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Introduction Overview

Setting the Stage I

A Random Walk is a mathematical formalization of a path that contains
random steps. This presentation will briefly show how the Heat Equation,
a basic model that describes heat diffusing randomly in all directions at a
specific rate, can be applied to study Random Walks. We will specifically
explore Random Walk and the Discrete Heat Equation.
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Random Walk and the Heat Equation 1D Random Walk

1D Random Walk I

Lets start by looking at Random Walks on integers:

At each time unit, a walker can walk either up or down
Framework: Pup(Xj = 1) = 0.5, Pdown(Xj = −1) = 0.5, Sn is
position at step n

Figure: 1D Random Walk starting at x = 0
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Random Walk and the Heat Equation 1D Random Walk

1D Random Walk II

Some facts and results:

expectation and variance (starting at x = 0):

E[Sn] = 0 V ar[Sn] = n (1)

recall Stirling’s Formula:

n! =
√

2πnn+ 1
2 e−n[1 +O(

1

n
)] (2)

Using Binomial Distribution, Central Limit Theorem, and (2) we get:

lim
x→∞

P (a
√

2n ≤ S2n ≤ b
√

2n) =
1√
2π

∫ b

a
e−x

2/2 dx (3)

Theorem 1.1

The probability that a 1D simple random walker returns to the origin
infinitely often is one (n must be even).
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Random Walk and the Heat Equation 1D Boundary value problems

1D Boundary Value Problems

Consider the 1D Gambler’s Ruin Problem: Suppose N is a positive integer
and a random walker starts at x ∈ {0, 1, . . . . . . N}. Let Sn denote the
position of the walker at time n. Suppose the walker stops when he
reaches 0 or N .

Define T = min{n : Sn = 0 or N}
Define F (x) = P (ST = N |S0 = x) note that F (0) = 0, F (N) = 1
and F (x) = 1

2F (x+ 1) + 1
2F (x− 1)

The position of walker at time n is given by Sn∧T , where n ∧ T is the
minimum of n and T.

Theorem 2.1

The only function F : {0, . . . , N} → R that satisfies the above properties
is

F (x) = E(F (Sn∧T )) = x/N (4)
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Random Walk and the Heat Equation Random Walk on Several Dimensions

Random Walk on Several Dimensions I

We now consider a random walker on d-dimensional integer grid:

Zd = {(x1, . . . xd) : xj are integers}
So now each step, the walker chooses one of its 2d nearest lattices,
each with probability 1/2d, to move to the lattice.
Like before Sn = x+X1 + . . .+Xd, where x,X1, . . . , Xd are unit
vectors in that specific component.

Figure: Random Walk on Z2 starting at x = 0
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Random Walk and the Heat Equation Random Walk on Several Dimensions

Random Walk on Several Dimensions II

Like the 1D case expectation and variance (starting at x):

E[Sn] = 0

V ar[Sn] = n

Note here that Xj ·Xj = 1 and that:

Xj ·Xk =

{
1 with probability 1/2d j 6= k

−1 with probability 1/2d j 6= k

Theorem 3.1

Suppose Sn, for n even, is a random walk on Zd starting at the origin. If
d = 1, 2 the random walk is recurrent (with probability 1 it returns to the
origin). If d ≥ 3, the random walk is transient (with probability one that it
returns to the origin only finitely often). Note, if n is odd, the probability
of it returning to the origin is 0.
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Random Walk and the Heat Equation Random Walk on Several Dimensions

Random Walk on Several Dimensions III

Proof.

If V is the number of visits to the origin and p is the probability that the
d-dimensional walk returns to the origin, then

E[V ] =

∞∑
n=0

P (S2n = 0) = 1/(1− p) (V ∼ geometric)

By some work we can get P (S2n = 0) ∼ cd/nd/2, where cd = dd/2

πd/22d−1 So,

E[V ] =

{
≤ ∞ d ≥ 3
∞ d = 2
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Random Walk and the Heat Equation Higher Dimension Boundary Value Problem

Higher Dimension Boundary Value Problems

Suppose we have a finite subset A ⊆ Zd.

The boundary of A is defined by:

∂A = {z ∈ Zd \A : dist(z,A) = 1} (5)

Define the discrete Laplacian, L, as:

LF (x) =
1

2d

∑
y∈Zd,|x−y|=1

[F (y)− F (x)] (6)

Figure: The white dots are A and the black dots are ∂A
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Random Walk and the Heat Equation Higher Dimension Boundary Value Problem

Dirichlet Problem for Harmonic Functions I

Using Sn as te simple random walk on Zd. Then

LF (x) = E[F (S1)− F (S0)|S0 = x] (7)

Dirichlet Problem for Harmonic Functions: Given a finite set A,
A ⊆ Zd, and a function F : ∂A→ R, find an extension of F to Ā such
that

LF (x) = 0 ∀x ∈ A (8)

Theorem 4.1

If A ⊂ Zd is finite and TA = min{n ≥ 0 : Sn /∈ A}, then for every
F : ∂A→ R, there is a (unique) extension of F to Ā that satisfies (8) and
is given by

F0(x) = E[F (STA)|S0 = x] =
∑
y∈∂A

P (STA = y|S0 = x)F (y) (9)
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Random Walk and the Heat Equation Higher Dimension Boundary Value Problem

Dirichlet Problem for Harmonic Functions II

Proof.

This is the equivalent of solving a d-dimensional discrete Laplace equation.
Using separation of variables, we will get the Poisson Kernel,
[HA(x, y)]x∈A,y∈∂A. Another way of stating this is to say that:

HA(x, y) = P (STA = y|S0 = x) (10)

So for a given set A, we can solve the Dirichlet problem for any boundary
function in terms of the Poisson kernel.
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Random Walk and the Heat Equation Higher Dimension Boundary Value Problem

Dirichlet Problem for Harmonic Functions III

Example 1 (Deriving the Laplace Kernel)

Consider the Laplace Equation in two dimension on the boundary of a disk:

LF (x, y) = f (11)

Since we are solving this on a disk with radius,a,we transform it into polar
coordinates. Then the solution of becomes:

F (r, θ) =
A0

2
+

∞∑
1

An
rn

an
cos(nθ) +Bn

rn

an
sin(nθ) (12)

where An = 1
π

∫ π
−π f(φ) cos(nφ)dφ and Bn = 1

π

∫ π
−π f(φ) sin(nφ)dφ.

Note that because we are in the discrete case, we will just do Riemann
sum instead whenever we see an integral.
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Random Walk and the Heat Equation Higher Dimension Boundary Value Problem

Dirichlet Problem for Harmonic Functions IV

Example 2 (Deriving the Laplace Kernel Continued)

After some manipulation we can get:

F (r, θ) =

∫ π

−π
f(φ)P (r, θ − φ)dφ (13)

Where P (r, θ) is the Poisson Kernel

P (r, θ) =
1

2π
[1 + 2

∞∑
n=1

rn

an
cos(nθ)] =

1

2π

a2 − r2

a2 + r2 − 2ar cos(θ)
(14)

Properties of the Poisson Kernel:∫ π
−π P (r, θ)dθ = 1

P (r, θ) > 0 for 0 ≤ r < a

∀ε > 0 limr→a− P (r, θ)dθ = 0
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Heat Equation Set-up I

Let A be a finite subset of Zd with boundary ∂A. Set temperature at the
boundary to be 0 at all times and set the temperature at x ∈ A to be
pn(x). At each integer time unit n, the heat at x at time n is spread
evenly among its 2d neighbours. If one of the neighbours is a boundary
point, then the heat that goes to that point is lost forever. So let,

pn+1(x) =
1

2d

∑
|y−x|=1

pn(y) (15)

Let ∂npn(x) = pn+1 − pn and we get the heat equation:

∂npn(x) = Lpn(x), x ∈ A (16)

The initial temperature is given as an initial condition

p0(x) = f(x), x ∈ A (17)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Heat Equation Set-up II

The boundary condition is given as

pn(x) = 0, x ∈ ∂A (18)

If x ∈ A and the initial condition is f(x) = 1 and f(z) = 0 for z 6= x, then

pn(y) = P (Sn∧TA = y|S0 = x) (19)

Given any initial condition f , there is a unique function pn that satisfies
(16)-(18)and that the set of functions satisfying (16)-(18) is a vector
space with the same dimension as A. In fact, {pn(x) : x ∈ A} is the vector
Qnf . Such that:

QF (x) =
1

2d

∑
y∈Zd,|x−y|=1

F (y), LF (x) = (Q− I)F (x) (20)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete 1-D Heat Equation I

In trying to solve pn for A = 1, . . . , N − 1, we start by looking for
functions satisfying (16) of the form

pn(x) = λnφ(x) (21)

∂npn(x) = λn+1φ(x)− λnφ(x) = (λ− 1)λnφ(x) (22)

This nice form leads us to try to eigenvalue and eigenfunctions of Q, i.e to
find λ, φ such that

Qφ(x) = λφ(x), with φ ≡ 0 on ∂A (23)

Instead of using characteristic polynomials, we will make good guesses.
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete 1-D Heat Equation II

From sin((x± 1)θ) = sin(xθ) cos(θ)± cos(xθ) sin(θ), we can get

Q{sin(θx)} = λθ{sin(θx)}, λθ = cos(θ) (24)

Choosing θj = πj/N , then φj(x) = sin(πjx/N) and satisfies the
boundary condition φj(0) = φj(N) = 0. Since these are eigenvectors with
different eigenvalues for a symmetric matrix, then they must be orthogonal
and linearly independent.So then every function f on A can be written in
a unique way:

f(x) =

N−1∑
j=1

cj sin(
πjx

N
) (25)

Then the solution with heat equation with initial condition f is

pn(y) =

N−1∑
j=1

cj [cos(
jπ

N
)]nφj(y) (26)

Kevin Hu PDE and Random Walks January 7, 2014 18 / 28



Random Walk and the Heat Equation Discrete Heat Equation

Discrete 1-D Heat Equation III

In particular, if we choose the solution with initial condition f(x) = 1 and
f(z) = 0 for z 6= x, then

pn(y) = P (Sn∧TA = y|S0 = x) =
2

N

N−1∑
j=1

φj(x)[cos(
jπ

N
)]nφj(y) (27)

note that we used the double-angle formula and
∑N

j=1 cos(2kπ
N ) =∑N

j=1 sin(2kπ
N ) = 0 to get:

N−1∑
j=1

sin2(
πjx

N
) =

N

2
(28)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete 1-D Heat Equation IV

As n→∞, the sum becomes very small but it is dominated by j = 1 and
j = N − 1 terms, which the eigenvalue has the maximal absolute value.
These 2 terms give:

2

N
cosn(

π

N
)[sin(

πx

N
) sin(

πy

N
) + (−1)n sin(

π(N − 1)x

N
) sin(

π(N − 1)y

N
]

(29)
and hence if x, y ∈ {1, . . . , N − 1}, as n→∞,

P (Sn∧TA = y|S0 = x) ∼ 2

N
cosn(

π

N
)[1 + (−1)n+x+y] sin(

πx

N
) sin(

πy

N
)

(30)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete 1-D Heat Equation V

So for large n, such that the walker has not left {1, . . . , N − 1}, the
probability that the walker is at y is about c sin(πyN ) assuming that
n+ x+ y is even. Other than this assumption, there is no dependence on
the starting point x for the limiting distribution. Also, it is important to
notice that the walker is more likely to be at the points toward the middle
of the interval.
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Multidimensional Heat Equation I

Extending the theory of 1-D Heat Equation, we get the following

Theorem 5.1

If A is a finite subset of Zd with N elements, then we can find N linearly
independent functions φ1, . . . , φN that satisfy (24) with real eigenvalues
λ1, . . . , λN . The solution to (16)-(18)is given by:

pn(x) =
N∑
j=1

cjλ
n
j φj(x) (31)

Where cj are chosen so that

f(x) =
N∑
j=1

cjφj(x) (32)

The φj can be chosen to be orthonormal.
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Multidimensional Heat Equation II

Since pn(x)→ 0 as n→∞, we can order the eigenvalues such that:

1 > λ1 ≥ λ2 ≥ . . . ≥ λN > −1 (33)

Let p(x, y;A) = P (Sn∧TA = y|S0 = x). Then if the dimension of A = N :

p(x, y;A) =

N∑
j=1

cj(x)λnj φj(y) (34)

Where cj(x) was chosen so that it is orthonormal to φj(y). So then this
implies that cj(x) = φj(x). Hence:

p(x, y;A) =

N∑
j=1

φj(x)φj(y)λnj (35)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Multidimensional Heat Equation III

Let the largest eigenvalue, λ1, be denoted as λA. Then we can give a
definition of λA using the theorem about the largest eigenvalue of
symmetric matrices:

Theorem 5.2

If A is a finite subset of Zd, then λA is given by:

λA = sup
f

〈Qf, f〉
〈f, f〉

(36)

Where the supremum is over all functions f on A, and 〈., .〉 denotes inner
product:

〈f, g〉 =
∑
x∈A

f(x)g(x) (37)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Multidimensional Heat Equation IV

Using this formulation, we can see that the eigenfunction for λ1 can be
uniquely chosen so that φ1(x) ≥ 0. If x = (x1, . . . , xd) ∈ Zd, let
par(x) = (−1)x1+...+xd . We call x even if par(x) = 1 and otherwise x is
odd. So if n is nonnegative integer then

pn(x, y;A) = 0 if (−1)n par(x+ y) = −1 (38)

Q[par(φ)] = −λ par(φ) (39)

Theorem 5.3

Suppose A is a finite connect subset of Zd with at least two points. Then
λ1 > λ2, λN = −λ1 < λN−1. The eigenfunction φ1 can be chosen so that
φ1 > 0 ∀x ∈ A.

lim
n→∞

λ−n1 pn(x, y;A) = [1 + (−1)n par(x+ y)]φ1(x)φ1(y) (40)
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Random Walk and the Heat Equation Discrete Heat Equation

Discrete Multidimensional Heat Equation V

Example 3

We can compute the eigenfunciton and eigenvalues exactly for a
d-dimensional rectangle:

A = {(x1, . . . , xd) ∈ Zd : 1 ≤ xj ≤ Nj − 1} (41)

Using the index k̄ = (k1, . . . , kd) ∈ A, we get the eigenfunctions and
eigenvalue as:

φk̄(x1, . . . , xd) = sin(
k1πx1

N1
) sin(

k2πx2

N2
) . . . sin(

kdπxd
Nd

) (42)

λk̄ =
1

d
[cos(

k1π

N1
) + . . .+ cos(

kdπ

Nd
)] (43)
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Further Topics

Possible Further Topics

Brownian and the Continuous Heat Equation

Brownian Motion

Harmonic Functions

Dirichlet Problem

Heat Equation

Bounded Domain
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