defined by CG � π! : DpXqG Ñ DpptqG. The G equivariant
(Borel-Moore) de Rham (co)chains and cohomology are defined as in B.1.4 and B.1.7.

Example 15.0.13. Computing C
GpXq in terms of the de Rham model as in Example A.4.3 and

Example 15.0.7, we find its image under the equivalence of Proposition 15.0.10 is

C
GpXq � pΩ

X bK Sympg_r�2sqG , d � ddR b 1� ιξi bmui .

This is the usual Cartan model for equivariant cohomology of X. More generally, C
GpX;Aq is

computed by the Cartan model with coefficients in the equivariant complex A P DpXqG.
In this case, the homotopy h corresponds to the CpG;Kq module structure on C

dRpX;Kq, and
the complex C

GpX;Kq above is equivalent to the image of C
dRpX;Kq under the functor of Remark

B.2.3.

Example 15.0.14. Suppose G acts on X trivially. Then DpXqG � DpXq b DpptqG and thus by
Example 15.0.9 above, there is a natural functor DpXqG Ñ DpXqbDpH

Gpptqq from equivariant D
modules to families of D modules on X over Spec H

Gpptq.

16. The category DpRanXq
G

In this section, we define the category DpRanXq
G of G equivariant D modules on RanX , and

breifly outline the analogues of various structures on DpRanXq in the equivariant setting.
For each I P fSet there is a diagonal action of G on XI , and for each π : I � J the corresponding

diagonal embedding ∆pπq : XJ ãÑ XI is a morphism of G varieties.

Remark 16.0.1. The equivariance of the diagonal embeddings under G implies that the diagram
defining RanX can be understood in the category of G schemes, and thus the colimit RanX has a
natural action of G. Heuristically, this is simply the action of G on the space of finite subsets of X
by g � txiuiPI � tg � xiu, which is evidently modelled by the diagonal action as above.

In analogy with Definition 4.2.1 and the discussion of that section, we make the following definition:

Definition 16.0.2. An object A P DpRanXq
G is an assignment

I ÞÑ AI P DpX
IqG rπ : I � Js ÞÑ r∆pπq!AI

�
ÝÑ AJ s

defined for each finite set I P fSet and surjection π : I � J , where the isomorphism ∆pπq!AI
�
ÝÑ AJ

is required to be in DpXJqG.
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A morphism f : AÑ B between A,B P DpRanXq
G is given by an assignment

I ÞÑ rfI : AI Ñ BIs rπ : I � Js ÞÑ ∆pπq!AI //

∆pπq!pfIq
��

AJ
�

w�
fJ

��
∆pπq!BI // BJ

defined for each finite set I P fSet and surjection π : I � J , where all required morphisms are in
DpXIqG.

An object A P DpRanX,unq
G and morphism of such is defined similarly, analogously following

Definition 4.3.1.
An object A P DpRanXq

G is called coherent, holonomic, ... if AI P DpX
IqG is so for each I P fSet.

Remark 16.0.3. Following Remark 4.2.4, the category DpRanXq
G can be equivalently defined as the

category G equivariant D modules on the pseudo indscheme RanX .

Remark 16.0.4. The definition 16.0.2 is stated exactly as in Definition 4.2.1 by replacing all the
objects and morphisms of D with their G equivariant analogues. This is possible because all of the
underlying geometric maps involved are G equivariant so that there are natural lifts of the resulting
functors to the G equivariant category. In what follows, we list the various structures induced on
DpRanXq

G following this pattern:

Remark 16.0.5. The category DpRanXq
G,w is defined as in definitions 4.2.1 and 16.0.2, with AI P

DpXIqG,w weakly G equivariant for each I P fSet and all required morphisms in the relevant weakly
equivariant categories.

Remark 16.0.6. As in Remark 4.2.5, there are canonical functors ∆I
� : DpXIqG // DpRanXq

G : ∆I,!oo

for each I P fSet. For I � tptu these functors induce an equivalence DpXqG � DpRanXq
G
X .

Example 16.0.7. The object ωRanX P DpRanXq naturally lifts to ωRanX P DpRanXq
G, as there is a

canonical equivariant structure ωXI P DpXIqG for each I P fSet, as in Example 15.0.7.

Definition 16.0.8. The monoidal structures b!,b�,bch : �jPJDpRanXq
G Ñ DpRanXq

G are pre-
sented by

�jPJDpX
Ij qG Ñ DpXIqG pMIj q ÞÑ b!p∆

Ij
� MIj qI

�jPJDpX
Ij qG Ñ DpXIqG pMIj q ÞÑ bjPJMIj

�jPJDpX
Ij qG Ñ DpXIqG pMIj q ÞÑ jpπq�jpπq

!pbjPJMIj q ,

defined for each π : I � J .

Remark 16.0.9. The the monoidal structures of Definition 16.0.8 are the natural lifts of the defini-
tions 5.1.1 ,5.2.1, and 5.3.1 to the G equivariant category, in keeping with Remark 16.0.4 above.

Definition 16.0.10. Theb!, b�, andbch operad structures onDpXq are defined byDpXqG ãÑ DpRanXq
G,

where the latter is equipped with the corresponding monoidal structure, following Example C.1.11.

Corollary 16.0.11. The functors ∆main
� : DpXqG Ñ DpRanXq

G and ∆main,! : DpRanXq
G Ñ DpXqG

of 4.2.5 define an equivalence of operads between DpRanXq
G
X and DpXqG under b!, b� or bch.
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17. Equivariant factorization algebras and equivariant chiral algebras

In this section, we define equivariant factorization algebras and equivariant chiral algebras, closely
following the usual definition of factorization algebras in [BD04, FG11].

Definition 17.0.1. A non-unital factorization algebra on X is a non-unital cocommutative coalgebra
object A P DpRanXq

G,ch such that the induced maps

jpπq�AI
�
ÝÑ jpπq�pbjPJAIj q

are equivalences in DpUpπqqG for each I, J and π : I � J .
A unital factorization algebra on X is an object A P DpRanX,unq

G with a non-unital factorization

algebra structure on its image in DpRanXq
G, and compatibility data with the unital structure on

A, as in Definition 4.2.1.

Let AlgfactpXqG denote the category of non unital G equivariant factorization algebras, defined as

the full subcategory of CoCommnupDpRanXq
G,chq. Similarly, let Algfact

un pXqG denote the category
of unital G equivariant factorization algebras.

Example 17.0.2. The dualizing sheaf ωRanX P DpRanXq
G of Example 16.0.7 defines a G equivariant

factorization algebra, with structure maps given by the natural G equivariant lifts of those of
Example 6.0.4.

Definition 17.0.3. A (non-unital) chiral algebra onX is a Lie algebra object in L P LiepDpRanXq
G,chq

such that underlying object L P DpRanXq
G
X is supported on the image of the main diagonal

∆main : X Ñ RanX .
A unital chiral algebra on X is an object L P DpRanX,unq

G with a non unital chiral algebra
structure on its image in DpRanXq, and compatibility data with the unital structure on L, as in
Definition 4.3.1.

Let AlgchpXqG denote the category of non unital G equivariant chiral algebras, defined as the

full subcategory of LiepDpRanXq
ch,Gq. Similarly, let Algch

unpXq
G denote the category of unital G

equivariant chiral algebras.

Corollary 17.0.4. A non unital, G-equivariant chiral algebra is equivalent to a Lie algebra object
L P LiepDpXqG,chq internal to the operad DpXqG,ch, by Corollary 16.0.11.

Example 17.0.5. In particular, the equivariant chiral algebra structure maps are given by

bI P HomDpXqG,chptLuiPI , Lq � HomDpXIqGpj
pIq
� jpIq,�pbiPILq,∆

pIq
� Lq .

There is also a weakly equivariant analogue of these definitions, which is used in Section 8 to relate
chiral algebras to vertex algebras.

Definition 17.0.6. The category of weakly G equivariant chiral algebras AlgchpXqG,w is the full

subcategory of LiepDpRanXq
ch,pG,wqq on algebras with underlying object A P DpRanXq

G,w
X supported

on the main diagonal X ãÑ RanX ; see also Remark 16.0.5.

The main result of [FG11], recalled in Section 14, generalizes to the G equivariant setting, by the
same arguement used in the proof of loc. cit. lifted to the G equivariant category:

Corollary 17.0.7. There is a canonical equivalence of categories AlgfactpXqG � AlgchpXqG between
G equivariant factorization algebras and chiral algebras.
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Example 17.0.8. Suppose G acts trivially on X. Then applying Example 15.0.14 to XI for each I P
fSet, we obtain a natural functor AlgfactpXqG Ñ AlgfactpXq{H

Gpptq from G equivariant factorization

algebras on X to families of factorization algebras over H
Gpptq.

18. Equivariant factorization homology and the localization theorem

In this section, we define equivariant factorization homology, as well as the pullback of factoriza-
tion algebras, and prove an analogue of the classical equivariant localization theorem in the setting
of factorization homology.

18.1. Factorization homology. Factorization homology is one of the primary invariants of fac-
torization algebras, analogous to sheaf cohomology of sheaves, which generalizes (the dual space
to) the spaces of conformal blocks of vertex algebras; it was originally introduced in [BD04]. We
now give the definition of factorization homology of equivariant factorization algebras, following the
standard definition given in [FG11]. In summary, the functor of factorization homology is given by
the composition

AlgfactpXqG
oblv
ÝÝÑ DpRanXq

G
pRanX�
ÝÝÝÝÝÑ DpptqG

where oblv denotes the forgetful functor to G equivariant D modules on RanX , pRanX : RanX Ñ pt
is the unique such map and pRanX� denotes the induced pushforward functor on equivariant D
modules defined below. In particular, taking G � teu to be the trivial group, this gives the usual
definition of factorization homology.

Remark 18.1.1. Recall from Remark 4.2.3 that the category of (G equivariant) D modules on RanX
can be defined formally as

DpRanXq
G � lim

IPfSetsurj
D!pXIqG � lim

�
. . .Ñ DpXIqG

∆pπq!
ÝÝÝÑ DpXJqG Ñ . . .

�
,

so that an object A P DpRanXq
G is given, as in Definition 16.0.2, by an assignment

I ÞÑ AI P DpX
IqG rπ : I � Js ÞÑ r∆pπq!AI

�
ÝÑ AJ s

defined for each finite set I P fSet and surjection π : I � J . Alternatively, passing to left adjoints
yields the description

DpRanXq
G � colim

IPfSetsurj
D�pXIqG � colim

�
. . .ÐDpXIqG

∆pπq�
ÐÝÝÝÝ DpXJqGÐ . . .

�
;

concretely, applying the p∆pπq�,∆pπq
!q adjunctions to the equivalences

(18.1.1) ∆pπq!AI
�
ÝÑ AJ gives maps ∆pπq�AJ � ∆pπq�∆pπq!AI Ñ AI

for each π : I � J .

From the latter description in the preceding remark, the functor pRanX� : DpRanXq
G Ñ DpptqG is

induced by the system of equivariant de Rham cohomology functors

pI� : DpXIqG Ñ DpptqG noting pI�∆pπq� � pJ� : DpXJqG Ñ DpptqG .

Concretely, for A � pAIqIPfSetsurj P DpRanXq
G presented in terms of the limit description, we have

pRanX�A � colim
IPfSetsurj

pI�AI with diagram structure maps pJ�AJ � pI�∆pπq�AJ Ñ pI�AI ,

given by the image under pI� of the maps of Equation 18.1.1 above.
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Definition 18.1.2. The functor of equivariant factorization homology over X is defined by» G
X
p�q :� pRanX� � oblv : AlgfactpXqG Ñ DpptqG A ÞÑ

» G
X

A � pRanX�A � colim
IPfSetsurj

pI�AI .

18.2. Pullback of factorization algebras. Towards the statement of the equivariant localization
theorem in factorization homology, we need to formulate the notion of pullback of factorization
algebras. Let f : X Ñ Y be an equivariant map of smooth algebraic varieties with G action, and let
f I : XI Ñ Y I and Ranpfq : RanX Ñ RanY be the induced maps on products and on Ran spaces.

Definition 18.2.1. The pullback of equivariant D modules on the Ran space

Ranpfq! : DpRanY q
G Ñ DpRanXq

G is defined by A � pAIqIPfSetsurj ÞÑ Ranpfq!A � ppf Iq!AIqIPfSetsurj ,

with gluing data for Ranpfq!A P DpRanXq
G given by

∆Xpπq
!pRanpfq!AqI � ∆Xpπq

!pf Iq!AI � pfJq!∆Y pπq
!AI

�
ÝÑ pfJq!AJ � pRanpfq!AqJ ,

where the arrow is given by the image of the gluing data ∆Y pπq
!AI

�
ÝÑ AJ for A under pfJq!.

Now, suppose A P AlgfactpY qG is an equivariant factorization algebra on Y , with factorization
structure maps

AI Ñ jpπq�jpπq
�pbjPJAIj q

for each I, J and π : I � J . Further, suppose f : X Ñ Y is a closed embedding, and note that the
commutative diagram

UXpπq
jXpπq //

fI

��

XI

fI

��
UY pπq

jY pπq // Y I

is cartesian for f injective. Then we have:

Proposition 18.2.2. The pullback Ranpfq!A P AlgfactpXqG is canonically an equivariant factorization
algebra on X.

Proof. The structure maps are given by

pf Iq!AI Ñ pf Iq!jY pπq�jY pπq
�pbjPJAIj q

� jXpπq�pf
Iq!jY pπq

�pbjPJAIj q

� jXpπq�jXpπq
�pfJq!pbjPJAIj q

� jXpπq�jXpπq
�pbjPJpf

Ij q!AIj q

where the arrow is given by the image of the structure maps for A under pf Iq!. These commutative
coalgebra structure maps satisfy the factorization property since the map which is required to be a
homotopy equivalence is given by

jXpπq
�pf Iq!AI � pf Iq!jY pπq

�AI ÝÑ pf Iq!jY pπq
�pbjPJAIj q � jXpπq

�pbjPJpf
Ij q!AIj q

where the arrow is given by the image of the equivalence jpπq�AI Ñ jpπq�pbjPJAIj q under pf Iq!. �

Remark 18.2.3. Throughout the remainder of the text we will denote the pullback factorization
algebra Ranpfq!A P AlgfactpXqG by simply f !A.
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Finally, in preparation for the statement of the localization theorem, we note the following prop-
erty of the pullback of factorization algebras:

Proposition 18.2.4. Let f : X Ñ Y be an equivariant, closed embedding of smooth G varieties, and
A P AlgfactpXqG an equivariant factorization algebra on Y . There is a canonical map

» G
X
f !AÑ

» G
Y

A in DpptqG.

Proof. For each I P fSet, the pf I� , pf
Iq!q adjunction gives a canonical map

(18.2.1)

f I�pf
!AqI � f I�pf

Iq!AI Ñ AI and thus pXI�pf
!AqI � pY I�f

I
�pf

!AqI � pY I�f
I
�pf

Iq!AI Ñ pY I�AI .

These maps are evidently compatible with the structure maps for the colimit over I P fSetsurj and
thus induce the desired map» G

X
f !A � colim

IPfSetsurj
pXI�pf

!AqI Ñ colim
IPfSetsurj

pY I�AI �

» G
Y

A .

�

18.3. The equivariant localization theorem for factorization homology. We now formulate
and prove the analogue of the equivariant localization theorem for factorization homology. Let G be
a connected, reductive algebraic group, X a smooth G variety, and ι : XG ãÑ X the inclusion of the
variety of G-fixed points XG. Further, recall from Example 15.0.9 that there is a canonical functor

DpptqG Ñ DpH
Gpptqq; throughout this section we abuse notation and identify

³G
X A P DpptqG with

its image under this functor. Finally, following Appendix B.3, for simplicity we restrict to the case
that G � pC�qn is given by an algebraic torus, and choose tfi P H


Gpptqu generators of an ideal

whose corresponding subvariety contains the union of the stabilizer subalgebras gxr2s ãÑ gr2s �
Spec H

Gpptq over all non-fixed points x P XzXG.

Theorem 18.3.1. Let A P AlgfactpXqG be an equivariant factorization algebra on X. The canonical
map of Proposition 18.2.4 induces an isomorphism» G

XG

ι!A
�
ÝÑ

» G
X

A over H
Gpptqrf�1

i s.

Proof. First, we note that for each I P fSet the fixed points pXIqG � pXGqI in XI are given by the
I-fold product of the fixed points variety XG, and no additional fixed points can occur in the partial
colimits RanX,¤n, since G is connected. Further, the set of possible stabilizer subtori Gx ãÑ G of

points x P XI is exhausted by those occuring in X.
Thus, for each I P fSet, we can apply Theorem B.3.1 to the map of Equation 18.2.1 to conclude

ppXGqI�pι
!AqI � ppXIqG�ι

!
IAI

�
ÝÑ pXI�AI is an isomorphism over H

Gpptqrf�1
i s ,

where ιI : pXIqG ãÑ XI is the inclusion of the G fixed points in XI . It follows that the map induced
on colimits as in Proposition 18.2.4 is itself an isomorphism, as claimed. �
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19. Equivariant and topological vertex algebras

In this section, we define equivariant topological vertex algebras in terms of equivariant chiral
algebras, and recover the notion of topological vertex algebra in [Hua94] in the case of Gm equivariant
vertex algebras in dimension 1.

Let X � An be n dimensional affine space, let G act linearly on An by a : G�An Ñ An, and let
a � LiepGn

aq � An so that we can interpret the infinitesimal action as da : gÑ EndKpaq.

Definition 19.0.1. An n dimensional vertex algebra V is a weakly Gn
a equivariant chiral algebra

A P Algch
unpAnqG

n
a ,w on An.

A topological vertex algebra is an n dimensional vertex algebra V together with a lift of the weak
Gn
a equivariant structure on the corresponding chiral algebra A P Algch

unpAnqG
n
a ,w to a strong Gn

a

equivariant structure.
AG equivariant topological vertex algebra is an n dimensional vertex algebra V together with a lift

of the weak Gn
a equivariant structure to a strong G
Gn

a equivariant structure A P Algch
unpAnqG�Gna .

A framed topological vertex algebra is a Gn
a � sop2n;Kq equivariant vertex algebra.

Remark 19.0.2. In terms of the vertex algebra data underlying the n dimensional vertex algebra
V P VOAn, a G equivariant structure gives the following data:

 The weak G
Gn
a equivariant structure yields a G representation ρV : GÑ AutKpVq, such

that

(19.0.1) dρV � T � T � dρV � T � da as maps g� aÑ EndKpVq
where dρV : GÑ EndKpVq is the corresponding Lie algebra representation, T : aÑ EndKpVq
is the translation operator and da : gÑ EndKpaq is the infinitesimal action map.

 The strong Gn
a equivariant structure yields a Lie algebra map

g�1 : aÑ Der�1
VOAn

pVq such that rdV, g�1s � T : aÑ DerVOAnpVq .
This is interpreted as a homotopy trivializing the translation operator.

 The compatible strong G equivariant structure yields a Lie algebra map

hV : gÑ End�1
K pVq such that rdV, hVs � dρV : gÑ EndKpVq .

This is interpreted as a homotopy trivializing the infinitesimal action dρV : g Ñ EndKpVq.
The endomorphisms dρV and hV do not act by vertex algebra derivations, as is apparent
from equation 19.0.1, but act by derivations twisted by T � da.

Example 19.0.3. Concretely, a topological vertex algebra in dimensional 1 is just a DG vertex
algebra pV, dq together with a degree �1 derivation g�1 : Der�1pVq trivializing the translation
operator, that is, such that rd, g�1s � T . This is equivalent to a particular subset of the structure
of a strong topological vertex algebra in [Hua94], as we explain in Example 19.0.4 below. See also
Section 20 below for the relation to E2n algebras.

Example 19.0.4. A framed topological vertex algebra in dimension 1 is a graded DG vertex algebra
pV, dq together with degree �1 endomorphisms g0, g�1 P End�1pVq of graded degrees 0 and 1, such
that

 rd, g�1s � T ,
 rd, g0s � L0,
 rT, g�1s � 0 and moreover g�1 acts by derivations of V, and
 rT, g0s � �g�1 and moreover g0 acts by twisted derivations of V.
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This agrees with the notion of topological vertex algebra in [Hua94].

20. Gn
a equivariant factorization algebras on An and E2n algebras

In this section, we sketch a proof of the folklore result that translation invariant factorization
algebras on An over K � C are equivalent to E2n algebras. Let X � AnC be n dimensional complex
affine space and let G � Gn

a act on An by translation. The action of Gn
a on An is free and transitive,

so we have an equivalence of categories

(20.0.1) DpAnqGna // VectKoo defined by M ÞÑ C
dRpAn,Mq V b ωAn Ð [ V .

Proposition 20.0.1. There is an equivalence of categories

Algch
unpAnCqG

n
a

�
ÝÑ AlgE2n

pVectKq defined by A ÞÑ C
dRpAn, Aq .

Proof. Let A P Algch
unpAnqG

n
a and recall from Warning 7.0.4 that this notation refers to the underlying

object A P DpAnq. Then A � ωAn b V where V � C
dRpAn, Aq, and we exhibit an equivalence

between the chiral algebra structure maps on A and E2n algebra structure maps on V , natural in
A P DpAnqGna and correspondingly V P VectK.

The data of a chiral algebra structure on A is given by compatible structure maps

(20.0.2) bI P HomDpXqchptAuiPI , Aq
Gna defined by maps bI : j

pIq
� jpIq,�pbiPIAq Ñ ∆

pIq
� A

in DpXIqG
n
a as in Example 17.0.5. Applying the equivalence of Equation 20.0.1 above, we find

HomDpXqchptAuiPI , Aq
Gna � HomDpXIqG

n
a pj

pIq
� jpIq,�ωXI ,∆

pIq
� ωXq bK HomVectKpV

bI , V q

Moreover, we have

HomDpXIqG
n
a pj

pIq
� jpIq,�ωXI ,∆

pIq
� ωXq � C

c pConfIpAnqq .

Thus, the required structure maps of Equation 20.0.2 are equivalent to structure maps

V bI Ñ V bK C

c pConfIpAnqq or equivalently CpConfIpAnq;Kq Ñ HomVectKpV

bI , V q .

defining V P AlgE2n
pVectKq. Similarly, one checks that morphisms in Algch

unpAnqG
n
a of such chiral

algebras are equivalent to maps of the corresponding E2n algebras. �

Example 20.0.2. Consider the arity 2 chiral structure map

µ2 : j�j
�pAb2q Ñ ∆�A ,

where ∆ : An Ñ A2n is the diagonal embedding and j : A2nz∆ Ñ A2n is the complementary open
embedding, and the map is in the category DGpA2nq. Then applying

Homp�,∆�Aq : DpA2nq Ñ VectK to the exact triangle Ab2
ãÑ j�j

�pAb2q � ∆�Ar1s

induces cochain maps to HomVectKpV
b2, V q from the exact sequence

Cpptq ãÑ C
c pAnzt0uqr1s � C

c pAnqr1s or concretely Km ãÑ Km`Kπr2n�1s � Kπr2n�1s .

Thus, we see that the data of the Lie�pXq algebra underlying a chiral algebra, which also determines
the Poisson vertex structure on the associated graded, corresponds to the shifted Poisson bracket of
the corresponding homology Pn algebra, and that the induced Comm!pXq structure coming from the
necessarily non-singular chiral bracket corresponds to the commutative multiplication underlying
the Pn algebra. Recall that these structures on a chiral algebra were discussed in Section 10 and
summarized in the diagram of Equation 10.5.1, and the relevant descriptions of the En and Pn
operads are summarized in appendices C.4 and C.5.
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Example 20.0.3. Let pV, dV, T, g�1q be a topological vertex algebra as in Definition 19.0.1. The

corresponding translation invariant chiral algebra A P Algch
unpA1qGa is given by

A � VbK pKrx, Bxs `Krx, Bxsr�1sq , d � dV b 1� 1b ddR

with h � g�1b1�1bιBx ; see also Example 15.0.8. The above gives an equivalence V ÞÑ C
dRpAn, Aq

between topological vertex algebras of dimension n and E2n algebras.

21. Equivariant and semidirect product operads

In this section, we recall the formalism of equivariant and semidirect product operads following
[SW03]. Similar results are discussed in [Wes07] in the homotopy setting. Let C be a cartesian
symmetric monoidal category, G P GrppCq be a group object of C, and let G-ModpCq denote the
category of objects C P C with an action of G on C and morphisms those in C equipped with G
equivariant structure.

Remark 21.0.1. The category G-ModpCq is naturally symmetric monoidal with respect to the un-
derlying monoidal structure on C.

Example 21.0.2. Let C � Top be the category of spaces. A group object G P GrppTopq is a
topological group and G-ModpCq � TopG is the category of G spaces. Similarly, for C � SchK the
categoy of schemes, a group object is an algebraic group over K and G-ModpSchKq is the category
of G schemes.

Example 21.0.3. Let C � CoCommpVectKq be the category of cocommutative coalgebras in VectK.
The structure maps of a group object G P GrppCq define a compatible product, unit, and antipode
on G, so that G itself is naturally a cocommutative Hopf algebra Λ P HopfcopVectKq. There is a
natural equivalence G-ModpCq � Λ-ModpCoCommpVectKqq and the induced symmetric monoidal
structure on G-ModpCq is that corresponding to the coproduct on Λ.

Proposition 21.0.4. Let F : C Ñ C1 be a symmetric monoidal functor of cartesian categories. Then
F induces a functor F : GrppCq Ñ GrppC1q and symmetric monoidal functors FG : G-ModpCq Ñ
F pGq-ModpC1q for each G P GrppCq.

Example 21.0.5. The functor Cp�;Kq : Top Ñ CoCommpVectKq of Remark C.2.7 is symmetric
monoidal. Thus, each group object G P Top defines a cocommutative Hopf algebra Λ � CpG;Kq,
and the induced symmetric monoidal functor Cp�;Kq : TopG Ñ Λ-ModpCoCommpVectKqq restricts
to that of Remark B.2.2.

Definition 21.0.6. A G equivariant operad in C is an operad in the category G-ModpCq with its
induced symmetric monoidal structure.

Let OpGpCq � OppG-ModpCqq denote the category of G equivariant operads.

Definition 21.0.7. Let O P OpGpCq be a G operad. The semidirect product operad O�G P OppCq
is defined by

col pO�Gq � col O pO�Gqptciu, dq � Optciu, dq bGb|I|

together with composition maps for each π : I Ñ J given byâ
jPJ

OptciuiPIj , djq bGb|Ij | b OptdjujPJ , eq bGb|J | Ñ OptcIuiPI , eq bGb|I|(21.0.1)

bjpβj , pgiqiPIj q b pα, pgjqjPJq ÞÑ bjpgj � βjq � α, pgi � gπpiqqiPI(21.0.2)

and units defined by 1
G
c � 1c b e P Opc, cq bG, for e : uC Ñ G the identity structure map.



EQUIVARIANT LOCALIZATION IN FACTORIZATION HOMOLOGY I 57

Proposition 21.0.8. Let O P OpGpCq be a G operad. There is a natural symmetric monoidal equiv-
alence

AlgO�GpCq
�
ÝÑ AlgOpG-ModpCqq .

Proof. The composition OÑ O�GÑ Cb defines an object of AlgOpCq. The composition maps for
O�G define a lift to a map OÑ G-ModpCqb in OppCq. The associativity data for the composition
law in O�G defines equivariance data lifting the map OÑ G-ModpCqb to OppG-ModpCqq.

Note that although we have used the language of Cb P OppCq which can only be interpret-
ted literally for C closed, the arguement extends naturally to the general setting via hom tensor
adjunction. �

22. The K equivariant little d-cubes operad EKd
In this section, we recall the construction of the K equivariant little d-cubes operad, following

Section 5.4.2 of [Lur12], and references therein. Throughout, let K be a connected topological
group and Toppdq � AutToppRdq denote the topological automorphism group of Rd, which naturally
defines Toppdq P GrppTopq a topological group.

The action of Toppdq on Rd induces an action on ConfIpRdq for each finite set I, so that the
little d-cubes operad Ed P OppToppdq-ModpTopqq is naturally a Toppdq equivariant operad in Top.
More generally, for any map of topological groups ρ : K Ñ Toppdq, we obtain the structure of a K
equivariant operad in Top on Ed P OppK-ModpTopqq.

Definition 22.0.1. The K equivariant little d-cubes operad EKd � Ed�K P OppTopq is the semidirect
product of Ed with K under the action of ρ.

Remark 22.0.2. More concretely, the K equivariant little d-cubes operad EKd is presented by

EKd pIq � ConfIpRdq�KI with p�jPJConfIj pRdq�KIj q�ConfJpRdq�KJ Ñ ConfIpRdq�KI

specified up to homotopy equivalence by group multiplication along π : I � J in the K factors,
together with the (homotopy equivalence class of) composition map on the ConfpRdq factors de-
termined by the operad structure on Ed, twisted by the action of K on the configuration spaces
according to the formula 21.0.2. A strict model for this operad is given by the skew little cubes
operad of [DHK18], for example.

Remark 22.0.3. The little d-cubes operad together with the K equivariant structure above defines

Cρ pEdq P OppHpKq-ModpCoCommpVectKqqq ,

by Example 21.0.5. We abuse notation and denote by Cρ pEdq P OppHpKq-ModpVectKqq its image
under the forgetful functor to HpKq-ModpVectKq.

Example 22.0.4. Let K � SOpdq and ρ : SOpdq Ñ Toppdq the canonical inclusion. The operad

Efr
d � ESOpdq

d is the framed or oriented little d-cubes operad.

Example 22.0.5. The framed little 2-cubes operad ES1

2 P OppTopq was introduced in [Get94a]. The

operad ES1

2 is formal [GS10], and its homology operad HpES
1

2 q is the Batalin-Vilkovisky operad
BV P OppVectZq [Get94a], which is generated in arity 1 and 2 by

BVp1q � K∆r�1sx1y BVp2q � P2p2q
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subject to the usual relations of the P2 operad, as in Definition C.5.1, together with the additional
relation

(22.0.1) ∆ �m�m � p∆b 1q �m � p1b∆q � π ,

where m : Ab2 Ñ A, and π : Ab2 Ñ Ar�1s are the commutative multiplication and Poisson bracket
structure maps.

The derived category Db
fgpΛq of graded modules over Λ � HpS

1q � Crεs{ε2 is equivalent to the
category of mixed complexes. The conclusion of Proposition 21.0.8 in this example is that there is
an equivalence between BV algebras A P AlgBVpVectKq and P2 algebras in the category of mixed
complexes A P AlgP2

pDpΛqZq such that the mixed differential ∆ � ρprS1sq : A Ñ Ar�1s satisfies
the relation 22.0.1 above. This was observed in [Get94b], for example.

The Dunn additivity Theorem, recalled in Theorem C.4.9, admits the following equivariant en-
hancement, which was established in Remark 5.4.2.14 following Theorem 5.1.2.2 in [Lur12]:

Theorem 22.0.6. There is a natural equivalence of operads

EKd � EK
1

d1 � EK�K
1

d�d1 .

23. Goresky-Kottwitz-MacPherson Koszul duality for equivariant operads

In this section, we explain an application of the Goresky-Kottwitz-MacPherson result describing
equivariant cohomology in terms of Koszul duality, in the context of equivariant operads following
Section 21. Let C � CoCommpVectKq as in Example 21.0.3, so that G P GrppCq naturally defines Λ P
HopfcopVectKq and we identify G-ModpCq � Λ-ModpCoCommpVectKqq. In this case, the Proposition
21.0.8 gives for each O P OpGpCq a natural a symmetric monoidal equivalence

AlgO�GpCoCommpVectKqq � AlgOpΛ-ModpCoCommpVectKqqq .

In particular, this equivalence identifies algebras in the essential images of the free functor to
CoCommpVectKq, inducing an equivalence

(23.0.1) AlgO�GpVectKq � AlgOpΛ-ModpVectKqZq .

Now, for simplicity we restrict to bounded, finitely generated, derived categories as in the statements
of the summary theorem B.2.4. Then applying the results of loc. cit. together with the above
discussion, we obtain:

Proposition 23.0.1. Let G be a connected Lie group, and consider the graded algebras Λ � HpG;Kq
and S � H

Gppt;Kq. Further, let O P OppΛ-ModpCoCommpVectKqqq be a G equivariant operad in
CoCommpVectKq. Then there are natural symmetric monoidal equivalences

(23.0.2) AlgO�ΛpPerfKq
�
ÝÑ AlgOpD

b
fgpΛqq

�
ÝÑ AlgtpOqpD

b
fgpSqq

where t : Db
fgpΛq Ñ Db

fgpSq is the Koszul duality functor B.2.1 extended as in Proposition C.1.14.

In particular, if O P OppG-ModpTopf qq is a G equivariant operad in Topf , there are natural
symmetric monoidal equivalences

(23.0.3) AlgCpOq�ΛpPerfKq
�
ÝÑ AlgCpOqpD

b
fgpΛqq

�
ÝÑ AlgCG pOqpD

b
fgpSqq

where CG pOq � tpCpOqq P OppDb
fgpS-Modqq denotes the G equivariant chains on O, as in Definition

23.0.2 below.
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Proof. The first equivalence of 23.0.2 is just the restriction of 23.0.1 to bounded, finitely generated
derived categories. The second equivalence of 23.0.2 follows from applying Proposition C.1.14 to
the symmetric monoidal equivalence of Theorem B.2.4. �

Definition 23.0.2. Let O P OppG-ModpTopqq be an equivariant operad. Then equivariant chains
operad on O is the operad

CG pOq P OppDb
fgpSqq defined by CG pOqpIq � CG pOpIqq .

Example 23.0.3. Let ρ : K Ñ Toppdq and Cρ pEdq P OppDb
fgpΛqq as in Definition 22.0.1 and Re-

mark 22.0.3. Then the above proposition gives an equivalence between K framed Ed algebras
A P AlgCpEKd q

pVectKq in VectK and algebras A P AlgCK pEdqpD
b
fgpSqq over the operad

CK pEdq P OppDb
fgpSqq given by CK pEdqpIq � CK pConfIpRdqq .

Example 23.0.4. In particular, consider the framed little 2-cubes operad ES1

2 P OppTopq, and let
S � H

S1pptq � Krus where u is the cohomological degree 2 generator. The corresponding equivariant
chains operad

BDu0 :� CS
1

 pE2q P OppDb
fgpKrusqq

defines a 2 periodic analogue of the operad BD~
0 P OppDb

fgpKr~sqq of Definition C.6.2. In particular,
BDu0 interpolates between the P2 operad and the E0 operad: it is generated in degree 2 by

BDu0p2q :� CS
1

 pE2qp2q �
�
Krusm

muÝÝÑ Krusπr1sx1y
�

P Db
fgpKrusrS2sq

where Krusm is the trivial representation and Krusπ is the sign, subject to the relations of the P2

operad of Definition C.5.1 extended linearly to Krus. This can be understood explicitly via formality
by applying the Koszul duality functor of Example B.2.3 to the explicit presentation from Definition
C.5.1 of the P2 operad.

Thus, applied to this example, Proposition 23.0.1 gives a symmetric monoidal equivalence

(23.0.4) AlgES1
2
pPerfKq � AlgBDu0 pD

b
fgpKrusqq .

Motivated by the strong Poisson additivity theorem of Rozenblyum, we also make the following
definition:

Definition 23.0.5. The operad BDun P OppDbpKrusq is defined as

BDun :� En � BDu0 P OppDbpKrusqq
the Boardman-Vogt tensor product of the operad BDu0 P OppDbpKrusq defined in Example 23.0.4
above, with the operad En P OppPerfKq of Definition C.4.2.

24. Gn
a �G equivariant factorization algebras on An and EK2n algebras

In this section, we extend the identification of Section 20 to identify Gn
a �G equivariant factor-

ization algebras on complex affine space with equivariant E2n algebras for K the maximal compact
of G. Let X � AnC be n dimensional complex affine space and let G � Gn

a act on An by translation.
Let G be a complex reductive group with maximal compact subgroup K, and ρ : G Ñ AutpAnCq a
linear action of G on AnC. Then we have:

Proposition 24.0.1. There is an equivalence of categories

Algch
unpAnCqG

n
a�G �

ÝÑ AlgEK2n
pVectKq defined by A ÞÑ C

dRpAn, Aq .
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Proof. Following the proof of Proposition 20.0.1, the data of a Gn
a � G equivariant chiral algebra

structure on A is given by compatible structure maps

(24.0.1) bI P HomDpXqchptAuiPI , Aq
Gna�G .

Applying the equivalence of Equation 20.0.1 above, we find

HomDpXqchptAuiPI , Aq
Gna�G � HomDpXIqG

n
a�Gpj

pIq
� jpIq,�ωXI ,∆

pIq
� ωXq bK HomVectKpV

bI , V q

Moreover, we have

HomDpXIqG
n
a�Gpj

pIq
� jpIq,�ωXI ,∆

pIq
� ωXq � C

G,cpConfIpAnqq .

Thus, the required structure maps of Equation 20.0.2 are equivalent to structure maps

V bI Ñ V bK C

G,cpConfIpAnqq or equivalently CG pConfIpAnq;Kq Ñ HomVectKpV

bI , V q .

defining V P AlgEK2n
pVectKq, as desired. �

25. Deformation quantization in the Omega background

In this section, we explain the relationship between Gm equivariant factorization algebras and
quantization.

25.1. Quantization of En algebras. To begin, we explain the interpretation of the equivalence
in Equation 23.0.4 of Example 23.0.4 as relating S1 equivariance data on En�2 algebras to ‘two-
periodic graded quantizations’ of their homology Pn�2 algebras to En algebras. Throughout, we
again let Krus � H

S1pptq be the S1 equivariant cohomology if a point.
The main result of this subsection is the following:

Proposition 25.1.1. There is an equivalence of categories

AlgES1
n�2

pPerfKq
�
ÝÑ AlgBDunpD

b
fgpKrusqq ,

intertwining the functor of taking homology H : AlgES1
n�2

pPerfKq Ñ AlgPn�2
pPerfKq and the special-

ization to the central fibre p�q|t0u : AlgBDunpD
b
fgpKrusqq Ñ AlgPn�2

pPerfKq, the two periodic analogue
of the functor of Proposition C.6.10.

Remark 25.1.2. A similar result was obtained by explicit calculation in [BBZB�20] in the case
n � 1, and the analogous statement for general n was announced there as to appear in [BZN].

Proof. Applying the equivariant Dunn-Lurie theorem [Lur12], recalled in Theorem 22.0.6, there is
an equivalence

AlgES1
n�2

pPerfKq
�
ÝÑ AlgEnpAlgES1

2
pPerfKqq .

Further, the equivalence of Equation 23.0.4 induces an equivalence

AlgEnpAlgES1
2
pPerfKqq

�
ÝÑ AlgEnpAlgBDu0 pD

b
fgpKrusqqq .

The strong Poisson additivity theorem of Rozenblyum gives the final desired equivalence

AlgEnpAlgBDu0 pD
b
fgpKrusqqq

�
ÝÑ AlgBDunpD

b
fgpKrusqq .

�
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Remark 25.1.3. The BDun operad controls two-periodic graded quantizations of Pn�2 algebras to
En algebras, in the sense of Proposition C.6.10. Thus, the above gives a correspondence between
S1 equivariant structures on a En�2 algebra and two-periodic graded quantizations of its homology
Pn�2 algebra.

Remark 25.1.4. Concretely, forA P AlgES1
d�2

pPerfKq an algebra over the little n disks operad equipped

with an S1 equivariant structure, we obtain tpAq P AlgBDunpD
b
fgpKrusqq such that the central fibre

tpAq|t0u � HpAq P AlgPn�2
pVectq is equivalent to the homology Pn�2 algebra of A. Thus, we can

interpret the S1 equivariance data on A as defining a deformation tpAq of HpAq to an En algebra
tpAq|t1u P AlgEnpPerfKq.

Example 25.1.5. The special case n � 1 of the above gives an equivalence

AlgES1
3
pPerfKq

�
ÝÑ AlgBDu1 pD

b
fgpKrusqq .

Heuristically, this result identifies S1 equivariant structures on an E3 algebra with deformation
quantizations of its homology P3 algebra to an E1 algebra. Subsections II-11.3 and II-13.5 explain
examples of this phenomenon.

25.2. The equivariant cigar reduction principle for En algebras.

Example 25.2.1. Let A P AlgEn�2
pPerfKq be an En�2 algebra in PerfK, and consider its image

A0 � oblvEn
En�2

pAq P AlgEnpPerfKq under oblvEn
En�2

: AlgEn�2
pPerfKq Ñ AlgEnpPerfKq

the forgetful functor of Example C.4.12. Then A0 is canonically a module over A in the E2 sense, that
is, the pair pA,A0q canonically define a Diskfr

n�n�2-algebra in the sense of [AFT17]. Equivalently, by
Proposition 4.8 of [AFT16], A0 is canonically a module over the Hochschild chains algebra CHpAq
in the E1 sense, that is, there is a canonical map

(25.2.1) CHpAq Ñ CHpA0q in the category AlgEn�1
pPerfKq .

In terms of the Dunn additivity equivalence

A P AlgEn�2
pPerfKq � AlgE2

pAlgEnpPerfKqq ,

the map in Equation 25.2.1 encodes the fact that A is canonically a module over itself (in the
E2 sense) internal to AlgEnpPerfKq, and A0 is the underlying object of this module. Equivalently,
analogously identifying

CHpAq P AlgEn�1
pPerfKq � AlgE1

pAlgEnpPerfKqq ,

the object A0 admits a canonical module structure

A0 P CHpAq-ModpAlgEnpPerfKqq .

Further, we have:

Example 25.2.2. The negative cyclic chains defines a canonical deformation

CC�
 pAq P AlgEn�1

pDb
fgpKrusqq

with central fibre

CC�
 pAq|t0u � CHpAq P AlgEn�1

pPerfKq

the Hochschild chains algebra.
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Now, we let A P AlgEn�2
pPerfKq and A0 � oblvEn

En�2
pAq P AlgEnpPerfKq be as in Example 25.2.1

above, and state the main result of this subsection:

Proposition 25.2.3. An S1 equivariant structure on A in the E2 direction, that is, a lift to

A P AlgES1
2
pAlgEnpPerfKqq ,

is equivalent to a deformation

Au P CC�
 pAq-ModpAlgEnpD

b
fgpKrusqqq

such that the central fibre

Au|t0u � A0 P CHpAq-ModpAlgEnpPerfKqq

is equivalent to A0 equipped with the CHpAq module structure of Example 25.2.1 above.

Remark 25.2.4. The results of Subsection II-11.4 provide an example of the above phenomenon.

25.3. Quantization of factorization En algebras. We now give the analogue of the above dis-
cussion for factorization En algebras on X, in the sense defined in Section II-7, which describes
quantization in the Ω-background for mixed holomorphic-topological field theories:

Proposition 25.3.1. There is a natural equivalence of categories

Algfact

ES1
n�2,un

pXq
�
ÝÑ Algfact

BDun,unpXq ,

intertwining the functor of taking homology H : Algfact

ES1
n�2,un

pXq Ñ Algfact
Pn�2,unpXq and the special-

ization to the central fibre p�q|t0u : Algfact
BDun,unpXq Ñ Algfact

Pn�2,unpXq.

Proof. �

Remark 25.3.2. Concretely, for A P Algfact

ES1
n�2,un

pXq a factorization En�2 algebra equipped with

an S1 equivariant structure, we obtain tpAq P Algfact
BDun,unpXq, so that the central fibre tpAq|t0u P

Algfact
Pn�2,unpXq is a factorization Pn�2 algebra, which is identified with an pn � 1q-shifted Coisson

algebra by the chiral Poisson additivity theorem of Rozenblyum. Thus, we can interpret the S1

equivariance data on A as defining a deformation tpAq of this shifted Coisson algebra to a factor-

ization En algebra tpAq|t1u P Algfact
En,unpXq.

Example 25.3.3. The special case n � 0 of the above gives an equivalence

Algfact

ES1
2 ,un

pXq
�
ÝÑ Algfact

BDu0 ,unpXq .

The strong chiral Poisson additivity theorem of Rozenblyum identifies the latter category with that
of (two-periodic) filtered quantizations of factorization algebras, in the sense of Definition 10.4.2.
Thus, this result interprets S1 equivariant structures on a factorization E2 algebra as two-periodic
graded quantizations of the corresponding shifted Coisson algebra. The results of subsection II-19.3
are an example of this phenomenon.
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CC�
 pAq P Algfact

E1
pXq{Krus

ý

Au P AlgfactpXq{Krus

X � R2
u X � R¥0

X

Algfact

ES1
2

pXq Q A

Algfact
BDu0 pXq Q Au Au P AlgfactpXq{Krus

Figure 4. The equivariant cigar reduction principle pictured in the case n � 0

25.4. The equivariant cigar reduction principle for factorization En algebras. We now
state the analogues of the results of Subsection 25.2 above for factorization En algebras. The main
result, Proposition 25.4.3 below, is illustrated in Figure 4.

As in Example 25.2.1, we have:

Example 25.4.1. Let A P Algfact
En�2,unpXq be a factorization En�2 algebra on X, and

A0 � oblvEn
En�2

A P Algfact
En,unpXq .

Then by the equivalence induced by Dunn additivity together with Corollary II-7.1.8, we have

A P Algfact
En�2,unpXq � AlgE2

pAlgfact
En,unpXqq ,

and analogously for the Hochschild chains algebra

CHpAq P Algfact
En�1,unpXq � AlgE1

pAlgfact
En,unpXqq .

Moreover, A0 admits a canonical module structure

A0 P CHpAq-ModpAlgfact
En,unpXqq .

Further, as in Example 25.2.2, we have:

Example 25.4.2. The negative cyclic chains define a canonical deformation

CC�
 pAq P Algfact

En�1,unpXq{pA1{Gmq � AlgE1
pAlgfact

En,unpXq{pA1{Gmqq

with central fibre given by the Hochschild chains algebra

CC�
 pAq|t0u � CHpAq P Algfact

En�1,unpXq .

Now, we let A P Algfact
En�2,unpXq and A0 � oblvEn

En�2
A P Algfact

En,unpXq be as in Example 25.4.1 above,

and state the main result of this subsection:
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Proposition 25.4.3. An S1 equivariant structure on A in the E2 direction, that is, a lift to

A P Algfact

ES1
n�2,un

pXq ,

is equivalent to a deformation

Au P CC�
 pAq-ModpAlgfact

En,unpXq{pA1{Gmqq

such that the central fibre

Au|t0u � A0 P CHpAq-ModpAlgfact
En,unpXqq

is equivalent to A0 equipped with the CHpAq module structure of Example 25.4.1 above.

Remark 25.4.4. The results of Subsection II-19.3 provide an example of the above phenomenon.
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Chapter 3

Appendices

Appendix A. Sheaf theory

Let X be a smooth variety of dimension dX over K � C or a field of characteristic 0. We write
OX for the sheaf of regular functions, DX for the sheaf of differential operators, ΘX for the tangent

sheaf, Ω1
X for the sheaf of Kahler differentials, ΩdX

X for the sheaf of sections of the canonical bundle,

and ωX � ΩdX
X rdXs for the dualizing sheaf on X. Let ShzpXq denote the category of complexes of

sheaves of K-modules on X in the Zariski topology.

Warning A.0.1. Note that we assume X is a smooth variety throughout, and only define the cate-
gory of D modules on more general spaces in Supappendix II-A.5.

A.1. O-module conventions. Let DpOXq be the DG category of complexes of OX -modules, QCohpXq
and CohpXq be the full subcategories of complexes with quasi-coherent and coherent cohomology
sheaves, and PerfpXq the subcategory of bounded complexes with finitely generated cohomology
sheaves. The category DpOXq is symmetric monoidal with respect to the tensor product bOX , with
unit object OX , and QCohpXq, CohpXq, and PerfpXq are monoidal subcategories.

Definition A.1.1. Let f : X Ñ Y a map of schemes. The inverse and direct image functors are

f : DpOY q Ñ DpOXq fF � f�1Fbf�1OY OX and f : DpOXq Ñ DpOY q fF � fF ,

where f : ShzpXq Ñ ShzpY q and f�1 : ShzpY q Ñ ShzpXq are the usual direct and inverse image
functors on sheaves of K-modules.

Remark A.1.2. Note that f preserves quasicoherence, as does f for quasicompact, quasiseperated
maps. We define the global sections functor by Γ � π : DpOXq Ñ Vect where π : X Ñ pt.

Definition A.1.3. Let F,G P DpOXq. The internal hom object in DpOXq is

HomOX
pF,Gq P DpOXq by HomOX

pF,GqpUq :� HomOX |U pF|U ,G|U q .

Remark A.1.4. For H P DpOXq, we have

HompH,HomOX
pF,Gqq � HompH bOX F,Gq .

In particular, the space of homomorphisms is given by the space of sections of the internal hom
object

HompF,Gq � HompOX ,HomOX
pF,Gqq � ΓpX,HomOX

pF,Gqq.

Remark A.1.5. For F P CohpXq coherent and G P QCohpXq quasi-coherent, the object HomOX
pF,Gq P

QCohpXq is quasi-coherent. If F,G P CohpXq are both coherent, then HomOX
pF,Gq P CohpXq is

also coherent.

Definition A.1.6. The duality functor on coherent OX -modules is defined by

p�q_ : CohpXq Ñ CohpXq by F ÞÑ F_ :� HomOX
pF,OXq.

Remark A.1.7. There are canonical isomorphisms HomOX
pF,Gq � GbOX F_ and pF_q_ � F.
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A.2. D-module conventions. Let DlpXq and DrpXq be the concrete DG categories of complexes
of left and right DX -modules which are quasicoherent as OX -modules, and let Dl

cpXq and Dr
cpXq

denote the full sub DG categories of complexes with cohomology that is coherent as a module over
DX .

Example A.2.1. The sheaf of regular functions OX P DlpXq♥ has the structure of a left D module,
given by the defining action of the sheaf of differential operators DX on OX .

More generally, a left D module (or a complex of such) M P DlpXq on X is given by a qua-
sicoherent sheaf (or a complex of such) M P QCohpXq, together with a flat connection, that is,
∇ P HomShzpXqpM,Ω1

X bOX Mq such that

 ∇θpfsq � θpfqs� f∇θpsq , and
 ∇rθ1,θ2ss � r∇θ1 ,∇θ2ss ,

where θ, θ1, θ2 P ΘX , f P OX , and s P M . The first condition is that ∇ defines a connection, and
the second that ∇ is flat.

Example A.2.2. The sheaf of sections of the canonical bundle ΩdX
X P DrpXq♥ is the protypical

example of a right DX module, with action of vector fields given by θpηq � �Lieθpηq for θ P ΘX

and η P ΩdX
X .

Remark A.2.3. There is a canonical equivalence of the categories DlpXq and DrpXq

DlpXq
p�qr // DrpXq
p�ql
oo defined by

#
M ÞÑM l :�M bOX ω

_
X for M P DrpXq and

L ÞÑ Lr :� ωX bOX L for L P DlpXq.

We write DpXq for the abstract DG category given by the common value of DrpXq and DlpXq under
this identification, and DcpXq for the full sub DG category corresponding to Dr

cpXq and Dl
cpXq,

which are also identified under this equivalence. DrpXq and DlpXq both have natural forgetful
functors to QCohpXq, which are intertwined by tensoring with ωX . This perspective is summarized
in the following diagram:

DlpXq �

ωX //

ol

��

DrpXq

or

��
QCohlpXq �

ωX // QCohrpXq

so that DpXq

ol

��

or

&&
QCohpXq �

ωX // QCohpXq

,

where QCohlpXq and QCohrpXq are just the category QCohpXq

Remark A.2.4. Throughout, when defining a functor involving (potentially several copies of) the
category DpXq, we will prescribe the values of the functor in terms of a particular choice of real-
ization DrpXq or DlpXq for each copy of DpXq, with the extension to all other choices of concrete
realizations of DpXq implicitly specified via the above equivalence.

Remark A.2.5. Note that the above equivalence is exact up to a cohomological degree shift of
dX � dimKX, so that the category DpXq inherits two different t-structures, which differ only by this
shift. We choose to preference the right t structure, and all statements about exactness of functors
involving DpXq will be given in these terms. This t-structure will be the one which corresponds
to the perverse t-structure on constructible sheaves under the Riemann-Hilbert correspondence. In
particular, under this identification ωX P DpXq is the dualizing sheaf, ωXr�dXs P DpXq

♥ is the IC
sheaf, and KX :� ωXr�2dXs P DpXq is the constant sheaf.
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Definition A.2.6. The b! monoidal structure on DpXq is b! : DpXqb2 Ñ DpXq defined by

b! : DlpXq�DlpXq Ñ DlpXq Mb!N �MbOX N with P pmbnq � Pmbn�mbPn ,

for P P DX .

Remark A.2.7. This formula agrees with the usual definition of the tensor product of connections,
and tensor products of flat connections are flat. The corresponding functor b! : DrpXqbDrpXq Ñ
DrpXq is given by M b! N �M bOX N bOX ω

_
X .

Let 1 P DpXq denote the tensor unit, and note olp1q � OX and orp1q � ωX . We will often use
just b to denote this symmetric monoidal structure on DpXq.

Definition A.2.8. Let f : X Ñ Y be a map of smooth varieties. The inverse image functor f ! :
DpY q Ñ DpXq is defined by

f ! : DlpY q Ñ DlpXq f !pMq � fpMq equipped with the pullback flat connection.

Remark A.2.9. This functor is symmetric monoidal with respect to b!, and in particular maps the
tensor unit 1Y to 1X .

Remark A.2.10. The corresponding functor f ! : DrpY q Ñ DrpXq is given by

f !pMq � fpM bOY ω
_
Y q bOX ωX � fM bOX ωX{Y .

Definition A.2.11. The exterior product is defined by

b : DpXq �DpY q Ñ DpX � Y q by M bN � π!
XM b π!

YN ,

for πX : X � Y Ñ X,πY : X � Y Ñ Y .

Remark A.2.12. Note that

M bN � ∆!pM bNq

for M,N P DpXq and ∆ : X Ñ X �X the diagonal embedding.

Definition A.2.13. Let f : X Ñ Y again be a map of smooth varieties. The direct image functor is

f� : DrpXq Ñ DrpY q f�pMq � fpMbDXDXÑY q for DXÑY :� f !DY P pDX , f
�1DY q-Mod

where DXÑY � f !DY P DlpXq is defined in terms of DY P DlpY q as a left module, so that the
additional pDY ,DY q-bimodule structure on DY equips DXÑY with the structure of a pDX , f

�1DY q-
bimodule.

Definition A.2.14. The de Rham cochains functor is C
dR :� π� : DpXq Ñ VectK, where π : X Ñ pt.

The de Rham chains functor is CdR
 :� π! : DpXq Ñ VectK.

Remark A.2.15. Note that the de Rham cochain and chains functors are calculated as

C
dR : DrpXq Ñ Vect C

dRpX;Mq � πpM bDX OXq

C
dR : DlpXq Ñ Vect C

dRpX;Mq � πpωX bDX Mq .

Definition A.2.16. The sheaf internal hom functor

HomDpXqp�, �q : DpXqop �DpXq Ñ ShzpXq by HomDpXqpM,NqpUq � HomDpUqpj
!M, j!Nq ,

for M,N P DpXq, where j : U Ñ X is the open embedding.
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Remark A.2.17. Note that

Γ �Hom � Hom : DpXqop �DpXq Ñ Vect ΓpX,HomDpXqpM,Nqq � HomDpXqpM,Nq .

Definition A.2.18. The duality functor D : DcpXq
op Ñ DcpXq is defined by

D : Dr
cpXq

op Ñ Dl
cpXq DpMq � HomDrpXqpM,DXq ,

where DX P DrpXq is considered as a pDX ,DXq-bimodule so that DpMq, which is a priori an object
in ShzpXq, defines an object of DlpXq as desired.

Remark A.2.19. Note that D preserves coherence, but if M is not coherent, then the resulting object
of DX -Mod is not in general quasicoherent as an object of DpOXq.

Definition A.2.20. The genuine internal hom functor Homp�, �q : DcpXq
op b DpXq Ñ DpXq is

defined by

Homp�, �q : Dr
cpXq

op �DlpXq Ñ DlpXq HompM,Nq � HomDrpXqpM,N bOX DXq ,

where N bOX DX P DrpXq is considered as a pDX ,DXq-bimodule so that HompM,Nq P DlpXq as
above.

Remark A.2.21. Note that

C
dR�Hom � Hom : DcpXq

op�DpXq Ñ Vect C
dRpX,HomDpXqpM,Nqq � HomDpXqpM,Nq .

Further, we have
Homp�, �q � Dp�q b! p�q : DcpXq

op �DpXq Ñ DpXq ,

and in particular Homp�,1q � D : DpXqop Ñ DpXq; we could equivalently take this as the definition
of Hom.

Remark A.2.22. The pushforward and pullback functors f� and f ! above were defined on the entire
category DpXq, but their putative adjoints can not always be defined. In general, the best we can

do is the following: Let f : X Ñ Y again be a map of smooth varieties, and let Df !

c pY q be the full

subcategory of objects M P DcpY q such that f !DM P DcpXq is coherent, and similarly Df�
c pXq be

the full subcategory of objects M P DcpXq such that f�DM P DcpY q is coherent. Then we define

f� :� Df !D : Df !

c pY q Ñ DcpXq f! :� Df�D : Df�
c pXq Ñ DcpY q .

In various situations, these definitions simplify to more useful ones, as in the following propositions.

Proposition A.2.23. Let f : X Ñ Y be a smooth map of relative dimension d � dX � dY of smooth
varieties. Then f ! : DcpY q Ñ DcpXq preserves coherence, so that f� : DcpY q Ñ DcpXq is defined.
Moreover, in this case f� � f !r�2ds, and we have a natural isomorphism

HomDpXqpf
�M,Nq � HomDpY qpM,f�Nq

of functors DcpXq �DpY q Ñ Vect.

Proposition A.2.24. Let f : X Ñ Y be a proper map of smooth varieties. Then f� : DcpXq Ñ DcpY q
preserves coherence, so that f! : DcpXq Ñ DcpY q is defined. Moreover, in this case f! � f� and we
have a natural isomorphism

HomDpY qpf!M,Nq � HomDpXqpM,f !Nq

of functors DcpXq �DpY q Ñ Vect.
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A.3. The six functors formalism. Let DrhpXq the full subcategory of DpXq on bounded com-
plexes with regular holonomic cohomology modules.

Theorem A.3.1. There are functors

b! : DrhpXq�DrhpXq Ñ DrhpXq D : DrhpXq
op �
ÝÑ DrhpXq HomX : DrhpXq

op�DrhpXq Ñ DrhpXq ,

and for f : X Ñ Y natural adjunctions,

f� : DrhpY q
// DrhpXq : f�oo f! : DrhpXq

// DrhpY q : f !oo .

Moreover, these satisfy:

 for f : X Ñ Y smooth of relative dimension d, f� � f !r�2ds as in A.2.23 above;
 for f : X Ñ Y proper, f� � f! as in A.2.24 above;
 for f : X Ñ Y , there are natural equivalences DY f� � f!DY , DXf� � f !DY ;
 b! defines a symmetric monoidal structure on DrhpXq; and
 for f : X Ñ Y , there are natural equivalences

f!pMbf�Nq � f!pMqbN HomY pf!M,Nq � f�HomXpM,f !Nq f !HomY pM,Nq � HomXpf
�M,f !Nq .

 For a Cartesian square

(A.3.1) Z
g̃ //

f̃
��

X

f
��

Y
g // W

there is a natural isomorphism f̃� � g̃
! � g! � f� .

Definition A.3.2. The b� tensor structure b� : DrhpXq
�2 Ñ DrhpXq is defined by pM,Nq ÞÑ

∆�pM bNq.

Definition A.3.3. The constant D module on X is KX � π�Kpt P DrhpXq, where π : X Ñ pt and
Kpt P Dpptq is the object corresponding to K P VectK � Dpptq.

Example A.3.4. If X is smooth of dimension dX , then KX � ωXr�2dXs is a shift of the dualizing
sheaf, as in Remark A.2.5.

Definition A.3.5. The de-Rham (Borel-Moore) (co)chains on X are

CpXq � π!π
!Kpt CBM

 pXq � π�π
!Kpt CpXq � π�π

�Kpt C
c pXq � π!π

�Kpt P Dpptq

where π : X Ñ pt and Kpt P Dpptq are as in the preceding definition.

Remark A.3.6. Note that we use cochain complexes throughout, and do not use the convention
of reversing the grading on homology. Thus, classes in homology which are correspond to higher
dimensional cycles geometrically contribute to the homology groups of lower (cohomological) degree.

Example A.3.7. For X a smooth variety of dimension dX , we have an isomorphism CBM
 pXq �

C
dRpXqr2dXs.

Remark A.3.8. The unit and counit of the above adjunctions for f : X Ñ Y give canonical maps

AÑ f�f
�A and f!f

!AÑ A .

Applying these to A � KY and A � ωY , respectively, and composing with π� for π : Y Ñ pt, we
obtain maps

f� : CpY q Ñ CpXq and f� : CpXq Ñ CpY q
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of objects in Dpptq � Vect, as expected for usual chains and cochains.
If f is proper, then we similarly have maps

f� : C
c pY q Ñ C

c pXq and f� : CBM
 pXq Ñ CBM

 pY q ,

while if f is smooth of relative dimension d � dX � dY , then we have maps

f� : CBM
 pY q Ñ CBM

 pXqr�2ds and f� : C
c pXq Ñ C

c pY qr�2ds .

Finally, if f is proper and smooth of relative dimension d, then we have maps

f� : CpY q Ñ CpXqr�2ds and f� : CpXq Ñ CpY qr�2ds .

A.4. The de Rham functor and Riemann-Hilbert correspondence. Throughout this sec-
tion, let X be a smooth, finite dimensional variety over K � C, and let Ω

X P ShzpXq denote the
algebraic de Rham complex, viewed as a complex of sheaves with the usual de Rham differential.

Remark A.4.1. Each Ωi
X P OX -Mod is a coherent OX module, but the differential on Ω

X is not
OX linear. Rather, the de Rham differential ddR P DiffpΩi,Ωi�1q is a differential operator, so the
de Rham complex can equivalently be described in terms of the induced complex of D modules
Ω
X,D � Ω

X bOX DX P DrpXq, recalling DiffpF,Gq � HomDpXqpFD,GDq.

Proposition A.4.2. There is a natural quasiisomorphism Ω
X,D

�
ÝÑ ωXr�2dXs � KX P DrpXq.

Example A.4.3. For M P DpXq, applying this resolution to the calculation of de Rham cochains of
M l P DlpXq following A.2.15 yields

C
dRpX;Aq � πpωX bDX Mq � ΓpX,Ω

X bOX M
lqr2dXs

where Ω
X bOX M P ShzpXq denotes the usual de Rham complex with coefficients in a com-

plex of OX modules with flat connection. For X smooth and projective, this is calculated by
ΓpXan,Ω

Xan bOXan M
anq where Ω

Xan bOXan M
an P ShpXan;Cq denotes the analytic variant of the

above de Rham complex.

Definition A.4.4. The analytic de Rham functor is

dR : DpXq Ñ DbpXq defined by dRpMq � Ω
Xan bOXan M

l,an
r2dxs ,

for each M P DpXq, where DbpXq � DbpXpCqq denotes the derived category of sheaves on X in the
analytic topology, as in subappendix A.5.

Let Db
cpXq � Db

cpXpCq;Cq denote the bounded derived category constructible sheaves on X in the
analytic topology, as defined in loc. cit..

Theorem A.4.5. The de Rham functor restricts to a derived equivalence dR : DrhpXq Ñ Db
cpXq.

Moreover, it naturally intertwines the six functors operations stated in Theorems A.3.1 and A.5.3,
with the caveat that it intertwines the b� tensor structure on DrhpXq of Definition A.3.2 with that
of Theorem A.5.3.

Remark A.4.6. The object OX P DlpXq or equivalently ωX P DrpXq corresponds to

dRpOXq � Ω
Xr2ns � KXr2ns

which is the dualizing sheaf in Db
cpXq. Equivalently, the objects KX � OXr�2ns and ICX � OXr�ns

correspond to the constant sheaf KX and the intersection cohomology sheaf ICX � KXrns, in keeping
with Remark A.2.5.
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A.5. Constructible Sheaves. Let X be a quasiprojective algebraic variety over C; we use the
same notation to denote XpCq in the analytic topology. Let ShpX;Kq denote the category of
sheaves of K vector spaces on X and DbpXq and D�pXq the bounded and bounded below derived
categories; we fix the base coefficient field K once and for all, and supress it from the notation
throughout.

Definition A.5.1. A stratification of X is a finite collection pXsqsPS of disjoint, smooth, connected,
locally closed subvarieties such that X � YsPSXs, and for any s, t P S the intersection Xs XXt is
either empty or Xt.

The set S is equipped with the closure partial order, defined by t ¤ s if Xt � Xs.

Definition A.5.2. A sheaf F P ShpX,Kq is constructible with respect to a stratification pXsqsPS if
its restriction F|Xs to each stratum Xs is a finite rank local system; F is constructible if it is
constructible with respect to some stratification of X.

A complex F P DbpX,Kq is constructible with respect to a stratification if its cohomology sheaves
HkpFq are constructible with respect to that stratification for each k; F is constructible if it is
constructible with respect to some stratification of X.

Let ShcpXq denote the abelian category of constructible sheaves, Db
cpXq its bounded derived

category, and similarly ShSpXq and Db
SpXq the categories of sheaves constructible with respect to

a fixed stratification pXsqsPS. The canonical functor Db
cpXq Ñ DbpXq is fully faithful, so that

Db
cpXq is equivalent to the full subcategory of DbpXq of constructible objects, and similarly for

Db
SpXq. Let D�

c pXq and D�
S pXq denote the analogous bounded below derived categories. We

identify the Db
cpptq � Db

fgpK-Modq � PerfK with the bounded derived category of complexes with
finite dimensional cohomology throughout.

Theorem A.5.3. There are functors

b : Db
cpXq�Db

cpXq Ñ Db
cpXq DX : Db

cpXq
op Ñ Db

cpXq HomX : Db
cpXq

op�Db
cpXq Ñ Db

cpXq ,

and for f : X Ñ Y natural adjunctions,

f� : Db
cpY q

// Db
cpXq : f�oo f! : Db

cpXq
// Db

cpY q : f !oo .

These satisfy the standard six functor formalism compatibilities, as in A.3.1 above.

Definition A.5.4. The constructible (Borel-Moore) (co)chains on X are

CpXq � π!π
!Kpt CBM

 pXq � π�π
!Kpt CpXq � π�π

�Kpt C
c pXq � π!π

�Kpt P Db
cpptq

where π : X Ñ pt is the unique map. More generally, for A P Db
cpXq we define CpX;Aq � π�A

and CpX;Aq � π!A.

Remark A.5.5. The above objects are equivalent to those from Definition A.3.5, by the Riemann-
Hilbert correspondence A.4.5, so there is no ambiguity in the notation.

Remark A.5.6. The above objects satisfy the same functoriality as in Remark A.3.8, again by the
Riemann-Hilbert correspondence A.4.5.

Remark A.5.7. The diagonal map ∆ : X Ñ X � X endows CpXq P CommpPerfKq with the
structure of a commutative algebra and CpXq P CoCommpPerfKq a cocommutative coalgebra.

Definition A.5.8. The (Borel-Moore) (co)homology groups of X are defined as the images of the
objects in Definition A.5.4 under H : DpK-Modq Ñ K-ModZ.
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Remark A.5.9. The functor H is lax monoidal, so that HpXq P CommpK-ModZq is again a
commutative algebra; similarly, but via universal coefficients, HpXq P CoCommpK-ModZq is a
cocommutative algebra.
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Appendix B. Equivariant Cohomology

B.1. Equivariant sheaves. In this subsection, we explain the formalism of equivariant sheaf the-
ory, and how it gives rise to equivariant cohomology. We review the theory of equivariant D
modules in Section 15 of the main body of the present work. We give the exposition here in terms
of constructible sheaves.

Let X be a quasiprojective algebraic variety over C, G a connected reductive algebraic group,
and K the compact real form of G; we use the same notation to denote XpCq, GpCq and KpRq in
the analytic topology. In particular, the topological space X together with the action of G or K
satisfies the hypotheses of the references [BL94] and [GKM97], which we follow closely throughout.

Let Db
GpXq and D�

GpXq denote the bounded, and bounded below, derived categories of G equi-
variant sheaves on X, as defined in 2.2 and 2.8 of [BL94].

Remark B.1.1. The category Db
GpXq can be presented as the category DbpX{Gq of sheaves on the

quotient stack X{G, viewed as a simplicial space, and in particular we have canonical functors

forG : Db
GpXq Ñ DbpXq q� : DbpX̄q Ñ Db

GpXq

defined by forgetting the equivariant structure, and by pullback along the canonical map q to the
quotient topological space X̄, respectively. The latter is an equivalence if the action of G is free.

Definition B.1.2. An equivariant sheaf F P Db
GpXq is constructible with respect to a stratification

if the underlying sheaf in DbpXq is constructible.

We denote the bounded derived category of G equivariant constructible sheaves by Db
G,cpXq, and

similarly for D�
G,cpXq.

Theorem B.1.3. For H a subgroup of G, there are restriction and induction adjunctions:

ResGH : Db
G,cpXq

// Db
H,cpXq : IndGH,�oo IndGH,! : Db

H,cpXq
// Db

G,cpXq : ResGHoo

Moreover, there are functors as in A.5.3, satisfying the same adjunctions and relations, defined for
G equivariant maps f : X Ñ Y . These functors all commute with ResGH , while f� and f ! commute

with IndGh,�, and f! and f� commute with IndGH,!.

Definition B.1.4. The equivariant (Borel-Moore) (co)chains on X are

CG pXq � π!π
!Kpt CG,BM

 pXq � π�π
!Kpt C

GpXq � π�π
�Kpt C

G,BMpXq � π!π
�Kpt P Db

G,cpptq ,

where π : X Ñ pt is the unique map. More generally, for A P Db
G,cpXq, we define CpX;Aq � π�A

and CpX;Aq � π!A.

Remark B.1.5. The functoriality properties outlined in Remark A.3.8 hold for equivariant maps.
In particular, by Remark A.5.7, C

GpXq P CommpDb
G,cpptqq is a commutative algebra and CG pXq P

CoCommpDb
G,cpptqq is a cocommutative coalgebra.

Remark B.1.6. There is a functor H : Db
G,cpptq Ñ K-ModZ given by forgetting the equivariant

structure and applying the usual cohomology object functor. This evidently does not depend on
the equivariant structure, and for example HpC

GpXqq � HpXq is just the usual cohomology.

There is another functor on Db
G,cpptq which is the equivariant analogue of the cohomology object

functor: the data of the equivariant structure defines a functor Db
G,cpptq Ñ DbpBGq and composing

with the global sections functor π� : DbpBGq Ñ Dbpptq gives the desired functor Db
G,cpptq Ñ
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K-ModZ. This functor is lax monoidal, so that the image of Kpt � C
Gpptq under it defines a

commutative algebra object, which we denote by H
Gpptq P CommpK-ModZq.

The object C
Gpptq is the monoidal unit of Db

G,cpptq, so that every object is canonically a module

object for it, and thus the above functor lifts to define a functor H
G : Db

G,cpptq Ñ H
Gpptq-ModZ,

which we call the equivariant cohomology object functor.
More generally, the above functor π� : Db

G,cpptq Ñ D�pptq lifts to a functor G : Db
G,cpptq Ñ

D�
fgpH


Gpptqq.

Definition B.1.7. The equivariant (Borel-Moore) (co)homology groups of a G space X are the
images of the objects in Definition B.1.4 under H

G : Db
G,cpptq Ñ H

Gpptq-ModZ.

Remark B.1.8. The image H
GpC


Gpptqq � H

Gpptq is given by the object defined previously, so the
notation is consistent.

For the remainder of this section, let S � H
Gpptq P CommpK-ModZq. Let C�pSq denote the

DG category of bounded below DG modules over S, K�pSq the homotopy category obtained by
quotienting by homotopy equivalences, D�pSq the derived category obtained by localizing at quasi-
isomorphisms, and similarly C�

fgpSq,K
�
fgpSq and D�

fgpSq those with finitely generated cohomology

modules. The canonical functor D�
fgpSq Ñ D�pSq is fully faithful, so that D�

fgpSq is equivalent to the

full subcategory of objects with finitely generated cohomology.

Remark B.1.9. There are standard functors on categories of DG modules

bS : D�pSq�2 Ñ D�pSq H : D�pSq Ñ S-ModZ DS : D�
fgpSq Ñ D�

fgpSq HomS : D�
fgpSq�D�pSq Ñ D�pSq

preserving the subcategories D�
fgpSq.

Theorem B.1.10. There is a canonical triangulated equivalence LG : D�pSq �
ÝÑ D�

Gpptq, inverse to a

functor D�
Gpptq Ñ D�pSq generalizing G defined in Remark B.1.6, and intertwining the equivariant

cohomology and tensor product functors. Further, this induces an equivalence D�
fgpSq � D�

G,cpptq
of full triangulated subcategories, inverse to G of loc cit., and intertwining the duality and internal
Hom functors.

The intertwining conditions are stated precisely in Theorem B.2.4 below, alongside those for
another model of Db

G,cpptq, which we discuss in the following section.

B.2. Goresky-Kottwitz-MacPherson Koszul Duality. Let Λ � HpGq P CoAsspK-ModZq
denote the homology of G, considered as a graded cocommutative coalgebra over K. The group
structure maps define a compatible unit, antipode, and associative product on Λ, making it into
a cocommutative Hopf algebra over K; see also Section 23. Let DbpΛq,Db

fgpΛq,D
�pΛq,D�

fgpΛq the

bounded, bounded below and/or with finite dimensional cohomology derived categories, as above.
Our convention is such that HpGq is non-positively graded so that it acts on modules by non-
positive degree endomorphisms of a complex.

Remark B.2.1. The cocommutative coalgebra structure on Λ gives a lift of the tensor product over
K to bK : D�pΛq�2 Ñ D�pΛq which defines a symmetric monoidal structure on D�pΛq. Similarly,
the antipode on Λ gives a lift of the dual over K to DΛ � HomKp�,Kq : D�

fgpΛq Ñ D�
fgpΛq and

together these define an internal Hom functor HomΛ : D�
fgpΛq �D�pΛq Ñ D�pΛq.
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Remark B.2.2. The action map G�X Ñ X on a G space X defines a natural Λ module structure
on HpXq, and dually HpXq, so that they naturally lift to objects HpXq, H

pXq P Λ-ModZ.
More generally, the forgetful functor Db

G,cpptq Ñ Db
cpptq � PerfK lifts to E : Db

G,cpptq Ñ D�
fgpΛq,

and similarly for D�.

Remark B.2.3. The graded associative algebras S � H
Gpptq and Λ � HpGq are Koszul dual in the

sense of [BGG71, BGS96]. In particular, there is a canonical functor
(B.2.1)

t : C�pΛq Ñ C�pSq pN, dN q ÞÑ tpN, dN q �

�
SbK N , dtpNqps, nq �

¸
i

ξisb xin� sb dN pnq

�

where pxiq denotes a basis for the generators of Λ over K and pξiq the dual basis for the generators
of S. There is a functor h : C�pSq Ñ C�pΛq defined similarly, and these induce inverse equivalences
on D� and Db

fg.

The object tpNq P C�pSq above can also be understood as the total complex of the double
complex:

(B.2.2)

In the case N � CpX;Kq for a G space X as in Remark B.2.2, this is precisely the double
complex presentation that induces the Serre spectral sequence for the cohomology of the fibration
X ãÑ X{G � BG.

The results of this section on models for Db
G,cpptq and their compatibilities are summarized

in the following theorem from [GKM97], following [BL94] and the Koszul duality results from
[BGG71, BGS96].

Theorem B.2.4. Let G be a connected Lie group, Λ � HpG;Kq, and S � H
Gppt;Kq. There exist

commuting triangulated equivalences

Db
G,cpptq

E

zz

G

$$
Db

fgpΛq
t // Db

fgpSq
h

oo

such that we have compatible commutativity of the following diagrams:

Db
fgpΛq

�2 //

bK
��

Db
G,cpptq�2 //

b
��

Db
fgpSq�2

bS
��

Db
fgpΛq

// Db
G,cpptq // Db

fgpSq

Db
fgpΛq

//

H

��

Db
G,cpptq //

H

yy

H
G

%%

Db
fgpSq

H

��
Λ-ModZ S-ModZ

Db
fgpΛq

�2 //

HomΛ

��

Db
G,cpptq�2

Hom

��

// Db
fgpSq�2

HomS
��

Db
fgpΛq

// Db
G,cpptq // Db

fgpSq

Db
fgpΛq

//

DΛ

��

Db
G,cpptq //

D
��

Db
fgpSq

DS
��

Db
fgpΛq

// Db
G,cpptq // Db

fgpSq
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In particular, for a G space X and A P Db
G,cpXq we have

HpX;Aq � H � E � π�pAq H
GpX;Aq � H �G � π�pAq , and

HpX;Aq � H � E � π!pAq HG
 pX;Aq � H �G � π!pAq .

Remark B.2.5. As we explain in Example 15.0.13, in the D module setting the preceding theorem
gives rise to the usual Cartan model for equivariant de Rham cohomology, by applying the functor
from Equation B.2.1 to the de Rham complex together with its canonical equivariant structure.

B.3. The equivariant localization theorem. In this section, we recall the equivariant localiza-
tion theorem, originally proved in [AB95], in the setting of sheaf cohomology, following Section 6.2
of [GKM97]. In fact, we recall a variant that uses the homological excision sequence rather than the
more commonly stated version, which relies on excision in cohomology; both variants follow readily
from the results of loc. cit.. For simplicity, we restrict to the case that G � pC�qn is an algebraic
torus, so that we identify the equivariant cohomology of a point

S � H
Gpptq � Krgr2ss ,

with the coordinate ring of the vector space underlying the Lie algebra g, shifted in cohomological
degree by �2.

For each point x P X, let Gx be (the connected component of the identity in) the stabilizer in G
of x, and let gx � LiepGxq be its Lie algebra. Further, let ι : Z ãÑ X be the inclusion of a closed,
G-invariant subvariety, j : U � XzZ ãÑ X the inclusion of the complementary open, and recall that
for each A P Db

GpXq the homological excision exact triangle

ι�ι
!AÑ AÑ j�j

!A induces CG pZ;Aq Ñ CG pX;Aq Ñ CG pX,Z;Aq ,

in the category Db
fgpSq, by applying E � π!. We now state the main result of this section

Theorem B.3.1. [GKM97]Let Z ãÑ X be a closed, G-invariant subvariety of X containing the G-
fixed points XG � Z. Then HG

 pX,Z;Aq is a torsion module over S, with support

supppHG
 pX,Z;Aqq �

¤
xPXzZ

gx

contained in the union of the (finitely many distinct) stabilizer subalgebras gx of points x P XzZ. In
particular, if tfi P Su generate an ideal whose corresponding subvariety of Spec S contains YxPXzZgx,
then the natural map

HG
 pZ;Aq

�
ÝÑ HG

 pX;Aq is an isomorphism over HG
 pptqrf�1

i s.
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Appendix C. Operads

C.1. Operads and algebras. Let C be a symmetric monoidal category with monoidal structure
b : C� CÑ C, tensor unit uC P C.

Definition C.1.1. A (symmetric, coloured) operad O in C is:

 A collection col O, elements of which are called colours or objects of O
 For each finite set I and indexed collection of objects tciuiPI and d of O, an object OptciuiPI , dq P
C called the multilinear operations in O.

 For each map of finite sets π : I Ñ J , and indexed collections of objects tciuiPI , tdjujPJ and
e, a morphism â

jPJ

OptciuiPIj , djq b OptdjujPJ , eq Ñ OptcIuiPI , eq

of objects of C called the composition law in O.
 For each object c P C, a morphism 1c P Opc, cq called the identity map on c, which is both

a left and right unit for the composition law.

 For each sequence of maps I
π
ÝÑ J

ϕ
ÝÑ K, and indexed colections of objects tciuiPI , tdjujPJ ,

tekukPK and f , the commutativity of the diagramÂ
jPJ OptciuiPIj , djq b

Â
kPK OptdjujPJk , ekq b OptekukPK , fq //

��

Â
kPK OptciuiPIk , ekq b OptekukPK , fq

��Â
jPJ OptciuiPIj , djq b Optdju, fq // OptciuiPI , fq

.

A map ϕ : OÑ O1 of operads in C is:

 A map col OÑ col O1

 For each map of finite sets π : I Ñ J , and indexed collections of objects tciuiPI and d of O,
a morphism

OptciuiPIj , dq Ñ O1ptϕpciquiPIj , ϕpdqq

such that 1c maps to 1ϕpcq for each c P col O.
 For each map of finite sets π : I Ñ J , and indexed collections of objects tciuiPI , tdjujPJ and
e, the commutativity of the diagramÂ

jPJ OptciuiPIj , djq b OptdjujPJ , eq //

��

OptciuiPI , eq

��Â
jPJ O

1ptϕpciquiPIj , ϕpdjqq b OptϕpdjqujPJ , ϕpeqq // O1ptϕpciquiPI , ϕpeqq

.

The collection of operads in C thus defines a category, denoted OppCq. We write simply Op in
the case that C � Set, and OpK in the case that C � K-Mod.

Let AlgOpO
1q denote the space HomOppCqpO,O

1q of map of operads OÑ O1.

Remark C.1.2. For an operad O with a single object col O � tcu, we use the notation OpIq �
OptcuiPI , cq and Opnq � OpIq for I � t1, ..., nu. Note that OpIq has the structure of an AutfSetpIq
module, and similarly Opnq an Sn module in C.
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Example C.1.3. Let D be a symmetric monoidal category enriched over C. Then D defines an
operad OD P OppCq in C, with objects given by objects of D and multilinear operations defined by

ODptciuiPI , dq � HomDpbiPIci, dq .

In this case, we abreviate AlgOpODq � AlgOpDq.
In particular, if C is a closed monoidal category, then for any operad O in C, we have a canonical

category AlgOpCq :� AlgOpOCq of algebras over O internal to C. This definition generalizes to
arbitrary symmetric monoidal C by hom-tensor adjunction, though OC no longer defines an operad
in C.

Example C.1.4. Suppose C has initial object ØC. The trivial operad trivC in C is defined as having a
single object, with multilinear operations given by trivCpØq � uC, trivCptptuq � uC and trivpIq � ØC

for |I| � 0, 1. The category of triv algebras AlgtrivC
pCq � C is equivalent to the underlying category

C.

Example C.1.5. The commutative operad CommK in VectK is defined as having a single object,
with multilinear operations given by CommKpIq � K for all I P fSet. For C a K linear symmetric
monoidal category, the category of CommK algebras CommKpCq :� AlgCommKpCq in C is the usual
category of (unital) commutative algebra objects in C.

Example C.1.6. The associative operad AssK in VectK is defined as having a single object, with
multilinear operations given by AssKpIq � KrSIs the regular representation of the symmetric group
SI � AutfSetpIq on I for each I P fSet. For C a K linear symmetric monoidal category, the category
of AssK algebras AssKpCq :� AlgAssKpCq in C is the usual category of (unital) associative algebra
objects in C.

Example C.1.7. Let M � pMnqnPN with Mn P KrSns-Mod be a sequence of symmetric group
modules in VectK. The free operad FpMq P OppVectKq on M is characterized by the property that

AlgFpMqpOq � `nPNHomKrSnspMn,Opnqq

for each O P OppVectKq.
More generally, we say an operad O is generated over M if there exist R � pRnqnPN with Rn P

KrSns-Mod together with maps Rn ãÑ FpMqpnq defining an operadic ideal of FpMq, such that
O � FpMq{R.

Example C.1.8. The associative operad AssK is the free operad on AssKp2q � Km ` Kmop P
KrS2s-Mod given by the regular representation, subject to the single relation

KAsspmq ãÑ Fp3q defined by 1 ÞÑ Asspmq � m � pmb 1q �m � p1bmq P Fp3q .

The commutative operad CommK is generated by the trivial representation Commp2q � Km P
KrS2s-Mod and subject to the same single relation.

Example C.1.9. The Lie operad LieK P OppVectKq is the operad generated by Liep2q � Kb P
KrS2s-Mod given by the sign representation, subject to the relation

KJacpπq ãÑ Fp3q defined by 1 ÞÑ Jacpπq � π � p1b πq � π � pπ b 1q � π � p1b πq � σ12 .

Example C.1.10. Let D be a category enriched over C. Then D defines an operad in C, with objects
given by those of D and multilinear operations defined by

ODptciuiPI , dq �

#
HomDpc, dq if |I| � 1

Ø otherwise
.
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In fact, there is an equivalence of categories between the category CatpCq of categories enriched in
C, and the category OppCq{trivC

of operads in C over trivC, as long as the initial object of C is strict.

Example C.1.11. Let D be a symmetric monoidal category enriched over C and D1 ãÑ D be a
subcategory. Then D1 is not necessarily closed under the symmetric monoidal structure on D, and
thus does not necessarily define a symmetric monoidal subcategory. However, D1 still defines a
suboperad OD1 ãÑ OD given by

OD1ptciuiPI , dq � HomDpbiPIci, dq .

In this sense, operads are a natural generalization of symmetric monoidal categories, and are
sometimes called multicategories or pseudo-tensor categories, as in C.6.5. Again, we abreviate
AlgOpOD1q � AlgOpD

1q.

Example C.1.12. Let C be a symmetric monoidal category. Then Cop is canonically symmetric
monoidal, and we define CoAlgOpCq � AlgOpC

opqop. In particular, we define coassociative coalgebras
and cocommutative coalgebras in C by CoAsspCq � CoAlgAsspCq and CoCommpCq � CoAlgCommpCq.

Remark C.1.13. Let ϕ : O Ñ O1 a map of operads in C. There is a functor ϕ� : AlgO1pO
2q Ñ

AlgOpO
2q.

Proposition C.1.14. Let F : CÑ C1 be a lax symmetric monoidal functor. Then F naturally defines
a functor F : OppCq Ñ OppC1q and in particular defines FO : AlgOpO

1q Ñ AlgF pOqpF pO
1qq for each

O,O1 P OppCq. Further in particular, we obtain functors AlgOpCq Ñ AlgF pOqpF pCqq Ñ AlgF pOqpC
1q.

Example C.1.15. The functor Cp�;Kq : Top Ñ VectK is symmetric monoidal, and thus defines a
functor Cp�;Kq : OppTopq Ñ OppVectKq, as well as AlgOpTopq Ñ AlgF pOqpVectKq.

Example C.1.16. The functor H : VectK Ñ K-ModZ of taking the cohomology object is lax sym-
metric monoidal, and thus defines a functor H : OppVectKq Ñ OppK-ModZq. The precomposition
of this functor with Cp�;Kq : OppTopq Ñ OppVectKq from C.1.15 defines Hp�;Kq : OppTopq Ñ
OppK-ModZq the homology operad functor.

C.2. The Hadamard tensor product and Hopf operads. Let C be a symmetric monoidal
category. Define the Hadamard tensor product

bH : OppCq �OppCq Ñ OppCq by pObH O1qptciu, dq � Optciu, dq b O1ptciu, dq

for each finite set I and indexed collections tciuiPI and d of objects of O. The composition morphisms
are defined as the tensor products of those for O and O1.

Proposition C.2.1. The category OppCq is symmetric monoidal with respect to bH , and tensor unit
given by CommC.

Proposition C.2.2. Let O,O1 P OppCq. The symmetric monoidal structure on C lifts to a bifunctor

AlgOpCq �AlgO1pCq Ñ AlgObHO1pCq .

Definition C.2.3. A Hopf operad in C is a coassociative coalgebra object in the category OppCq.

Concretely, a Hopf operad is an operad O together with morphisms ∆ : O Ñ Ob
H2 and ε : O Ñ

CommC satisfying the usual relations of a coalgebra.
A Hopf operad is called cocommutative if it is cocommutative as a coalgebra object. We de-

note the category of Hopf operads in C by HOppCq � CoAsspOppCqq and the full subcategory of
cocommutative Hopf operads by HOpcopCq � CoCommpOppCqq.
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Proposition C.2.4. Let O be a Hopf operad with structure maps ∆ : OÑ Ob
H2 and ε : OÑ CommC

as above. Then the bifunctor

b : AlgOpCq �AlgOpCq Ñ AlgOpCq defined by pA,Bq ÞÑ ∆�pAbBq

defines a monoidal structure on the category AlgOpCq of O algebras in C. If O is cocommutative,
then this defines a symmetric monoidal structure.

Proposition C.2.5. Let O be a cocommutative Hopf operad in C. Then there is a natural symmetric
monoidal equivalence

AlgOpOppCqq � OppAlgOpCqq ,

preserving the forgetful functor to OppCq, where AlgOpOppCqq is defined using the Hadamard
monoidal structure on OppCq and equipped with the monoidal structure coming from the Hopf
structure on O, while OppAlgOpCqq is defined using the latter, and is equipped with the former.

Corollary C.2.6. There is an equivalence HOppCq � OppCoAsspCqq inducing HOpcopCq � OppCoCommpCqq.

Example C.2.7. There is a natural symmetric monoidal lift Cp�;Kq : Top Ñ CoCommpVectKq of
the functor of Example C.1.15, by Remark A.5.7. Thus, there is a natural lift Cp�;Kq : OppTopq Ñ
HOpcopVectKq.

Example C.2.8. Let C be a cartesian monoidal category. Then every object of C is canonically a
cocommutative colagebra, determining a canonical equivalence C � CoCommpCq, with structure
map given by the diagonal. This induces a canonical equivalence OppCq � HOpcopCq.

C.3. The Boardman-Vogt tensor product. There is an alternate symmetric monoidal structure
called the Boardman-Vogt tensor product [BV73], which is defined on cocommutative Hopf operads
HOpcopCq by the following:

Proposition C.3.1. There is a unique symmetric monoidal structure � : HOpcopCq�2 Ñ HOpcopCq
equipped with natural isomorphisms

AlgO�PpCq � AlgOpAlgPpCqq .

The preceding proposition can be interpreted as the statement that the Boardman-Vogt tensor
product makes cocommutative Hopf operads into a closed cartesian symmetric monoidal category,
with internal Hom objects HompO,Pq � AlgOpPq.

C.4. The little d-cubes operad Ed. Let �d � p�1, 1qd denote the open cube of dimension d,
coordinatized as a submanifold of Rd.

Definition C.4.1. A map f : �d Ñ �d is called a rectilinear embedding if it is defined by

fpx1, ..., xdq � pa1x1 � b1, ..., adxd � bdq

for some a1, ..., ad, b1, ..., bd P R with ai ¡ 0. More generally, an embedding f : I � �d Ñ �d for some
finite set I is called rectilinear if it its restriction to tiu � �d is rectilinar for each i P I.

Let RectId P Top denote the space of rectilinear embeddings, topologized as an open subset of
pR2dqI , or equivalently as a subspace of EmbpI � �d, �dq with the compact-open topology.

Definition C.4.2. The little d-cubes operad Ed P OppTopq is the single coloured operad in Top
defined by

EdpIq � RectId with �jPJ Rect
Ij
d � RectJd Ñ RectId

given by the obvious composition of rectilinear embeddings.
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Remark C.4.3. The little d-cubes operad defines an operad CpEd;Kq P OppVectKq in VectK, as in
Examples C.1.15 and C.2.7.

Definition C.4.4. Let I be a finite set and X P Top a topological space. The configuration space
ConfIpXq of configurations of I points in X is the space

ConfIpXq � EmbpI,Xq � pXqIztpxiq|xi � xj for i � ju P Top

topologized as an open subset of pRdqI , or equivalently with the compact-open topology.

Note there is a canonical map ev : RectId Ñ ConfIp�dq, given by evaluation at the origin t0u P �d

for each i P I.

Proposition C.4.5. The evaluation map ev : RectId
�
ÝÑ ConfIp�dq defines a homotopy equivalence.

Remark C.4.6. Fix a homeomorphism �d
�
ÝÑ Rd. This induces homemorphisms ConfIp�dq

�
ÝÑ

ConfIpRdq for each I, and thus the configuration spaces of points ConfIpRdq in Rd define a ho-
motopy equivalent model of Ed, by an enhancement of C.4.5 above.

The space of choices of homeomorphism �d
�
ÝÑ Rd is a torsor for the topological group Toppdq �

AutToppRdq, and the structure of an algebra in Top over Ed does not determine equivariance data
for the structure maps with respect to this action of Toppdq. Such additional data is equivalent to

a lift to an algebra over the unoriented d-cubes operad EToppdq
d , defined in 22.0.1.

Example C.4.7. The E0 operad. The tensor unit for unital cocommutative Hopf operads under
Boardman Vogt tensor product.

Proposition C.4.8. There is a homotopy equivalence of operads CpE1;Kq � AssK P OppVectKq.

The following was initally proved in [Dun88], and in the context of quasioperads in Theorem
5.1.2.2 in [Lur12]:

Theorem C.4.9. The Boardman-Vogt tensor product of the En and Em operads is canonically equiv-
alent to the En�m operad:

En � Em � En�m .

Remark C.4.10. Concretely, for n � 2 for example, the preceding Theorem identifies E2 algebras
with associative algebra objects in the category of associative algebras, or equivalently vector spaces
equipped with two compatible associative algebra structures.

Remark C.4.11. In the non-derived setting, the Eckmann-Hilton arguement implies that En alge-
bras for n ¥ 2 are necessarily commutative, and moreover that the various compatible associative
algebra structures are all canonically equivalent. However, this arguement fails to extend homotopy
coherently, and is for example obstructed by the induced Pn algebra structure on homology.

Remark C.4.12. There are canonical maps of operads En Ñ En�1 and induced forgetful functors
AlgEn�1

pVectq Ñ AlgEnpVectq, which correspond to forgetting one of the various compatible asso-
ciative algebra structures.

Definition C.4.13. The E8 operad is the colimit E8 � colimnEn of the En operads.

Proposition C.4.14. There is a canonical homotopy equivalence E8
�
ÝÑ Comm.

Remark C.4.15. Concretely, an algebra over the E8 operad is equivalent to a coherent system of
En algebras for each n P N. A commutative algebra evidently induces such a system, which defines
the above map, and the statement is that up to homotopy all E8 algebras are of this form.
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C.5. The pd� 1q-shifted Poisson operad Pd.

Definition C.5.1. The pd� 1q shifted Poisson operad is the operad Pd P OppVectKq generated by

Pdp2q � Km `Kπrd� 1s P KrS2s-Mod

where Km is the trivial representation and Kπ is the sign, subject to the relations

KJacpπqr2d� 2s ãÑ Fp3q defined by 1 ÞÑ Jacpπq � π � p1b πq � π � pπ b 1q � π � p1b πq � σ12 ,

KAsspmq ãÑ Fp3q defined by 1 ÞÑ Asspmq � m � pmb 1q �m � p1bmq

KDistpm,πqrd� 1s ãÑ Fp3q defined by 1 ÞÑ Distpm,πq � π � p1bmq �m � pπ b 1q �m � p1b πq .

where F � FpKm `Kπrd� 1sq P OppVectKq is the free operad on these generators.

Example C.5.2. The category AlgPdpVectKq is evidently given by the usual category of pd � 1q-
shifted Poisson algebras, that is, commutative algebras A P CommpVectKq together with a Lie
bracket π : Ab2 Ñ Ar1� ds such that π is a derivation of the product m.

Example C.5.3. Consider the operad HpEnq P OppVectKq, as defined in Example C.1.16. We have

HpEnqpIq � HpConfIpRdq;Kq

for each I P fSet. For each i, j P I, define the map

Fij : ConfIpRdq Ñ Sd�1 pxiqiPI ÞÑ pxi � xjq{|xi � xj |

and let ωij � F �
ijΩ P Hd�1pConfIpRdq;Kq where Ω P Hd�1pSd�1;Kq is a fixed choice of generator.

Note that the natural AutfSetpIq action on Hd�1pConfIpRdq;Kq satisfies π � ωij � ωπpiqπpjq.

The following theorem was proved by Arnold in the case d � 2 and by F. Cohen for d ¥ 2:

Theorem C.5.4. The cohomology ringHpConfIpRdq;Kq is generated by the classes ωij P H
d�1pConfIpRdq;Kq

for each i, j P I, subject to the relations:

 ωij � p�1qdωji ,
 ωijωjk � ωjkωki � ωkiωij � 0 , and
 ω2

ij � 0, for n odd.

Remark C.5.5. In fact, it was proved in loc. cit. that HpConfIpRdq;Zq is torsion free, and that
the above result remains true over Z.

Note that the map F12 : Conf2pRdq �
ÝÑ Sd�1 is a homotopy equivalence, inducing an identification

HpEd;Kqp2q � HpS
d�1;Kq � K`K_

ω12
rd� 1s

Thus, the above result implies that for d ¥ 2, the operad HpEd;Kq is generated by its arity two
operations, and these have the same symmetric group action and relations as the generators P2p2q
above, and we obtain:

Corollary C.5.6. The pd � 1q-shifted Poisson operad Pd � HpEd;Kq P OppVectKq is equivalent to
the homology of the litte d-disks operad Ed.
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C.6. The Beilinson-Drinfeld operad BDd and quantization of Pd algebras. Throughout, let
Kr~s � SympK~x1yq denote a graded polynomial ring over K with ~ of weight �1. The grading is
interpreted as defining a Gm action on A1

~ � Spec Kr~s. Let Db
fgpKr~sq denote the bounded derived

category of graded modules over Kr~s with finitely generated cohomology.

Remark C.6.1. The grading ensures an equivalence of the localization Db
fgpKr~�1sq � PerfK with

the bounded derived category of complexes over K with finite dimensional cohomology. Thus,
specialization over A1{Gm to the central and generic fibres defines symmetric monoidal functors

(C.6.1) p�q|t0u : Db
fgpKr~sq Ñ PerfK and p�q|t1u : Db

fgpKr~sq Ñ Db
fgpKr~�1sq � PerfK .

Definition C.6.2. The dimension 0 Beilinson-Drinfeld operad is the operad BD~
0 P OppDb

fgpKr~sqq
generated by

BD0p2q �
�
Kr~sm

~
ÝÑ Kr~sπr�1sx1y

�
P Db

fgpKr~srS2sq

where Kr~sm is the trivial representation and Kr~sπ is the sign, subject to the relations of the P0

operad C.5.1 extended linearly to Kr~s.

Example C.6.3. Concretely, an object A P AlgBD0
pDb

fgpKr~sqq is given by

 a complex pA, dq P Db
fgpKr~sq of graded Krhs modules,

 a commutative multiplication � : Ab2 Ñ A, and
 a Lie bracket t, u : Ab2 Ñ Ar�1s of degree �1 ,

such that t, u is a biderivation, as for a usual Poisson algebra, and moreover for each a, b P A,

dpa � bq � dpaq � b� p�1q|a|a � dpbq � ~ta, bu .
Note that the specialization at ~ � 0 of such an algebra is just a usual P0 algebra in PerfK, while for
~ � 0 the complex of generators is acyclic so that operations on pA, dq are compatibly trivializeable
up to homotopy so that the resulting object defines an E0 algebra.

Thus, the BD0 operad controls quantizations P0 algebras to E0 algebras, in the following sense:

Proposition C.6.4. There are canonical equivalences of operads

BD0|t0u � P0 P OppPerfKq and BD0|t1u � E0 P OppDb
fgpKr~�1sqq � OppPerfKq .

In particular, specialization over A1{Gm as in Equation C.6.1 defines symmetric monoidal functors

p�q|t0u : AlgBD0
pDb

fgpKr~sqq Ñ AlgP0
pPerfKq and p�q|t1u : AlgBD0

pDb
fgpKr~sqq Ñ AlgE0

pPerfKq .

Definition C.6.5. The dimension 1 Beilinson-Drinfeld operad is the operad BD1 P OppDb
fgpKr~sqq

generated by

BD1p2q � pKr~sm `Kr~smopq `Kr~sπx1y P Db
fgpKr~srS2sq

where Kr~sm `Kr~smop is the regular representation and Kr~sπ is the sign, subject to the relations
of the P1 operad C.5.1 extended linearly to Kr~s, together with the relation

Kr~sBDpm,πq ãÑ BD0p2q � FpBD1p2qq defined by 1 ÞÑ BDpm,πq � m�mop � ~π .

Example C.6.6. Concretely, an object A P AlgBD0
pDb

fgpKr~sqq is given by an associative algebra A,

together with a Lie bracket t, u : Ab2 Ñ A which is a biderivation of the associative product, and
satisfies

ab� p�1q|a||b|ba � ~ta, bu .
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Note that at ~ � 0 the product is commutative and thus A defines a usual Poisson algebra, while
for ~ � 0 the operation t, u is determined by the associative product, so that A is just a usual
associative algebra.

Thus, the BD1 operad classifies quantizations of P1 algebras to E1 algebras, in the following sense:

Proposition C.6.7. There are canonical equivalences of operads

BD1|t0u � P1 P OppVectKq and BD1|t1u � E1 P OppDb
fgpKr~�1sqq � OppPerfKq .

In particular, specialization over A1{Gm as in Equation C.6.1 defines symmetric monoidal functors

p�q|t0u : AlgBD1
pDb

fgpKr~sqq Ñ AlgP1
pPerfKq and p�q|t1u : AlgBD1

pDb
fgpKr~sqq Ñ AlgE1

pPerfKq .

More generally, for n ¥ 2, we make the following definition:

Definition C.6.8. The dimension n Beilinson-Drinfeld operad is the operad BDn P OppDb
fgpKr~sqq

defined as the image under the Rees construction of the operad En P OppPerfKq together with the
Postnikov filtration.

Remark C.6.9. This definition does not agree with the definitions given above when applied to the
cases n � 0, 1; the definitions stated above are the correct ones.

Generalizing Propositions C.6.4 and C.6.7 above, we have:

Proposition C.6.10. There are canonical equivalences of operads

BDn|t0u � Pn P OppVectKq and BDn|t1u � En P OppDb
fgpKr~�1sqq � OppPerfKq .

In particular, specialization over A1{Gm as in Equation C.6.1 defines symmetric monoidal functors

p�q|t0u : AlgBDnpD
b
fgpKr~sqq Ñ AlgPnpPerfKq and p�q|t1u : AlgBDnpD

b
fgpKr~sqq Ñ AlgEnpPerfKq .
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Appendix D. Functional Analysis

D.1. Topological Vector Spaces.

Definition D.1.1. A topological vector space over K is a vector space V P K-Mod with a complete,
separated, linear topology.

Let K-ModTop denote the category of topological vector spaces with continuous linear maps.

Example D.1.2. Any vector space V equipped with the discrete topology defines a topological vector
space V , with the propery that any linear map V ÑW is continuous.

All finite dimensional vector spaces will be considered with the discrete topology by default.

Proposition D.1.3. A discrete vector space V is canonically equivalent to the (filtered) colimit
V � colimkVk of its finite dimensional subspaces Vk P K-Modfg in the category K-ModTop.

Remark D.1.4. The preceding proposition defines a fully faithful embedding

K-Mod � IndpK-Modfgq ãÑ K-ModTop .

Example D.1.5. The discrete vector space t�1Krt�1s, or more generally Kpptqq{tnKrrtss, is presented
as the colimit

Kpptqq{tnKrrtss � colimkt
�kKrrtss{tnKrrtss .

Example D.1.6. Let V � limi Vi with Vi P K-Modfg be a pro-finite dimensional vector space. Then
V has a canonical profinite topology defined by the basis of neighbourhoods of 0 P V given by the
subspaces kerpπiq, where πi : V Ñ Vi is the canonical projection.

All pro-finite dimensional vector spaces will be considered with the pro-finite topology by default.

Proposition D.1.7. A pro-finite dimensional vector space V is canonically equivalent to the limit
V � limi Vi of its finite dimensional quotients Vi P K-Modfg in the category K-ModTop.

Remark D.1.8. The preceding proposition defines a fully faithful embedding PropK-Modfgq ãÑ K-ModTop.

Example D.1.9. The vector space Krrtss of formal power series is pro-finite, as it is given by the
limit

Krrtss � lim
n

Krrtss{tnKrrtss .

Definition D.1.10. A Tate vector space is a topological vector space V that admits a direct sum
decomposition V � U ` W for U a discrete vector space and V a pro-finite dimensional vector
space, as topological vector spaces.

Example D.1.11. The prototypical example of a Tate vector space is the field of Laurent series
Kpptqq, presented for example as Kpptqq � t�1Krt�1s `Krrtss.

D.2. Tensor structures on topological vector spaces. In this appendix, we summarize the
main results of the paper [Bei07] of Beilinson, building on Chapter 3.6 of [BD04]. All of the objects
will be of cohomological degree zero and all the functors non-derived, in contrast with our general
conventions. However, we remark that [Ras20b] establishes some analogous results in the derived
setting, which we will also need.

Let tViuiPI denote a finite collection of topological vector spaces Vi P K-ModTop, and consider
the algebraic tensor product biVi P K-Mod.
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Definition D.2.1. The b� symmetric monoidal structure b� : K-Mod�ITop Ñ K-ModTop is defined

by setting b�
i Vi P K-ModTop to be the completion of biVi with respect to the topology defined as

follows: a subspace Q � biVi is open if for every J � I and v P biPIzJVi there exist open subspaces
Pj � Vj for each j P J such that

bjPj b v � Q .

Remark D.2.2. The induced operad K-Mod�Top is defined, following Example C.1.3, by

HomK-Mod�Top
ptViu,W q :� HomK-ModTop

pb�
i Vi,W q � tF : �iVi ÑW | F is continuous and multilinearu .

In particular, an associative algebra object in the category K-Mod�Top is given by a topological
vector space A P K-ModTop together with an associative, bilinear product µ : AbAÑ A such that
the corresponding map A�AÑ A is continuous.

Definition D.2.3. The bch monoidal structure bch,τ : K-Mod�2
Top Ñ K-ModTop is defined for each

linear order τ : t1, ..., nu Ñ I by setting

bch,τ
i Vi � Vτp1q b

ch ...bch Vτpnq P K-ModTop

to be the completion of biVi with respect to the topology defined as follows: a subspace Q � biVi
is open if for every a P t1, ..., nu and v P Vτpa�1q b ...b Vτpnq there exists an open subspace Pa � Va
such that

Vτp1q b ...b Vτpa�1q b Pa b v � Q .

Remark D.2.4. Equivalently, the bch monoidal structure is defined iteratively for V � limn Vn with
each Vn � colimkVn,k by

U bch V � lim
n

colim
k

U b Vn,k ,

for any U P K-ModTop.

Remark D.2.5. Note that our notation differs slightly from that of [Bei07], [BD04] and [Ras20b], as
we use bch in place of bÑ.

Remark D.2.6. An associative algebra object in the category K-Modch
Top is given by a topological

vector space A P K-ModTop together with an associative, bilinear product µ : AbAÑ A such that
the corresponding map A�AÑ A is continuous, and the open left ideals of A form a basis for the
topology of A.

Remark D.2.7. Although bch is evidently not symmetric, it defines a natural (symmetric) operad
stucture as follows:

Definition D.2.8. The induced operad K-Modch,s
Top is defined by

HomK-Modch,s
Top

ptViu,W q �
à
τPSI

HomK-ModTop
pbch,τ

i Vi,W q ,

where SI is the Sn torsor of linear orders τ : t1, ..., nu
�
ÝÑ I and n � |I|.

Definition D.2.9. The b! symmetric monoidal structure b! : K-Mod�ITop Ñ K-ModTop is defined by

setting b!
iVi P K-ModTop to be the completion of biVi with respect to the topology with basis of

neighbourhoods at 0 given by subspaces of the form¸
iPI

Pi b
�
bi1PIztiuVi1

�
for Pi � Vi an open subspace.
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Remark D.2.10. Equivalently, the b! tensor product is defined on Vi � limni V {Pni by

b!
iVi � lim

pniqiPI
bipVi{Pniq .

Thus, the b! tensor product is simply the usual, completed tensor product.

Remark D.2.11. The induced operad K-Mod!
Top is defined, following Example C.1.3, by

HomK-Mod!
Top
ptViu,W q :� HomK-ModTop

pb!
iVi,W q .

An associative algebra object in the category K-Mod!
Top is given by a topological vector space A P

K-ModTop together with an associative, bilinear product µ : AbAÑ A such that the corresponding
map A�AÑ A is continuous, and the open two-sided ideals of A form a basis for the topology of
A.

Remark D.2.12. In general, the topology on biVi underlying the b! monoidal structure is strictly
coarser than that underlying the bch monoidal structure (for each fixed τ), which is strictly coarser
than that underlying the b� monoidal structure. Thus, we have natural maps

b�
i Vi Ñ bch,τ

i Vi Ñ b!
iVi and HomK-ModTop

pb!
iVi,W q Ñ HomK-ModTop

pbch,τ
i Vi,W q Ñ HomK-ModTop

pb�
i Vi,W q ,

for any W P K-ModTop. These induce natural maps of operads

K-Mod!
Top b

H Ass Ñ K-Modch,s
Top Ñ K-Mod�Top b

H Ass ,

where Ass denotes the associative operad and bH the Hadamard tensor product; see Appendix C
for a review and conventions regarding operads.

Composing with the projection Ass � Comm and precomposing with the inclusion Lie ãÑ Ass,
we also have maps of operads

(D.2.1) K-Mod!
Top b

H Lie Ñ K-Modch,s
Top Ñ K-Mod�Top .

Proposition D.2.13. For any U, V P K-ModTop there is a short exact sequence of topological vector
spaces

U b� V ãÑ U bch V ` V bch U � U b! V ,

where the left map is given by the diagonal inclusion, and the right map is given by the difference
of projections.

Corollary D.2.14. In the special case of arity 2 operations, the sequence of maps in Equation D.2.1
gives a left exact sequence

HomK-Mod!
Top
pU, V ;W q bK Liep2q Ñ HomK-Modch,s

Top
pU, V ;W q Ñ HomK-Mod�Top

pU, V ;W q .
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Appendix E. Vertex Algebras

E.1. Vertex Algebras.

Definition E.1.1. An element A P EndpV qrrz�1ss is a field if Apvq P V ppzqq for each v P V .

Remark E.1.2. More explicitly, A �
°
nPZ anz

�n�1 P EndpV qrrz�1ss is a field if for each v P V there
exists N P Z such that anpvq � 0 for all n ¡ N .

Definition E.1.3. A vertex algebra is a tuple pV,Ø, T, Y q of:

 a vector space V , the state space
 an element Ø P V , the vacuum
 a linear map T P EndpV q, the translation operator
 a linear map Y p�, zq : V Ñ EndpV qrrz�1ss, the vertex operator

such that:

 Y pØ, zq � 1V

 Y pa, zq �
°
nPZ anz

�n�1 P EndpV qrrz�1ss is a field for each a P V and v P V
 Y pa, zqpØq P V rrzss � V ppzqq for each a P V , and the resulting evaluation satisfies Y pa, zqpØq|z�0 �
a.

 rT, Y pa, zqs � BzY pa, zq for each a P V
 TØ � 0
 For each a, b P V , the fields Y pa, zq, Y pb, zq P EndpV qrrz�1ss are local with respect to one

another.

A Z grading on a vertex algebra is a Z grading on its underlying vector space V such that

 Ø P V0

 T : V Ñ V r1s
 an : V Ñ V rm� n� 1s for each a P Vm

A dg vertex algebra is a Z graded vertex algebra pV,Ø, T, Y q together with a linear map d : V Ñ V r1s
such that

 d2 � 0
 rd, T s � 0
 dY pA, zqpbq � Y pdA, zqpBq � Y pA, zqpdBq for each a, b P V .

Proposition E.1.4. Let pV,Ø, T, Y, dq a dg vertex algebra. Then HpV, dq is a Z graded vertex
algebra.

Example E.1.5. Let pV,Ø, T, Y q be a Z graded vertex algebra and fix a P V of degree and let

da �

»
Y pA, zqdz :� a0 : V Ñ V r1s

Then rda, T s � 0 and moreover by corollary 3.3.8 in FBZ we have

ra0, Y pb, zqs � Y pa0pbq, zq

Thus, we must only require

d2
a � pa0q

2 �

»
: Y pa, zqY pa, zq : dz � 0

to ensure da defines a differential making V into a dg vertex algebra.
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E.2. Commutative Vertex Algebras.

Definition E.2.1. A vertex algebra pV,Ø, T, Y q is called commutative if the field Y pA, zq P EndpV qrzs
is non-singular, for each a P V .

Proposition E.2.2. The following are equivalent:

 A commutative vertex algebra
 A (unital) commutative algebra with a derivation
 A (unital) commutative algebra object in KrT s-Mod

E.3. Vertex Lie Algebras.

Definition E.3.1. A vertex Lie algebra is a tuple pL0, T, Y�q of:

 a vector space L0

 a linear operator T P EndpL0q
 a linear map Y� : L0 Ñ EndpL0q b z�1Crrz�1ss

such that

 Y�pa, zq P EndpL0q b z�1Crrz�1ss � EndpL0qrrz
�1ss is a field for each a P z.

 Y�pTa, zq � BzY�pa, zq for each a P L0

 Y�pa, zqb � pezTY�pb,�zqaq� for each a, b P L0

 for any a, b P L0 with Y�pa, zq �
°
n¥0 anz

�n�1, we have

ram, Y�pb, wqs �
¸
n¥0

�
m

n



pwm�nY�panpbq, wqq�
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gerbes. Annales Scientifiques de l’École Normale Supérieure, 40(1):113–133, 2007.
[KV08] Mikhail Kapranov and Eric Vasserot. Formal loops III: Additive functions and the Radon transform.

Advances in Mathematics, 219(6):1852–1871, 2008.
[KW07] Anton Kapustin and Edward Witten. Electric-magnetic duality and the geometric Langlands program.

Communications in Number Theory and Physics, 1(1):1–236, 2007.



94 DYLAN BUTSON

[Lur08] Jacob Lurie. On the classification of topological field theories. Current Developments in Mathematics,
2008(1):129–280, 2008.

[Lur09a] Jacob Lurie. Derived algebraic geometry VI: Ek algebras. arXiv:0911.0018, 2009.
[Lur09b] Jacob Lurie. Higher topos theory (am-170). 2009.
[Lur12] Jacob Lurie. Higher algebra. Available at: http://people.math.harvard.edu/ lurie/papers/HA.pdf, 2012.
[MO19] Davesh Maulik and Andrei Okounkov. Quantum groups and quantum cohomology. Astérisque, 408:1–212,
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