An Effective Strategy for Shafarevich

David Urbanik

March 10, 2022

The Shafarevich Problem

Setup: Smooth projective family $f: X \to S$ defined over $\mathcal{O}_{K,N} := \mathcal{O}_K[N^{-1}]$, where $K \subset \mathbb{C}$ is a number field and $N \in \mathbb{Z}$.

The Shafarevich Problem

Setup: Smooth projective family $f: X \to S$ defined over $\mathcal{O}_{K,N} := \mathcal{O}_K[N^{-1}]$, where $K \subset \mathbb{C}$ is a number field and $N \in \mathbb{Z}$.

Problem:

- (Version 1) Understand the set $S(\mathcal{O}_{K,N})$;
- (Version 2) Understand the points in S(K) for which f defines a model with good reduction away from primes dividing N.

The Shafarevich Problem

Setup: Smooth projective family $f: X \to S$ defined over $\mathcal{O}_{K,N} := \mathcal{O}_K[N^{-1}]$, where $K \subset \mathbb{C}$ is a number field and $N \in \mathbb{Z}$.

Problem:

- (Version 1) Understand the set $S(\mathcal{O}_{K,N})$;
- (Version 2) Understand the points in S(K) for which f defines a model with good reduction away from primes dividing N.

Examples: Solved for curves, abelian varieties, K3 surfaces, other sporadic examples

In a seminal paper Faltings simultaneously resolved

In a seminal paper Faltings simultaneously resolved

Shafarevich for Abelian Varieties: If $f: X \to S$ is a universal family of (polarized) abelian varieties (e.g., obtained by adjoining level structure), then $S(\mathcal{O}_{K,N})$ is finite for any K,N.

In a seminal paper Faltings simultaneously resolved

Shafarevich for Abelian Varieties: If $f: X \to S$ is a universal family of (polarized) abelian varieties (e.g., obtained by adjoining level structure), then $S(\mathcal{O}_{K,N})$ is finite for any K, N.

Mordell Conjecture: If C is a smooth projective curve of genus $g \ge 2$ defined over a number field K, then C(K) is finite.

In a seminal paper Faltings simultaneously resolved

Shafarevich for Abelian Varieties: If $f: X \to S$ is a universal family of (polarized) abelian varieties (e.g., obtained by adjoining level structure), then $S(\mathcal{O}_{K,N})$ is finite for any K, N.

Mordell Conjecture: If C is a smooth projective curve of genus $g \ge 2$ defined over a number field K, then C(K) is finite.

Relationship between the two: Parshin families.

Summary of Falting's Argument, with $f: X \to S$ a family of polarized abelian schemes:

Summary of Falting's Argument, with $f: X \to S$ a family of polarized abelian schemes:

(i) show that if $s \in S(K)$ with K a number field, then the Tate Module $T_{\ell}X_{s,\overline{K}}$ is semisimple as a Galois representation;

Summary of Falting's Argument, with $f: X \to S$ a family of polarized abelian schemes:

- (i) show that if $s \in S(K)$ with K a number field, then the Tate Module $T_{\ell}X_{s,\overline{K}}$ is semisimple as a Galois representation;
- (ii) semisimplicity implies that there are finitely many possibilities for $T_\ell X_{s,\overline{K}}$ arising from $s \in S(\mathcal{O}_{K,N})$, up to isomorphism;

Summary of Falting's Argument, with $f: X \to S$ a family of polarized abelian schemes:

- (i) show that if $s \in S(K)$ with K a number field, then the Tate Module $T_{\ell}X_{s,\overline{K}}$ is semisimple as a Galois representation;
- (ii) semisimplicity implies that there are finitely many possibilities for $T_\ell X_{s,\overline{K}}$ arising from $s \in S(\mathcal{O}_{K,N})$, up to isomorphism;
- (iii) prove the Tate conjecture, showing that at most finitely many abelian varieties arise from each isomorphism class of Galois representation (also requires height input).

Summary of Falting's Argument, with $f: X \to S$ a family of polarized abelian schemes:

- (i) show that if $s \in S(K)$ with K a number field, then the Tate Module $T_{\ell}X_{s,\overline{K}}$ is semisimple as a Galois representation;
- (ii) semisimplicity implies that there are finitely many possibilities for $T_\ell X_{s,\overline{K}}$ arising from $s \in S(\mathcal{O}_{K,N})$, up to isomorphism;
- (iii) prove the Tate conjecture, showing that at most finitely many abelian varieties arise from each isomorphism class of Galois representation (also requires height input).

For generalizations: steps (i) and (iii) are very hard for a general f, but (ii) is easy.

For a general $f: X \to S$, consider the étale cohomology in degree 2i:

For a general $f: X \to S$, consider the étale cohomology in degree 2i:

(i) since we cannot show the representations

$$\rho: G_K \to H^{2i}_{\operatorname{\acute{e}t}}(X_{s,\overline{K}},\mathbb{Q}_\ell),$$

are semisimple, consider instead their semisimplifications ρ^{ss} ;

For a general $f: X \to S$, consider the étale cohomology in degree 2i:

(i) since we cannot show the representations

$$\rho: G_K \to H^{2i}_{\operatorname{\acute{e}t}}(X_{s,\overline{K}}, \mathbb{Q}_\ell),$$

are semisimple, consider instead their semisimplifications ρ^{ss} ;

(ii) restricting ρ^{ss} to a representation of $\operatorname{Gal}(\overline{K_p}/K_p)$, p-adic Hodge theory associates to each semisimplified Galois representation a triple $(V, F^{\bullet}, \varphi)$

For a general $f: X \to S$, consider the étale cohomology in degree 2i:

(i) since we cannot show the representations

$$\rho: G_K \to H^{2i}_{\mathrm{\acute{e}t}}(X_{s,\overline{K}},\mathbb{Q}_\ell),$$

are semisimple, consider instead their semisimplifications ρ^{ss} ;

- (ii) restricting ρ^{ss} to a representation of $\operatorname{Gal}(\overline{K_p}/K_p)$, p-adic Hodge theory associates to each semisimplified Galois representation a triple $(V, F^{\bullet}, \varphi)$
- (iii) for each isomorphism class $[
 ho^{ss}]$ that arises, get a variety $\check{V}([
 ho^{ss}]) \subset \check{L}$ in a flag variety;

For a general $f: X \to S$, consider the étale cohomology in degree 2i:

(i) since we cannot show the representations

$$\rho: G_K \to H^{2i}_{\mathrm{\acute{e}t}}(X_{s,\overline{K}},\mathbb{Q}_\ell),$$

are semisimple, consider instead their semisimplifications ρ^{ss} ;

- (ii) restricting ρ^{ss} to a representation of $\operatorname{Gal}(\overline{K_p}/K_p)$, p-adic Hodge theory associates to each semisimplified Galois representation a triple $(V, F^{\bullet}, \varphi)$
- (iii) for each isomorphism class $[\rho^{ss}]$ that arises, get a variety $\check{V}([\rho^{ss}]) \subset \check{L}$ in a flag variety;
- (iv) construct a rigid-analytic period map $\psi: B \to \check{L}$ with $B \subset S(\mathcal{O}_{K_p})$ a rigid-analytic ball which sends points s to the pair $(H^{2i}_{\mathrm{dR}}(X_s), F^{\bullet})$;

For a general $f: X \to S$, consider the étale cohomology in degree 2i:

(i) since we cannot show the representations

$$\rho: G_K \to H^{2i}_{\operatorname{\acute{e}t}}(X_{s,\overline{K}}, \mathbb{Q}_\ell),$$

are semisimple, consider instead their semisimplifications ρ^{ss} ;

- (ii) restricting ρ^{ss} to a representation of $\operatorname{Gal}(\overline{K_p}/K_p)$, p-adic Hodge theory associates to each semisimplified Galois representation a triple $(V, F^{\bullet}, \varphi)$
- (iii) for each isomorphism class $[\rho^{ss}]$ that arises, get a variety $\check{V}([\rho^{ss}]) \subset \check{L}$ in a flag variety;
- (iv) construct a rigid-analytic period map $\psi: B \to \check{L}$ with $B \subset S(\mathcal{O}_{K_p})$ a rigid-analytic ball which sends points s to the pair $(H^{2i}_{\mathrm{dR}}(X_s), F^{\bullet})$;

Question reduces to: what is the dimension of $\psi^{-1}(\check{V}([\rho^{ss}]))^{\mathrm{Zar}}$?

If Y is a smooth projective complex algebraic variety, each cohomology group $H^i(Y,\mathbb{Z})$ caries a polarized $Hodge\ structure$:

If Y is a smooth projective complex algebraic variety, each cohomology group $H^i(Y,\mathbb{Z})$ caries a polarized $Hodge\ structure$:

(i) a (decreasing) filtration F^{\bullet} on $H^{i}(Y,\mathbb{C})=H^{i}(Y,\mathbb{Z})\otimes\mathbb{C}$;

If Y is a smooth projective complex algebraic variety, each cohomology group $H^i(Y,\mathbb{Z})$ caries a polarized $Hodge\ structure$:

- (i) a (decreasing) filtration F^{\bullet} on $H^{i}(Y,\mathbb{C})=H^{i}(Y,\mathbb{Z})\otimes\mathbb{C}$;
- (ii) a bilinear form $Q: H^i(Y,\mathbb{Z}) \times H^i(Y,\mathbb{Z}) \to \mathbb{Z}$ (coming from the cup product, interpreted appropriately)

If Y is a smooth projective complex algebraic variety, each cohomology group $H^i(Y,\mathbb{Z})$ caries a polarized $Hodge\ structure$:

- (i) a (decreasing) filtration F^{\bullet} on $H^{i}(Y,\mathbb{C})=H^{i}(Y,\mathbb{Z})\otimes\mathbb{C}$;
- (ii) a bilinear form $Q: H^i(Y,\mathbb{Z}) \times H^i(Y,\mathbb{Z}) \to \mathbb{Z}$ (coming from the cup product, interpreted appropriately)

(To avoid listing the Hodge structure axioms, we will always consider this example.)

If Y is a smooth projective complex algebraic variety, each cohomology group $H^i(Y,\mathbb{Z})$ caries a polarized $Hodge\ structure$:

- (i) a (decreasing) filtration F^{ullet} on $H^i(Y,\mathbb{C})=H^i(Y,\mathbb{Z})\otimes \mathbb{C}$;
- (ii) a bilinear form $Q: H^i(Y,\mathbb{Z}) \times H^i(Y,\mathbb{Z}) \to \mathbb{Z}$ (coming from the cup product, interpreted appropriately)

(To avoid listing the Hodge structure axioms, we will always consider this example.)

The filtration can be interpreted in many ways. For instance:

$$\begin{split} F^k H^i(Y,\mathbb{C}) &:= \sum_{p \geq k} H^{p,i-p} \\ H^{p,q} &:= \mathrm{span} \left\{ \begin{array}{l} C^\infty \text{ forms with p holomorphic} \\ \text{and q anti-holomorphic factors} \end{array} \right\}. \end{split}$$

Variations of Hodge Structure

A variation of polarized Hodge structure is a "family version" of the previous slide. More precisely, it consists of a triple $(\mathbb{V}, F^{\bullet}, Q)$ such that:

Variations of Hodge Structure

A variation of polarized Hodge structure is a "family version" of the previous slide. More precisely, it consists of a triple $(\mathbb{V}, F^{\bullet}, Q)$ such that:

- (i) \mathbb{V} is a local system on $S(\mathbb{C})$;
- (ii) F^{\bullet} is a filtration on $\mathbb{V} \otimes \mathcal{O}_{S^{\mathrm{an}}}$;
- (iii) $Q: \mathbb{V} \otimes \mathbb{V} \to \mathbb{Z}$ is a map of local systems;
- (iv) for each $s \in S(\mathbb{C})$, the triple $(\mathbb{V}_s, F_s^{\bullet}, Q_s)$ is a polarized integral Hodge structure.

Variations of Hodge Structure

A variation of polarized Hodge structure is a "family version" of the previous slide. More precisely, it consists of a triple $(\mathbb{V}, F^{\bullet}, Q)$ such that:

- (i) \mathbb{V} is a local system on $S(\mathbb{C})$;
- (ii) F^{\bullet} is a filtration on $\mathbb{V} \otimes \mathcal{O}_{S^{\mathrm{an}}}$;
- (iii) $Q: \mathbb{V} \otimes \mathbb{V} \to \mathbb{Z}$ is a map of local systems;
- (iv) for each $s \in S(\mathbb{C})$, the triple $(\mathbb{V}_s, F_s^{\bullet}, Q_s)$ is a polarized integral Hodge structure.

Standard Example: Over a small neighbourhood $B \subset S(\mathbb{C})$, one can canonically identify the fibres of the map of smooth manifolds $X(\mathbb{C}) \to S(\mathbb{C})$ induced by $f: X \to S$, and hence their cohomology. (Notation: $\mathbb{V} = R^i f_*^{\mathrm{an}} \mathbb{Z}$.)

Question: How to understand the "local period maps" $\psi: B \to \check{L}$?

Question: How to understand the "local period maps" $\psi: B \to \check{L}$?

Answer: A *p*-adic version of the Ax-Schanuel Theorem:

Question: How to understand the "local period maps" $\psi: B \to \check{L}$?

Answer: A *p*-adic version of the Ax-Schanuel Theorem:

Theorem

(Bakker-Tsimerman) Let $\mathbb V$ be a polarized integral variation of Hodge structure on $S(\mathbb C)$, and $\psi:B\to \check L$ its period map on an analytic ball $B\subset S(\mathbb C)$. Then if $\check V\subset \check L$ satisfies

$$\dim \overline{\psi(B)}^{Zar} - \dim \psi(B) \geqslant \dim \widecheck{V},$$

then $\psi^{-1}(\check{V})$ lies in a proper algebraic subvariety of S .

Question: How to understand the "local period maps" $\psi: B \to \check{L}$?

Answer: A *p*-adic version of the Ax-Schanuel Theorem:

Theorem

(Bakker-Tsimerman) Let $\mathbb V$ be a polarized integral variation of Hodge structure on $S(\mathbb C)$, and $\psi:B\to \check L$ its period map on an analytic ball $B\subset S(\mathbb C)$. Then if $\check V\subset \check L$ satisfies

$$\dim \overline{\psi(B)}^{Zar} - \dim \psi(B) \geqslant \dim \widecheck{V},$$

then $\psi^{-1}(\widecheck{V})$ lies in a proper algebraic subvariety of S.

The theorem is ultimately about solutions to a system of K-algebraic differential equations satisfied by ψ , and can therefore be transfered to the p-adic setting.

(1) Lawrence and Venkatesh have a strategy for solving Shafarevich problems for arbitrary smooth projective families $f: X \to S$ defined over rings $\mathcal{O}_{K,N} = \mathcal{O}_K[N^{-1}]$.

- (1) Lawrence and Venkatesh have a strategy for solving Shafarevich problems for arbitrary smooth projective families $f: X \to S$ defined over rings $\mathcal{O}_{K,N} = \mathcal{O}_K[N^{-1}]$.
- (2) The most important step in this strategy is obtaining lower bounds for the quantities

$$\Delta_d = \min_{Z,\psi} \left[\dim \overline{\psi(B \cap Z)}^{\operatorname{Zar}} - \dim \psi(B \cap Z) \right],$$

where Z ranges over all dimension d irreducible subvarieties of $S_{\mathbb{C}}$, and ψ ranges over all "local period maps" $\psi: B \to \check{L}$.

- (1) Lawrence and Venkatesh have a strategy for solving Shafarevich problems for arbitrary smooth projective families $f: X \to S$ defined over rings $\mathcal{O}_{K,N} = \mathcal{O}_K[N^{-1}]$.
- (2) The most important step in this strategy is obtaining lower bounds for the quantities

$$\Delta_d = \min_{Z,\psi} \left[\dim \overline{\psi(B \cap Z)}^{\operatorname{Zar}} - \dim \psi(B \cap Z) \right],$$

where Z ranges over all dimension d irreducible subvarieties of $S_{\mathbb{C}}$, and ψ ranges over all "local period maps" $\psi: B \to \check{L}$.

Remainder of this talk: An effective method for resolving (2) for arbitrary $f: X \to S$.

Algebraic Models for Variations

To solve computational problems we need an algebrogeometric model for the data $(\mathbb{V}_{\mathbb{C}}, F^{\bullet})$. We illustrate this with an example.

Algebraic Models for Variations

To solve computational problems we need an algebrogeometric model for the data $(\mathbb{V}_{\mathbb{C}}, F^{\bullet})$. We illustrate this with an example.

Consider the relative hyperelliptic curve C/S with affine model:

$$y^2 = R(x) = 4 \prod_{i=1}^{2g+1} (x - e_i) = \sum_{i=0}^{2g+1} \lambda_i x^i,$$

where $S = \operatorname{Spec} \mathbb{Q}[e_1, \dots, e_{2g+1}, 1/\Delta].$

Algebraic Models for Variations

To solve computational problems we need an algebrogeometric model for the data $(\mathbb{V}_{\mathbb{C}}, F^{\bullet})$. We illustrate this with an example.

Consider the relative hyperelliptic curve C/S with affine model:

$$y^2 = R(x) = 4 \prod_{i=1}^{2g+1} (x - e_i) = \sum_{i=0}^{2g+1} \lambda_i x^i,$$

where $S = \operatorname{Spec} \mathbb{Q}[e_1, \dots, e_{2g+1}, 1/\Delta]$.

Then letting $\mathcal{U}_i(x) = x^{i-1}$, $\mathcal{R}_i(x) = \sum_{k=i}^{2g+1-i} (k+1-i)\lambda_{k+1+i}x^k$

•
$$\mathcal{H} = \underbrace{\left(\bigoplus_{i=1}^{g} \mathcal{O}_{S} \frac{\mathcal{U}_{i}(x) dx}{y}\right)}_{F^{1}} \oplus \left(\bigoplus_{i=1}^{g} \mathcal{O}_{S} \frac{\mathcal{R}_{i}(x) dx}{4y}\right)$$

- $\nabla: \mathcal{H} \to \Omega^1_S \otimes \mathcal{H}$ (formula on next slide)
- $\mathbb{V}_{\mathbb{C}}$ is the bundle of flat sections associated to (\mathcal{H}, ∇)

Algebraic Models for Variations (2)

Proposition (Enolski-Richter)

$$abla_{\partial_{e_i}} = egin{pmatrix} oldsymbol{lpha}_\ell^t & oldsymbol{\gamma}_\ell \ oldsymbol{eta}_\ell & -oldsymbol{lpha} \end{pmatrix}$$

where

$$\begin{split} \boldsymbol{\alpha}_{\ell} &= \frac{-1}{2} \left(\frac{1}{R'(\boldsymbol{e}_{\ell})} \boldsymbol{\mathcal{U}}(\boldsymbol{e}_{\ell}) \boldsymbol{\mathcal{R}}^{t}(\boldsymbol{e}_{\ell}) - \boldsymbol{\textit{M}}_{\ell} \right), \\ \boldsymbol{\beta}_{\ell} &= -2 \left(\frac{1}{R'(\boldsymbol{e}_{\ell})} \boldsymbol{\mathcal{U}}(\boldsymbol{e}_{\ell}) \boldsymbol{\mathcal{U}}^{t}(\boldsymbol{e}_{\ell}) \right), \\ \boldsymbol{\gamma}_{\ell} &= \frac{1}{8} \left(\frac{1}{R'(\boldsymbol{e}_{\ell})} \boldsymbol{\mathcal{R}}(\boldsymbol{e}_{\ell}) \boldsymbol{\mathcal{R}}^{t}(\boldsymbol{e}_{\ell}) - \boldsymbol{\textit{N}}_{\ell} \right), \end{split}$$

with

$$M_{\ell} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ e_{\ell} & 1 & 0 & \dots & 0 & 0 \\ e_{\ell}^2 & e_{\ell} & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ e_{\ell}^{g-2} & e_{\ell}^{g-3} & \dots & e_{\ell} & 1 & 0 \end{pmatrix},$$

and $N_\ell = e_\ell(M_\ell Q_\ell + Q_\ell M_\ell^t) + Q_\ell$, where Q_ℓ is the diagonal matrix with $(Q_\ell)_{k,k} = \mathcal{R}_k(e_\ell)/\mathcal{U}_{k+1}(e_\ell)$.

Local Period Maps

Suppose dim $\mathbb{V}=m$, and let \check{L} be the variety of flags on \mathbb{Z}^m with the same Hodge numbers as \mathbb{V} . Fix a filtration compatible frame v^1, \ldots, v^m for \mathcal{H} .

Local Period Maps

Suppose dim $\mathbb{V}=m$, and let \check{L} be the variety of flags on \mathbb{Z}^m with the same Hodge numbers as \mathbb{V} . Fix a filtration compatible frame v^1, \ldots, v^m for \mathcal{H} .

Definition

A local period map is a map $\psi: B \to \check{L}^{an}_{\mathbb{C}}$ obtained as a composition $\psi = q^{an}_{\mathbb{C}} \circ f^{-1}$, where

- (i) the map $f = [f_{ij}]$ is a varying change-of-basis matrix between v^1, \ldots, v^m and a flat frame of $\mathbb{V}_{\mathbb{C}}$ defined on $B \subset S(\mathbb{C})$;
- (ii) the map $q: GL_m \to \check{L}$ is the canonical quotient, taking a basis b^1, \ldots, b^m to the Hodge flag where each piece F^i is spanned by an inital segment of the sequence b^1, \ldots, b^m

Local Period Maps

Suppose dim $\mathbb{V}=m$, and let \check{L} be the variety of flags on \mathbb{Z}^m with the same Hodge numbers as \mathbb{V} . Fix a filtration compatible frame v^1, \ldots, v^m for \mathcal{H} .

Definition

A local period map is a map $\psi: B \to \check{L}^{an}_{\mathbb{C}}$ obtained as a composition $\psi = q^{an}_{\mathbb{C}} \circ f^{-1}$, where

- (i) the map $f = [f_{ij}]$ is a varying change-of-basis matrix between v^1, \ldots, v^m and a flat frame of $\mathbb{V}_{\mathbb{C}}$ defined on $B \subset S(\mathbb{C})$;
- (ii) the map $q:GL_m\to \check{L}$ is the canonical quotient, taking a basis b^1,\ldots,b^m to the Hodge flag where each piece F^i is spanned by an inital segment of the sequence b^1,\ldots,b^m

Each germ of a local period map at a point $s \in S(\mathbb{C})$ is determined by the initial condition $f(s) \in \mathrm{GL}_m(\mathbb{C})$.

Local Period Maps (2)

Using the data $(\mathcal{H}, F^{\bullet}, \nabla)$, we can construct K-algebraic GL_m -invariant maps

$$\alpha: J_r^d S \times \mathrm{GL}_m \to J_r^d \widecheck{L}, \qquad (j, M) \mapsto \psi_M \circ j,$$

where

Local Period Maps (2)

Using the data $(\mathcal{H}, F^{\bullet}, \nabla)$, we can construct K-algebraic GL_m -invariant maps

$$\alpha: J_r^d S \times \mathrm{GL}_m \to J_r^d \widecheck{L}, \qquad (j, M) \mapsto \psi_M \circ j,$$

where

(1) for any algebraic variety X, $J_r^d X$ is the space

$$(J^d_rX)(T)=\operatorname{Hom}_T(T\times \mathbb{D}^d_r,X),$$

with
$$\mathbb{D}_r^d = \operatorname{Spec} K[t_1, \dots, t_d]/(t_1, \dots, t_d)^{r+1}$$
.

Local Period Maps (2)

Using the data $(\mathcal{H}, F^{\bullet}, \nabla)$, we can construct K-algebraic GL_m -invariant maps

$$\alpha: J_r^d S \times \operatorname{GL}_m \to J_r^d \widecheck{L}, \qquad (j, M) \mapsto \psi_M \circ j,$$

where

(1) for any algebraic variety X, $J_r^d X$ is the space

$$(J^d_rX)(T)=\operatorname{Hom}_T(T\times \mathbb{D}^d_r,X),$$

with
$$\mathbb{D}_r^d = \operatorname{Spec} K[t_1, \dots, t_d]/(t_1, \dots, t_d)^{r+1}$$
.

(2) ψ_M is the local period map $\psi_M = q \circ f^{-1}$ determined by the property that f(s) = M, where is the basepoint of s of j.

Recall our goal is to get a lower bound for

$$\Delta_d = \min_{Z,\psi} \left[\dim \overline{\psi(B \cap Z)}^{\operatorname{Zar}} - \dim \psi(B \cap Z) \right].$$

with $Z \subset S_{\mathbb{C}}$ an irreducible subvariety, ψ a local period map.

Recall our goal is to get a lower bound for

$$\Delta_d = \min_{Z,\psi} \left[\dim \overline{\psi(B \cap Z)}^{\operatorname{Zar}} - \dim \psi(B \cap Z) \right].$$

with $Z \subset S_{\mathbb{C}}$ an irreducible subvariety, ψ a local period map.

Definition

For \check{V}_1 , $\check{V}_2 \subset \check{L}$, we write $\check{V}_1 \sim_{\mathit{GL}_m} \check{V}_2$ if there is $g \in \mathit{GL}_m(\mathbb{C})$ such that $\check{V}_1 = g \check{V}_2$.

Recall our goal is to get a lower bound for

$$\Delta_d = \min_{Z,\psi} \left[\dim \overline{\psi(B \cap Z)}^{\operatorname{Zar}} - \dim \psi(B \cap Z) \right].$$

with $Z \subset S_{\mathbb{C}}$ an irreducible subvariety, ψ a local period map.

Definition

For \check{V}_1 , $\check{V}_2 \subset \check{L}$, we write $\check{V}_1 \sim_{\mathit{GL}_m} \check{V}_2$ if there is $g \in \mathit{GL}_m(\mathbb{C})$ such that $\check{V}_1 = g \check{V}_2$.

Theorem

Ranging over all Z, ψ , there are finitely many possibilities for $\overline{\psi(Z \cap B)}^{Zar}$ up to \sim_{GL_m} .

If $\psi(B\cap Z)\subset \check{V}\subset \check{L}$ for some \check{V} , then one has a map (with $d=\dim Z$)

$$\mathbb{D}^d_r \hookrightarrow Z \xrightarrow{\psi} \widecheck{V} \subset \widecheck{L}.$$

If $\psi(B\cap Z)\subset \check{V}\subset \check{L}$ for some \check{V} , then one has a map (with $d=\dim Z$)

$$\mathbb{D}^d_r \hookrightarrow Z \xrightarrow{\psi} \check{V} \subset \check{L}.$$

So in particular the intersection (recall $\alpha: J_r^d S \times \operatorname{GL}_m \to J_r^d \widecheck{L})$

$$\mathcal{F}_r(\check{V}) = (\{\text{embeddings } \mathbb{D}^d_r \hookrightarrow S\} \times \operatorname{GL}_m) \cap (\alpha^{-1}(J^d_r V))$$

is non-empty.

If $\psi(B\cap Z)\subset \check{V}\subset \check{L}$ for some \check{V} , then one has a map (with $d=\dim Z$)

$$\mathbb{D}^d_r \hookrightarrow Z \xrightarrow{\psi} \widecheck{V} \subset \widecheck{L}.$$

So in particular the intersection (recall $\alpha: J_r^d S \times \operatorname{GL}_m \to J_r^d \widecheck{L})$

$$\mathcal{F}_r(\widecheck{V}) = (\{\text{embeddings } \mathbb{D}^d_r \hookrightarrow S\} \times \operatorname{GL}_m) \cap (\alpha^{-1}(J^d_r V))$$

is non-empty.

Theorem

Suppose that (for simplicity) the maps ψ are quasi-finite. Then there exists finitely many choices of \check{V} with $\dim \check{V} - d \leqslant k$ such that the following are equivalent:

(1) there exists Z, ψ with dim $Z \geqslant d$ such that

$$\dim \overline{\psi(B\cap Z)}^{Zar} - \dim Z \leqslant k.$$

(2) For some \check{V} , the sets $\mathcal{F}_r(\check{V})$ are non-empty for all r.

Algorithm for bounding Δ_d (simplified):

Algorithm for bounding Δ_d (simplified):

(1) Find all possible $\widecheck{V}_1,\ldots,\widecheck{V}_\ell\subset\widecheck{L}$, up to equivalence by \sim_{GL} , which can arise as $\overline{\psi(Z\cap B)}^{\mathrm{Zar}}$.

Algorithm for bounding Δ_d (simplified):

- (1) Find all possible $\widecheck{V}_1,\ldots,\widecheck{V}_\ell\subset\widecheck{L}$, up to equivalence by \sim_{GL} , which can arise as $\overline{\psi(Z\cap B)}^{\mathrm{Zar}}$.
- (2) For each such V_i , compute the sets $\mathcal{F}_r(V_i)$ for increasing r.

Algorithm for bounding Δ_d (simplified):

- (1) Find all possible $\widecheck{V}_1,\ldots,\widecheck{V}_\ell\subset\widecheck{L}$, up to equivalence by \sim_{GL} , which can arise as $\overline{\psi(Z\cap B)}^{\mathrm{Zar}}$.
- (2) For each such \check{V}_i , compute the sets $\mathcal{F}_r(\check{V}_i)$ for increasing r.
- (3) If no Z exists with

$$\dim \overline{\psi(B\cap Z)}^{\operatorname{Zar}} - \dim Z \leqslant k,$$

eventually this is reflected in the sets $\mathcal{F}_r(\check{V})$ being empty for sufficiently large r and appropriate V.

Algorithm for bounding Δ_d (simplified):

- (1) Find all possible $\widecheck{V}_1,\ldots,\widecheck{V}_\ell\subset\widecheck{L}$, up to equivalence by \sim_{GL} , which can arise as $\overline{\psi(Z\cap B)}^{\mathrm{Zar}}$.
- (2) For each such \check{V}_i , compute the sets $\mathcal{F}_r(\check{V}_i)$ for increasing r.
- (3) If no Z exists with

$$\dim \overline{\psi(B\cap Z)}^{\operatorname{Zar}} - \dim Z \leqslant k,$$

eventually this is reflected in the sets $\mathcal{F}_r(\check{V})$ being empty for sufficiently large r and appropriate V.

(4) Varying k, one can compute an optimal lower bound for

$$\Delta_d = \min_{Z,\psi} \left[\dim \overline{\psi(B \cap Z)}^{\operatorname{Zar}} - \dim \psi(B \cap Z) \right].$$

To make this practical, the main computational issues to be resolved are:

To make this practical, the main computational issues to be resolved are:

(1) computing the varieties $\widecheck{V}_1,\cdots,\widecheck{V}_\ell\subset\widecheck{L}$ currently requires computing all semisimple subgroups of GL_m up to $\mathrm{GL}_m(\mathbb{C})$ -conjugacy. Algorithms exist, but difficult for large m.

To make this practical, the main computational issues to be resolved are:

- (1) computing the varieties $V_1, \dots, V_\ell \subset L$ currently requires computing all semisimple subgroups of GL_m up to $\mathrm{GL}_m(\mathbb{C})$ -conjugacy. Algorithms exist, but difficult for large m.
- (2) Need to be able to compute the models $(\mathcal{H}, F^{\bullet}, \nabla)$ associated to arbitrary $f: X \to S$. Algorithms exist, but need to get computer to understand them.

To make this practical, the main computational issues to be resolved are:

- (1) computing the varieties $\check{V}_1, \cdots, \check{V}_\ell \subset \check{L}$ currently requires computing all semisimple subgroups of GL_m up to $\mathrm{GL}_m(\mathbb{C})$ -conjugacy. Algorithms exist, but difficult for large m.
- (2) Need to be able to compute the models $(\mathcal{H}, F^{\bullet}, \nabla)$ associated to arbitrary $f: X \to S$. Algorithms exist, but need to get computer to understand them.
- (3) General inefficiency.

