
A simple “trick” to solve Euler ODEs

Consider equation

LE(y) :=
k=d1∑
k=0

ckx
ky(k) , solve ODE LE(y)(x) = P (x) . (1)

Step 1. Find characteristic polynomial

QLE
(r) := x−rLE(xr) =

k=d∑
k=0

ckr(r − 1) . . . (r − k + 1). (2)

Step 2. Constant coefficient ODE in z = z(t)

L(z) = P (et). (3)

is defined by its characteristic polynomial QL(r) := QLE
(r).

Then solutions to (1) are y(x) = z(lnx) , where z(t) solves (3).
Proof of the above is based on the equality (which is proved below)

xk+1f (k+1)(x)
∣∣∣
x=et

=
∣∣∣[(d

dt
− k
)(

xkf (k)(x)
∣∣∣
x=et

)]∣∣∣
t=lnx

(4)

from which it follows with g(t) := f(et) that

xk+1f (k+1)(x)
∣∣∣
x=et

=
[ ∏
0≤j≤k

∣∣∣(d
dt

− j
)
g
]
(t) (5)

and therefore it also follows with y(t) := z(lnx) that

L(z)(t) := [LE(y)](et) =
d∑

k=0

ck

( ∏
0≤j≤k−1

(d
dt

− j
)
z
)

(t) , (6)

i.e L(z) is a constant coefficients ODEs operator with the characteristic

polynomial QL(r) = e−rtL(ert) =
[
x−rLE(xr)

]∣∣∣
x=et

= QLE
(r) , i.e. as

in (3). Hence, solutions of LE(y)(x) = P (x) correspond to solutions of
L(z)(t) = P (et) via y(x) = z(lnx) .

Proof of (4). By induction on k ≥ 0:
It follows using chain rule that xf ′(x) = g′t(lnx) , where g(t) := f(et) ,
and using product rule that xk+1f (k+1)(x) = x d

dx

(
xkf (k)(x)

)
− kxkf (k)(x) .

Then, using the inductive assumption (4) follows.


