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The Shafarevich Problem

Setup: Smooth projective family f : X Ñ S defined over
OK ,N :“ OK rN

´1s, where K Ă C is a number field and N P Z.

Problem:

(Version 1) Understand the set SpOK ,Nq;

(Version 2) Understand the points in SpK q for which f defines
a model with good reduction away from primes
dividing N.

Examples: Solved for curves, abelian varieties, K3 surfaces, other
sporadic examples
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Falting’s Argument

In a seminal paper Faltings simultaneously resolved

Shafarevich for Abelian Varieties: If f : X Ñ S is a universal
family of (polarized) abelian varieties (e.g., obtained by adjoining
level structure), then SpOK ,Nq is finite for any K ,N.

Mordell Conjecture: If C is a smooth projective curve of genus
g ě 2 defined over a number field K , then C pK q is finite.

Relationship between the two: Parshin families.
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Falting’s Argument (2)

Summary of Falting’s Argument, with f : X Ñ S a family of
polarized abelian schemes:

(i) show that if s P SpK q with K a number field, then the Tate
Module T`Xs,K is semisimple as a Galois representation;

(ii) semisimplicity implies that there are finitely many possibilities
for T`Xs,K arising from s P SpOK ,Nq, up to isomorphism;

(iii) prove the Tate conjecture, showing that at most finitely many
abelian varieties arise from each isomorphism class of Galois
representation (also requires height input).

For generalizations: steps (i) and (iii) are very hard for a general f ,
but (ii) is easy.
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Lawrence-Venkatesh Idea

For a general f : X Ñ S , consider the étale cohomology in degree
2i :

(i) since we cannot show the representations

ρ : GK Ñ H2i
ét pXs,K ,Q`q,

are semisimple, consider instead their semisimplifications ρss ;

(ii) restricting ρss to a representation of GalpKp{Kpq, p-adic
Hodge theory associates to each semisimplifed Galois
representation a triple pV ,F ‚, ϕq

(iii) for each isomorphism class rρsss that arises, get a variety
qV prρsssq Ă qL in a flag variety;

(iv) construct a rigid-analytic period map ψ : B Ñ qL with
B Ă SpOKpq a rigid-analytic ball which sends points s to the
pair pH2i

dRpXsq,F
‚q;

Question reduces to: what is the dimension of ψ´1p qV prρsssqq
Zar

?
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Hodge Structures

If Y is a smooth projective complex algebraic variety, each
cohomology group H i pY ,Zq caries a polarized Hodge structure:

(i) a (decreasing) filtration F ‚ on H i pY ,Cq “ H i pY ,Zq b C;

(ii) a bilinear form Q : H i pY ,Zq ˆ H i pY ,Zq Ñ Z (coming from
the cup product, interpreted appropriately)

(To avoid listing the Hodge structure axioms, we will always
consider this example.)

The filtration can be interpreted in many ways. For instance:

F kH i pY ,Cq :“
ÿ

pěk

Hp,i´p

Hp,q :“ span

"

C8 forms with p holomorphic
and q anti-holomorphic factors

*

.
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Variations of Hodge Structure

A variation of polarized Hodge structure is a “family version” of
the previous slide. More precisely, it consists of a triple pV,F ‚,Qq
such that:

(i) V is a local system on SpCq;
(ii) F ‚ is a filtration on VbOSan ;

(iii) Q : Vb VÑ Z is a map of local systems;

(iv) for each s P SpCq, the triple pVs ,F
‚
s ,Qsq is a polarized

integral Hodge structure.

Standard Example: Over a small neighbourhood B Ă SpCq, one
can canonically identify the fibres of the map of smooth manifolds
X pCq Ñ SpCq induced by f : X Ñ S , and hence their cohomology.
(Notation: V “ R i f an

˚ Z.)
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Lawrence-Venkatesh Idea (2)

Question: How to understand the “local period maps” ψ : B Ñ qL?

Answer: A p-adic version of the Ax-Schanuel Theorem:

Theorem

(Bakker-Tsimerman) Let V be a polarized integral variation of
Hodge structure on SpCq, and ψ : B Ñ qL its period map on an
analytic ball B Ă SpCq. Then if qV Ă qL satisfies

dimψpBq
Zar
´ dimψpBq ě dim qV ,

then ψ´1p qV q lies in a proper algebraic subvariety of S .

The theorem is ultimately about solutions to a system of
K -algebraic differential equations satisfied by ψ, and can therefore
be transfered to the p-adic setting.

David Urbanik An Effective Strategy for Shafarevich



Lawrence-Venkatesh Idea (2)

Question: How to understand the “local period maps” ψ : B Ñ qL?

Answer: A p-adic version of the Ax-Schanuel Theorem:

Theorem

(Bakker-Tsimerman) Let V be a polarized integral variation of
Hodge structure on SpCq, and ψ : B Ñ qL its period map on an
analytic ball B Ă SpCq. Then if qV Ă qL satisfies

dimψpBq
Zar
´ dimψpBq ě dim qV ,

then ψ´1p qV q lies in a proper algebraic subvariety of S .

The theorem is ultimately about solutions to a system of
K -algebraic differential equations satisfied by ψ, and can therefore
be transfered to the p-adic setting.

David Urbanik An Effective Strategy for Shafarevich



Lawrence-Venkatesh Idea (2)

Question: How to understand the “local period maps” ψ : B Ñ qL?

Answer: A p-adic version of the Ax-Schanuel Theorem:

Theorem

(Bakker-Tsimerman) Let V be a polarized integral variation of
Hodge structure on SpCq, and ψ : B Ñ qL its period map on an
analytic ball B Ă SpCq. Then if qV Ă qL satisfies

dimψpBq
Zar
´ dimψpBq ě dim qV ,

then ψ´1p qV q lies in a proper algebraic subvariety of S .

The theorem is ultimately about solutions to a system of
K -algebraic differential equations satisfied by ψ, and can therefore
be transfered to the p-adic setting.

David Urbanik An Effective Strategy for Shafarevich



Lawrence-Venkatesh Idea (2)

Question: How to understand the “local period maps” ψ : B Ñ qL?

Answer: A p-adic version of the Ax-Schanuel Theorem:

Theorem

(Bakker-Tsimerman) Let V be a polarized integral variation of
Hodge structure on SpCq, and ψ : B Ñ qL its period map on an
analytic ball B Ă SpCq. Then if qV Ă qL satisfies

dimψpBq
Zar
´ dimψpBq ě dim qV ,

then ψ´1p qV q lies in a proper algebraic subvariety of S .

The theorem is ultimately about solutions to a system of
K -algebraic differential equations satisfied by ψ, and can therefore
be transfered to the p-adic setting.

David Urbanik An Effective Strategy for Shafarevich



Summary of Proceeding Slides

(1) Lawrence and Venkatesh have a strategy for solving
Shafarevich problems for arbitrary smooth projective families
f : X Ñ S defined over rings OK ,N “ OK rN

´1s.

(2) The most important step in this strategy is obtaining lower
bounds for the quantities

∆d “ min
Z ,ψ

”

dimψpB X Z q
Zar
´ dimψpB X Z q

ı

,

where Z ranges over all dimension d irreducible subvarieties of
SC, and ψ ranges over all “local period maps” ψ : B Ñ qL.

Remainder of this talk: An effective method for resolving (2) for
arbitrary f : X Ñ S .
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Algebraic Models for Variations

To solve computational problems we need an algebrogeometric
model for the data pVC,F

‚q. We illustrate this with an example.

Consider the relative hyperelliptic curve C{S with affine model:

y2 “ Rpxq “ 4
2g`1
ź

i“1

px ´ ei q “
2g`1
ÿ

i“0

λix
i ,

where S “ SpecQre1, . . . , e2g`1, 1{∆s.

Then letting Ui pxq “ x i´1,Ri pxq “
ř2g`1´i

k“i pk ` 1´ iqλk`1`ix
k

‚ H “

˜

g
à

i“1

OS
Ui pxqdx

y

¸

looooooooooomooooooooooon

F 1

‘

´

Àg
i“1 OS

Ri pxqdx
4y

¯

‚ ∇ : HÑ Ω1
S bH (formula on next slide)

‚ VC is the bundle of flat sections associated to pH,∇q
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Algebraic Models for Variations (2)

Proposition (Enolski-Richter)

∇Bei “
ˆ

αt
` γ`

β` ´α

˙

where

α` “
´1

2

ˆ

1

R1pe`q
Upe`qRt

pe`q ´M`

˙

,

β` “ ´2

ˆ

1

R1pe`q
Upe`qU t

pe`q

˙
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` eg´3
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‹

‹

‹

‚

,

and N` “ e`pM`Q` ` Q`M
t
`q ` Q`, where Q` is the diagonal matrix with

pQ`qk,k “ Rkpe`q{Uk`1pe`q.
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Local Period Maps

Suppose dimV “ m, and let qL be the variety of flags on Zm with
the same Hodge numbers as V. Fix a filtration compatible frame
v1, . . . , vm for H.

Definition

A local period map is a map ψ : B Ñ qLanC obtained as a
composition ψ “ qanC ˝ f ´1, where

(i) the map f “ rfij s is a varying change-of-basis matrix between
v1, . . . , vm and a flat frame of VC defined on B Ă SpCq;

(ii) the map q : GLm Ñ qL is the canonical quotient, taking a
basis b1, . . . , bm to the Hodge flag where each piece F i is
spanned by an inital segment of the sequence b1, . . . , bm

Each germ of a local period map at a point s P SpCq is determined
by the initial condition f psq P GLmpCq.
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Local Period Maps (2)

Using the data pH,F ‚,∇q, we can construct K -algebraic
GLm-invariant maps

α : Jdr S ˆGLm Ñ Jdr
qL, pj ,Mq ÞÑ ψM ˝ j ,

where

(1) for any algebraic variety X , Jdr X is the space

pJdr X qpT q “ HomT pT ˆ Dd
r ,X q,

with Dd
r “ SpecK rt1, . . . , td s{pt1, . . . , tdq

r`1.

(2) ψM is the local period map ψM “ q ˝ f ´1 determined by the
property that f psq “ M, where is the basepoint of s of j .
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Bounding p∆dq

Recall our goal is to get a lower bound for

∆d “ min
Z ,ψ

”

dimψpB X Z q
Zar
´ dimψpB X Z q

ı

.

with Z Ă SC an irreducible subvariety, ψ a local period map.

Definition

For qV1, qV2 Ă qL, we write qV1 „GLm
qV2 if there is g P GLmpCq such

that qV1 “ g qV2.

Theorem

Ranging over all Z , ψ, there are finitely many possibilities for

ψpZ X Bq
Zar

up to „GLm .
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Bounding p∆dq (2)

If ψpB X Z q Ă qV Ă qL for some qV , then one has a map (with
d “ dimZ )

Dd
r ãÑ Z

ψ
ÝÑ qV Ă qL.

So in particular the intersection (recall α : Jdr S ˆGLm Ñ Jdr
qL)

Fr p qV q “ ptembeddings Dd
r ãÑ Su ˆGLmq X pα

´1pJdr V qq

is non-empty.

Theorem

Suppose that (for simplicity) the maps ψ are quasi-finite. Then
there exists finitely many choices of qV with dim qV ´ d ď k such
that the following are equivalent:

(1) there exists Z , ψ with dimZ ě d such that

dimψpB X Z q
Zar
´ dimZ ď k .

(2) For some qV , the sets Fr p qV q are non-empty for all r .
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Bounding p∆dq (3)

Algorithm for bounding ∆d (simplified):

(1) Find all possible qV1, . . . , qV` Ă qL, up to equivalence by „GL,

which can arise as ψpZ X Bq
Zar

.

(2) For each such qVi , compute the sets Fr p qVi q for increasing r .

(3) If no Z exists with

dimψpB X Z q
Zar
´ dimZ ď k,

eventually this is reflected in the sets Fr p qV q being empty for
sufficiently large r and appropriate V .

(4) Varying k, one can compute an optimal lower bound for

∆d “ min
Z ,ψ

”

dimψpB X Z q
Zar
´ dimψpB X Z q

ı

.
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Outstanding Problems

To make this practical, the main computational issues to be
resolved are:

(1) computing the varieties qV1, ¨ ¨ ¨ , qV` Ă qL currently requires
computing all semisimple subgroups of GLm up to
GLmpCq-conjugacy. Algorithms exist, but difficult for large m.

(2) Need to be able to compute the models pH,F ‚,∇q associated
to arbitrary f : X Ñ S . Algorithms exist, but need to get
computer to understand them.

(3) General inefficiency.
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