$\renewcommand{\Re}{\operatorname{Re}}$ $\renewcommand{\Im}{\operatorname{Im}}$ $\newcommand{\erf}{\operatorname{erf}}$ $\newcommand{\supp}{\operatorname{supp}}$ $\newcommand{\dag}{\dagger}$ $\newcommand{\const}{\mathrm{const}}$ $\newcommand{\arcsinh}{\operatorname{arcsinh}}$
Definition 1. Let us consider ordinary function $f$. Observe that if $f=0$ on open sets $\Omega_\iota$ (where $\iota $ runs any set of indices––finite, infinite or even non-enumerable) then $f=0$ on $\bigcup_\iota \Omega_\iota$. Therefore there exists a largest open set $\Omega$ such that $f=0$ on $\Omega$. Complement to this set is called support of $f$ and denoted as $\supp(f)$.
Definition 2.
Definition 3. Observe that $\supp(f)$ is always a closed set. If it is also bounded we say that $f$ has a compact support.
Exercise 1.
Remark 1. In fact, the converse to Exercise 1.(c) is also true: if $\supp(f)={a}$ then $f$ is a linear combination of $\delta (x-a)$ and its derivatives (up to some order).
Remark 2. In the previous section we introduced spaces of test functions $\mathcal{D}$ and $\mathcal{E}$ and the corresponding spaces of distributions $\mathcal{D}'$ and $\mathcal{E}'$. However for domain $\Omega\subset \mathbb{R}^d$ one can introduce $\mathcal{D}(\Omega):= \{ \varphi \in \mathcal{D}:\, \supp \varphi \subset \Omega\}$ and $\mathcal{E}=C^\infty (\Omega)$. Therefore one can introduce corresponding spaces of distributions $\mathcal{D}'(\Omega)$ and $\mathcal{E}'(\Omega)=\{ f\in \mathcal{E}:\, \supp f\subset \Omega\}$. As $\Omega=\mathbb{R}^d$ we get our "old spaces".
Definition 4. Let $f$ be a distribution with $\supp f\subset \Omega_1$ and let $\Phi:\Omega_1\to \Omega_2 $ be one-to-one correspondence, infinitely smooth and with non-vanishing Jacobian $\det \Phi'$. Then $\Phi_* f$ is a distribution: \begin{equation} (\Phi_* f)(\varphi) = f( |\det \Phi'| \cdot \Phi^*\varphi ) \label{eq-11.2.3} \end{equation} where $(\Phi^*\varphi)(x)=\varphi(\Phi(x))$.
Remark 3.
Exercise 2. Check that for ordinary function $f$ we get $(\Phi_*f)(x)=f (\Phi^{-1}(x))$.
Definition 5. Let $f\in \mathcal{S}'$. Then Fourier transform $\hat{f}\in \mathcal{S}'$ is defined as \begin{equation} \hat{f}(\varphi) = f(\hat{\varphi}) \label{eq-11.2.4} \end{equation} for $\varphi \in \mathcal{S}$. Similarly, inverse Fourier transform $\check{f}\in \mathcal{S}'$ is defined as \begin{equation} \check{f}(\varphi) = f(\check{\varphi}) \label{eq-11.2.5} \end{equation}
Exercise 3.
Exercise 4.
Recall convolution (see Definition 5.2.1) and its connection to Fourier transform.
Definition 6. Let $f,g\in \mathcal{D}'$ (or other way around), $\varphi\in \mathcal{D}$ Then we can introduce $h(y) \in \mathcal{E}$ as \begin{equation*} h(y) = g ( T_y\varphi ),\qquad T_y \varphi(x):= \varphi (x-y). \end{equation*} Observe that $h \in \mathcal{D}$ provided $g\in \mathcal{E}'$. In this case we can introduce $h \in \mathcal{E}$ for $\varphi \in \mathcal{E}$.
Therefore if either $f\in \mathcal{E}'$ or $g\in \mathcal{E}'$ we introduce $f*g$ as \begin{equation*} (f*g)(\varphi) = f ( h ). \end{equation*}
Exercise 5.
Remark 4.
Similarly in multidimensional case we can assume that $\supp(f)\subset C$, $\supp(g)\subset C$ where $C$ is a cone with angle $<\pi $ at its vertex $a$.
Definition 7.
Periodic distributions could be decomposed into Fourier series: in one-dimensional case we have \begin{equation} f= \sum_{-\infty< m<\infty} c_n e^{\frac{2\pi imx}{L} } \label{eq-11.2.8} \end{equation} and in multidimensional case \begin{equation} f= \sum_{ m\in \Gamma^*} c_m e^{im\cdot } \label{eq-11.2.9} \end{equation} where $\Gamma^*$ is a dual lattice (see Definition 4.B.3).
To define coefficients $c_m$ we cannot use ordinary formulae since integral over period (or elementary cell, again see the same definition) is not defined properly. Instead we claim that there exists $\varphi\in \mathcal{D}$ such that \begin{equation} \sum_{n\in \Gamma} \varphi(x-n) =1. \label{eq-11.2.10} \end{equation} Indeed, let $\psi \in \mathcal{D}$ be non-negative and equal $1$ in some elementary cell. Then $\varphi (x)= \psi (x)/ \bigl(\sum_{n\in \Gamma} \psi(x-n)\bigr)$ is an appropriate function.
Then \begin{equation} c_m= |\Omega|^{-1} (\varphi f)( e^{-im\cdot x} \label{eq-11.2.11} \end{equation} where $|\Omega|$ is a volume of the elementary cell.
Exercise 5.