
THE ENERGY-CRITICAL QUANTUM HARMONIC OSCILLATOR

CASEY JAO

Abstract. We consider the energy critical nonlinear Schrödinger equation in dimensions 3 and above with
a harmonic oscillator potential. In the defocusing situation, we prove global wellposedness for all initial

data in the energy space Σ. This extends a result of Killip-Visan-Zhang, who treated the radial case. For
the focusing nonlinearity, we obtain wellposedness for data in Σ satisfying an analogue of the usual size

restriction in terms of the ground state W . We implement the concentration compactness variant of the

induction on energy paradigm and, in particular, develop profile decompositions adapted to the harmonic
oscillator.
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1. Introduction

We study the initial value problem for the energy-critical nonlinear Schrödinger equation on Rd, d ≥ 3,
with a harmonic oscillator potential:

(1.1)

{
i∂tu = (− 1

2∆ + 1
2 |x|

2)u+ µ|u|
4

d−2u, µ = ±1,

u(0) = u0 ∈ Σ(Rd).

The equation is defocusing if µ = 1 and focusing if µ = −1. Solutions to this PDE conserve energy, defined
as

(1.2) E(u(t)) =

∫
Rd

[
1
2 |∇u(t)|2 + 1

2 |x|
2|u(t)|2 + d−2

d µ|u(t)|
2d

d−2

]
dx = E(u(0)).

The term “energy-critical” refers to the fact that if we ignore the |x|2/2 term in the equation and the energy,
the scaling

(1.3) u(t, x) 7→ uλ(t, x) := λ−
2

d−2u(λ−2t, λ−1x)

preserves both the equation and the energy. We take initial data in the weighted Sobolev space Σ, which is
the natural space of functions associated with the energy functional. This space is equipped with the norm

(1.4) ‖f‖2Σ = ‖∇f‖2L2 + ‖xf‖2L2 = ‖f‖2
Ḣ1 + ‖f‖2L2(|x|2 dx)

We will frequently employ the notation

H = − 1
2∆ + 1

2 |x|
2, F (z) = µ|z|

4
d−2 z.

1
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Definition. A (strong) solution to (1.1) is a function u : I ×Rd → C that belongs to C0
t (K; Σ) for every

compact interval K ⊂ I, and that satisfies the Duhamel formula

(1.5) u(t) = e−itHu(0)− i
∫ t

0

e−i(t−s)HF (u(s)) ds for all t ∈ I.

The hypothesis on u implies that F (u) ∈ C0
t,locL

2d
d+2
x (I × Rd). Consequently, the right side above is well-

defined, at least as a weak integral of tempered distributions.

Equation (1.1) and its variants

i∂tu = (− 1
2∆ + V )u+ F (u), V = ± 1

2 |x|
2, F (u) = ±|u|pu, p > 0

have received considerable attention, especially in the energy-subcritical regime p < 4/(d− 2). The equation
with a confining potential V = |x|2/2 has been used to model Bose-Einstein condensates in a trap (see [33],
for example). Let us briefly review the mathematical literature.

Carles [4], [5] proved global wellposedness for a defocusing nonlinearity F (u) = |u|pu, p < 4/(d− 2) when
the potential V (x) = |x|2/2 is either confining or repulsive, and obtained various wellposedness and blowup
results for a focusing nonlinearity F (u) = −|u|pu. In [6], he also studied the case of an anisotropic harmonic
oscillator with V (x) =

∑
j δjx

2
j/2, δj ∈ {1, 0,−1}.

There has also been interest in more general potentials. The paper [25] proves long-time existence in the
presence of a focusing, mass-subcritical nonlinearity F (u) = −|u|pu, p < 4/d when V (x) is merely assumed
to grow subquadratically (by which we mean ∂αV ∈ L∞ for all |α| ≥ 2). More recently, Carles [7] considered
time-dependent subquadratic potentials V (t, x). Taking initial data in Σ, he established global existence and
uniqueness when 4/d ≤ p < 4/(d− 2) for the defocusing nonlinearity and 0 < p < 4/d in the focusing case.

This paper studies the energy-critical problem p = 4/(d − 2). While the critical equation still admits
a local theory, the duration of local existence obtained by the usual fixed-point argument depends on the
profile and not merely on the norm of the initial data u0. Therefore, one cannot pass directly from local
wellposedness to global wellposedness using conservation laws as in the subcritical case. This issue is most
evident if we temporarily discard the potential and consider the equation

(1.6) i∂tu = − 1
2∆u+ µ|u|

4
d−2u, u(0) = u0 ∈ Ḣ1(Rd), d ≥ 3,

which has the Hamiltonian

E∆(u) =

∫
1
2 |∇u|

2 + µd−2
d |u|

2d
d−2 dx.

We shall refer to this equation in the sequel as the “potential-free”, “translation-invariant”, or “scale-
invariant” problem. Since the spacetime scaling (1.3) preserves both the equation and the Ḣ1 norm of the
initial data, the lifespan guaranteed by the local wellposedness theory cannot depend merely on ‖u0‖Ḣ1 .
One cannot iterate the local existence argument to obtain global existence because with each iteration the
solution could conceivably become more concentrated in space while remaining bounded in Ḣ1; the lifespans
might therefore shrink to zero too quickly to cover all of R. The scale invariance makes the analysis of (1.6)
highly nontrivial.

We mention equation (1.6) because the original equation increasingly resembles (1.6) as the initial data
concentrates at a point; see sections 4.2 and 5 for more precise statements concerning this limit. Hence, one
would expect the essential difficulties in the energy-critical NLS to also manifest themselves in the energy-
critical harmonic oscillator. Understanding the scale-invariant problem is therefore an important step toward
understanding the harmonic oscillator. The last fifteen years have witnessed intensive study of the former,
and the following conjecture has been verified in all but a few cases:

Conjecture 1.1. When µ = 1, solutions to (1.6) exist globally and scatter. That is, for any u0 ∈ Ḣ1(Rd),
there exists a unique global solution u : R ×Rd → C to (1.6) with u(0) = u0, and this solution satisfies a
spacetime bound

(1.7) SR(u) :=

∫
R

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt ≤ C(E∆(u0)) <∞.

Moreover, there exist functions u± ∈ Ḣ1(Rd) such that

lim
t→±∞

‖u(t)− e± it∆
2 u±‖Ḣ1 = 0,
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and the correspondences u0 7→ u±(u0) are homeomorphisms of Ḣ1.
When µ = −1, one also has global wellposedness and scattering provided that

E∆(u0) < E∆(W ), ‖∇u0‖L2 < ‖∇W‖L2 ,

where the ground state

W (x) =
(
1 +

2|x|2

d(d− 2)

)− d−2
2 ∈ Ḣ1(Rd)

solves the elliptic equation 1
2∆ + |W |

4
d−2W = 0.

Theorem 1.1. Conjecture 1.1 holds for the defocusing equation. For the focusing equation, the conjecture
holds for radial initial data when d ≥ 3, and for all initial data when d ≥ 5.

Proof. See [2, 9, 26, 31] for the defocusing case and [16, 21] for the focusing case. �

One can formulate a similar conjecture for (1.1); however, as the linear propagator is periodic in time,
one only expects uniform local-in-time spacetime bounds.

Conjecture 1.2. When µ = 1, equation (1.1) is globally wellposed. That is, for each u0 ∈ Σ there is a
unique global solution u : R×Rd → C with u(0) = u0. This solution obeys the spacetime bound

(1.8) SI(u) :=

∫
I

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt ≤ C(|I|, ‖u0‖Σ)

for any compact interval I ⊂ R.
If µ = −1, then the same is true provided also that

E(u0) < E∆(W ) and ‖∇u0‖L2 < ‖∇W‖L2 .

In [24], Killip-Visan-Zhang verified this conjecture for µ = 1 and spherically symmetric initial data.
By adapting an argument of Bourgain-Tao for the equation without potential (1.6), they proved that the
defocusing problem (1.1) is globally wellposed, and also obtained scattering for the repulsive potential. We
consider only the confining potential. In this paper, we remove the assumption of spherical symmetry for
the defocusing harmonic oscillator. In addition, we establish global wellposedness for the focusing problem
under the assumption that Conjecture 1.1 holds for all dimensions.

Theorem 1.2. Assume that Conjecture 1.1 holds. Then Conjecture 1.2 holds.

By Theorem 1.1, this result is conditional only in the focusing situation for nonradial data in dimensions
3 and 4. Moreover, in the focusing case we have essentially the same blowup result as for the potential-free
NLS with the same proof as in that case; see [21]. We recall the argument in Section 7.

Theorem 1.3 (Blowup). Suppose µ = −1 and d ≥ 3. If u0 ∈ Σ satisfies E(u0) < E∆(W ) and ‖∇u0‖2 >
‖∇W‖2, then the solution to (1.1) blows up in finite time.

Remark. By Lemma 7.1, E(u0) < E∆(W ) implies that either ‖∇u0‖L2 < ‖∇W‖L2 or ‖∇u‖L2 > ‖∇W‖L2 .

Mathematically, the energy-critical NLS with quadratic potential has several interesting properties. On
one hand, it is a nontrivial variant of the potential-free equation. If the quadratic potential is replaced by a
weaker potential, the proof of global wellposedness can sometimes ride on the coat tails of Theorem 1.1. For
example, we show in Section 8 that for smooth, bounded potentials with bounded derivative, one obtains
global wellposedness by treating the potential as a perturbation to (1.6). Further, the Avron-Herbst formula
given in [7] reduces the problem with a linear potential V (x) = Ex to (1.6). On the other hand, the
linear propagator e−itH for the harmonic oscillator does admit an explicit formula. In view of the preceding
remarks, we believe that (1.1) is the most accessible generalization of (1.6) which does not come for free.

Proof outline. The local theory for (1.1) shows that global existence is equivalent to the uniform a priori
spacetime bound (1.8). To prove this bound for all solutions, we apply the general strategy of induction on
energy pioneered by Bourgain [2] and refined over the years by Colliander-Keel-Staffilani-Takaoka-Tao [9],
Keraani [18], Kenig-Merle [16], and others. These arguments proceed roughly as follows.

(1) Show that the failure of Theorem 1.2 would imply the existence of a minimal-energy counterexample.
(2) Show that the counterexample cannot actually exist.
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By the local theory, uniform spacetime bounds hold for all solutions with sufficiently small energy E(u).
Assuming that Theorem 1.2 fails, we obtain a positive threshold 0 < Ec <∞ such that (1.8) holds whenever
E(u) < Ec and fails when E(u) > Ec.

As the spacetime estimates of interest are local-in-time, it suffices to prevent the blowup of spacetime norm
on unit-length time intervals. This will be achieved by a Palais-Smale compactness theorem (Proposition 6.1),
from which one deduces that failure of Theorem 1.2 would imply the existence of a solution uc with E(uc) =
Ec, which blows up on a unit time interval, and which also has an impossibly strong compactness property
(namely, its orbit {uc(t)} must be precompact in Σ). Put differently, we shall discover that the only scenario
where blowup could possibly occur is when the solution is highly concentrated at a point and behaves like a
solution to the potential-free equation (1.6); but that equation is already known to be wellposed.

This paradigm of recovering the potential-free NLS in certain limiting regimes has been applied to various
other equations. See [19, 20, 14, 13, 12, 23] for adaptations to gKdV, Klein-Gordon, and NLS in various
domains and manifolds. While the particulars are unique to each case, a common key step is to prove an
appropriate compactness theorem in the style of Proposition 6.1. As in the previous work, our proof of that
proposition uses three main ingredients.

The first prerequisite is a local wellposedness theory that gives local existence and uniqueness as well as
stability of solutions with respect to perturbations of the initial data or the equation itself. In our case, local
wellposedness will follow from familiar arguments employing the dispersive estimate satisfied by the linear
propagator e−itH , as well the fractional product and chain rules for the operators Hγ , γ ≥ 0. We review
the relevant results in Section 3.

We also need a linear profile decomposition for the Strichartz inequality

(1.9) ‖e−itHf‖
L

2(d+2)
d−2

t,x

. ‖H 1
2 f‖L2

x
.

Such a decomposition in the context of energy-critical Schrödinger equations was first proved by Keraani [17]
in the translation-invariant setting for the free particle Hamiltonian H = −∆, and quantifies the manner in
which a sequence of functions fn with ‖H1/2fn‖L2 bounded may fail to produce a subsequence of e−itHfn
converging in the spacetime norm. The defect of compactness arises in Keraani’s case from a noncompact
group of symmetries of the inequality (1.9), which includes spatial translations and scaling. In our setting,
there are no obvious symmetries of (1.9); nonetheless, compactness can fail and in Section 4 we formulate a
profile decomposition for (1.9) when H is the Hamiltonian of the harmonic oscillator.

Finally, we need to study (1.1) when the initial data is highly concentrated in space, corresponding to a
single profile in the linear profile decomposition just discussed. In Section 5, we show that blowup cannot
occur in this regime. The basic idea is that while the solution to (1.1) remains highly localized in space, it can
be well-approximated up to a phase factor by the corresponding solution to the scale-invariant energy-critical
NLS

(1.10) (i∂t + 1
2∆)u = ±|u|

4
d−2u.

By the time this approximation breaks down, the solution to the original equation will have dispersed
and can instead be approximated by a solution to the linear equation (i∂t−H)u = 0. We use as a black box
the nontrivial fact (which is still a conjecture in a few cases) that solutions to (1.6) obey global spacetime
bounds. By stability theory, the spacetime bounds for the approximations will be transferred to the solution
for the original equation and will therefore preclude blowup.

While this paper considers the potential V (x) = 1
2 |x|

2, the argument can be adapted to a wider class of
subquadratic potentials defined by the following hypotheses:

• ∂kV ∈ L∞ for all k ≥ 2.
• V (x) ≥ δ|x|2 for some δ > 0.

Fujiwara showed [10] that the linear propagator for such potentials has a nice oscillatory integral rerpresen-
tation, which can be used as a substitute for the Mehler formula (2.2) for the harmonic oscillator. We focus
on the harmonic oscillator because this concrete case already contains the main ideas.

Acknowledgements. The author is indebted to his advisors Rowan Killip and Monica Visan for their
helpful discussions, particularly regarding the energy trapping arguments for the focusing case, as well as
their feedback on the paper. This work was supported in part by NSF grants DMS-0838680 (RTG), DMS-
1265868 (PI R. Killip), DMS-0901166, and DMS-1161396 (both PI M. Visan).
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2. Preliminaries

2.1. Notation and basic estimates. We write X . Y to mean X ≤ CY for some constant C, and X ∼ Y
if both X . Y and Y . X. If I ⊂ R is an interval, the mixed Lebesgue norms on I ×Rd are defined by

‖f‖Lq
tL

r
x(I×Rd) =

(∫
I

(∫
Rd

|f(t, x)|r dx
) q

r

dt

) 1
q

= ‖f(t)‖Lq
t (I;Lr

x(Rd)),

The operator H = − 1
2∆ + 1

2 |x|
2 is positive on L2(Rd). Its associated heat kernel is given by Mehler’s

formula

(2.1) e−tH(x, y) = eγ̃(t)(x2+y2)e
sinh(t)∆

2 (x, y),

where

γ̃(t) =
1− cosh t

2 sinh t
= − t

4
+O(t3) as t→ 0.

By analytic continuation, the associated one-parameter unitary group has the integral kernel

(2.2) e−itHf(x) =
1

(2πi sin t)
d
2

∫
e

i
sin t

(
x2+y2

2 cos t−xy
)
f(y) dy.

Comparing this to the well-known free propagator

(2.3) e
it∆
2 f(x) =

1

(2πit)
d
2

∫
e

i|x−y|2
2t f(y) dy,

we obtain the relation

(2.4) e−itHf = eiγ(t)|x|2e
i sin(t)∆

2 (eiγ(t)|x|2f),

where

γ(t) =
cos t− 1

2 sin t
= − t

4
+O(t3) as t→ 0.

Mehler’s formula immediately implies the local-in-time dispersive estimate

(2.5) ‖e−itHf‖L∞x . | sin t|
− d

2 ‖f‖L1 .

For d ≥ 3, call a pair of exponents (q, r) admissible if q ≥ 2 and 2
q + d

r = d
2 . Write

‖f‖S(I) = ‖f‖L∞t L2
x

+ ‖f‖
L2

tL
2d

d−2
x

with all norms taken over the spacetime slab I ×Rd. By interpolation, this norm controls the LqtL
r
x norm

for all other admissible pairs. Let

‖F‖N(I) = inf{‖F1‖
L

q′1
t L

r′1
x

+ ‖F2‖
L

q′2
t L

r′2
x

: (qk, rk) admissible, F = F1 + F2},

where (q′k, r
′
k) is the Hölder dual to (qk, rk).

Lemma 2.1 (Strichartz estimates). Let I be a compact time interval containing t0, and let u : I ×Rd → C
be a solution to the inhomogeneous Schrödinger equation

(i∂t −H)u = F.

Then there is a constant C = C(|I|), depending only on the length of the interval, such that

‖u‖S(I) ≤ C(‖u(t0)‖L2 + ‖F‖N(I)).

Proof. This follows from the dispersive estimate (2.5), the unitarity of e−itH on L2, and general considera-

tions; see [15]. By partitioning time into unit intervals, we see that the constant C grows at worst like |I| 12
(which corresponds to the time exponent q = 2). �
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We use the fractional powers Hγ of the operator H, defined via the Borel functional calculus, as a
substitute for the usual derivative (−∆)γ . The former has the advantage of commuting with the linear
propagator e−itH . Trivially

‖H 1
2 f‖L2 ∼ ‖(−∆)

1
2 f‖L2 + ‖|x|f‖L2 ∼ ‖f‖Σ.

Using complex interpolation, Killip, Visan, and Zhang extended this equivalence to other Lp norms and
other powers of H.

Lemma 2.2 ([24, Lemma 2.7]). For 0 ≤ γ ≤ 1 and 1 < p <∞, one has

‖Hγf‖Lp(Rd) ∼ ‖(−∆)γf‖Lp(Rd) + ‖|x|2γf‖Lp(Rd).

As a consequence, Hγ inherits many properties of (−∆)γ , including Sobolev embedding:

Lemma 2.3 ([24, Lemma 2.8]). Suppose γ ∈ [0, 1] and 1 < p < d
2γ , and define p∗ by 1

p∗ = 1
p −

2γ
d . Then

‖f‖Lp∗ (Rd) . ‖Hγf‖Lp(Rd).

Similarly, the fractional chain and product rules carry over to the current setting:

Corollary 2.4 ([24, Proposition 2.10]). Let F (z) = |z|
4

d−2 z. For any 0 ≤ γ ≤ 1
2 and 1 < p <∞,

‖HγF (u)‖Lp(Rd) . ‖F ′(u)‖Lp0 (Rd)‖Hγf‖Lp1 (Rd)

for all p0, p1 ∈ (1,∞) with p−1 = p−1
0 + p−1

1 .

Using Lemma 2.2 and the Christ-Weinstein fractional product rule for (−∆)γ (e.g. [30]), we obtain

Corollary 2.5. For γ ∈ (0, 1], r, pi, qi ∈ (1,∞) with r−1 = p−1
i + q−1

i , i = 1, 2, we have

‖Hγ(fg)‖r . ‖Hγf‖p1
‖g‖q1 + ‖f‖p2

‖Hγg‖q2 .

The exponent γ = 1
2 is particularly relevant to us, and it will be convenient to use the notation

‖f‖Lq
tΣr

x(I×Rd) = ‖H 1
2 f‖Lq

tL
r
x(I×Rd).

The superscript of Σ is assumed to be 2 if omitted. We shall need the following refinement of Fatou’s Lemma
due to Brézis and Lieb:

Lemma 2.6 (Refined Fatou [3]). Fix 1 ≤ p <∞, and suppose fn is a sequence of functions in Lp(Rd) such
that supn ‖fn‖p <∞ and fn → f pointwise. Then

lim
n→∞

∫
Rd

||fn|p − |fn − f |p − |f |p| dx = 0.

Finally, we record a Mikhlin-type spectral multiplier theorem.

Theorem 2.7 (Hebisch [11]). If F : R→ C is a bounded function which obeys the derivative estimates

|∂kF (λ)| .k |λ|−k for all 0 ≤ k ≤ d
2 + 1,

then the operator F (H), defined initially on L2 via the Borel functional calculus, is bounded on Lp for all
1 < p <∞.

2.2. Littlewood-Paley theory. Using Theorem 2.7 as a substitute for the Mikhlin multiplier theorem,
we obtain a Littlewood-Paley theory adapted to H by mimicking the classical development for Fourier
multipliers. We define Littlewood-Paley projections using both compactly supported bump functions and
also the heat kernel of H. The parabolic maximum principle implies that

(2.6) 0 ≤ e−tH(x, y) ≤ e t∆
2 (x, y) = 1

(2πt)d/2 e
− |x−y|2

2t .

Fix a smooth function ϕ supported in |λ| ≤ 2 with ϕ(λ) = 1 for |λ| ≤ 1, and let ψ(λ) = ϕ(λ) − ϕ(2λ).
For each dyadic number N ∈ 2Z, which we will often refer to as “frequency,” define

PH≤N = ϕ(
√
H/N2), PHN = ψ(

√
H/N2),

P̃H≤N = e−H/N
2

, P̃HN = e−H/N
2

− e−4H/N2

.

The associated operators PH<N , P
H
>N , etc. are defined in the usual manner.
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Remark. As the spectrum of H is bounded away from 0, by choosing ϕ appropriately we can arrange for
P<1 = 0; thus we will only consider frequencies N ≥ 1.

Later on we shall need the classical Littlewood-Paley projectors

P∆
≤N = ϕ(

√
−∆/N2) P∆

N = ψ(
√
−∆/N2),(2.7)

P̃∆
≤N = e∆/2N2

P̃∆
N = e∆/2N2

− e2∆/N2

.(2.8)

The maximum principle implies the pointwise bound

(2.9) |P̃HN f(x)|+ |P̃H≤Nf(x)| . P̃∆
≤N |f |(x) + P̃∆

≤N/2|f |(x).

To reduce clutter we usually suppress the superscripts H and ∆ unless both types of projectors arise in
the same context. For the rest of this section, P≤N and PN denote PH≤N and PHN , respectively.

Lemma 2.8 (Bernstein estimates). For f ∈ C∞c (Rd), 1 < p ≤ q < ∞, s ≥ 0, one has the Bernstein
inequalities

‖P≤Nf‖p . ‖P̃≤Nf‖p, ‖PNf‖p . ‖P̃Nf‖p(2.10)

‖P≤Nf‖p + ‖PNf‖p + ‖P̃≤Nf‖p + ‖P̃Nf‖p . ‖f‖p(2.11)

‖P≤Nf‖q + ‖PNf‖q + ‖P̃≤Nf‖q + ‖P̃Nf‖q . N
d
p−

d
q ‖f‖p(2.12)

N2s‖PNf‖p ∼ ‖HsPNf‖p(2.13)

‖P>Nf‖p . N−2s‖HsP>Nf‖p.(2.14)

In (2.12), the estimates for P̃≤Nf and P̃Nf also hold when p = 1, q =∞. Further,

f =
∑
N

PNf =
∑
N

P̃Nf(2.15)

where the series converge in Lp, 1 < p <∞. Finally, we have the square function estimate

‖f‖p ∼ ‖(
∑
N

|PNf |2)1/2‖p.(2.16)

Proof. The estimates (2.10) follow immediately from Theorem 2.7. To see (2.11), observe that the functions

ϕ(
√
·/N2), e−·/N

2

satisfy the hypotheses of Theorem 2.7 uniformly in N . Next use (2.6) together with
Young’s convolution inequality to get

(2.17) ‖P̃≤Nf‖q + ‖P̃Nf‖q . N
d
q−

d
p ‖f‖p for 1 ≤ p ≤ q ≤ ∞.

From (2.10) we obtain the rest of (2.12). Now consider (2.13). Let ψ̃ be a fattened version of ψ so that

ψ̃ = 1 on the support of ψ. Put F (λ) = λsψ̃(
√
λ). By Theorem 2.7, the relation ψ = ψ̃ψ, and the functional

calculus,

‖N−2sHsPNf‖p = ‖F (H/N2)PNf‖p . ‖PNf‖p.
The reverse inequality follows by considering F (x) = λ−sψ̃(λ).

We turn to (2.15). The equality holds in L2 by the functional calculus and the fact that the spectrum of
H is bounded away from 0. For p 6= 2, choose q and 0 < θ < 1 so that p−1 = 2−1(1− θ) + q−1θ. By (2.11),
the partial sum operators

SN0,N1
=

∑
N0<N≤N1

PN , S̃N0,N1
=

∑
N0<N≤N1

P̃N

are bounded on every Lp, 1 < p <∞, uniformly in N0, N1. Thus by Hölder’s inequality,

‖f − SN0,N1f‖p ≤ ‖f − SN0,N1f‖1−θ2 ‖f − SN0,N1f‖θq → 0 as N0 → 0, N1 →∞,

and similarly for the partial sums S̃N0,N1
f . The estimate (2.14) follows from (2.11), (2.13), and the decom-

position P>Nf =
∑
M>N PMf .

To prove the square function estimate, run the usual Khintchine’s inequality argument using Theorem 2.7
in place of the Mikhlin multiplier theorem. �
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2.3. Local smoothing. The following local smoothing lemma and its corollary will be needed when proving
properties of the nonlinear profile decomposition in Section 6.

Lemma 2.9. If u = e−itHφ, φ ∈ Σ(Rd), then∫
I

∫
Rd

|∇u(x)|2〈R−1(x− z)〉−3 dx dt . R(1 + |I|)‖u‖L∞t L2
x
‖H1/2u‖L∞t L2

x
.

with the constant independent of z ∈ Rd and R > 0.

Proof. We recall the Morawetz identity. Let a be a sufficiently smooth function of x; then for any u satisfying
the linear equation i∂tu = (− 1

2∆ + V )u, one has

∂t

∫
∇a · Im(u∇u) dx =

∫
ajk Re(ujuk) dx− 1

4

∫
|u|2ajjkk dx

− 1
2

∫
|u|2∇a · ∇V dx

(2.18)

We use this identity with a(x) = 〈R−1(x− z)〉 and V = 1
2 |x|

2, and compute

aj(x) =
R−2(xj − zj)
〈R−1(x− z)〉

, ajk(x) = R−2

[
δjk

〈R−1(x− z)〉
− R−2(xj − zj)(xk − zk)

〈R−1(x− z)〉3

]
∆2a(x) ≤ − 15R−4

〈R−1(x− z)〉7
.

As ∆2a ≤ 0, the right side of (2.18) is bounded below by

R−2

∫
〈R−1(x− z)〉−1

[
|∇u|2 − | R

−1(x−z)
〈R−1(x−z)〉 · ∇u|

2
]
dx− 1

2R

∫
|u|2 R−1(x−z)

〈R−1(x−z)〉 · x dx

≥ R−2

∫
|∇u(x)|2〈R−1(x− z)〉−3 dx− R−1

2

∫
|u|2|x| dx.

Integrating in time and applying Cauchy-Schwarz, we get

R−2

∫
I

∫
Rd

〈R−1(x− z)〉−3|∇u(t, x)|2 dxdt

. sup
t∈I

R−1

∫
R−1(x−z)
〈R−1(x−z)〉 |u(t, x)||∇u(t, x)| dx+ 1

2R

∫
I

∫
Rd

|x||u|2 dxdt

. R−1(1 + |I|)‖u‖L∞t L2
x
‖H1/2u‖L∞t L2

x
.

This completes the proof of the lemma. �

Corollary 2.10. Fix φ ∈ Σ(Rd). Then for all T,R ≤ 1, we have

‖∇e−itHφ‖L2
t,x(|t−t0|≤T, |x−x0|≤R) . T

2
3(d+2)R

3d+2
3(d+2) ‖φ‖

2
3

Σ‖e
−itHφ‖

1
3

L

2(d+2)
d−2

t,x

.

When d = 3, we also have

‖∇e−itHφ‖
L

10
3

t L
15
7

x (|t−t0|≤T, |x−x0|≤R)
. T

23
180R

11
45 ‖e−itHφ‖

5
48

L10
t,x
‖φ‖

43
48

Σ

Proof. The proofs are fairly standard (see [32] or [23]); we present the details for the second claim, which
is slightly more involved. Let E the region {|t − t0| ≤ T, |x − x0| ≤ R}. Norms which do not specify the
region of integration are taken over the spacetime slab {|t− t0| ≤ T} ×R3. By Hölder,

‖∇e−itHφ‖
L

10
3

t L
15
7

x (E)
≤ ‖∇e−itHφ‖

1
3

L2
t,x(E)

‖∇e−itHφ‖
2
3

L5
tL

20
9

x (E)
.

By Hölder and Strichartz,

‖∇e−itHφ‖
L5

tL
20
9

x (E)
. T

1
8 ‖∇e−itHφ‖

L
40
3

t L
20
9

x

. T
1
8 ‖φ‖Σ.(2.19)

We now estimate ‖∇e−itHφ‖L2
t,x

. Let N ∈ 2N be a dyadic number to be chosen later, and decompose

‖∇e−itHφ‖L2
t,x(E) ≤ ‖∇e−itHPH≤Nφ‖L2

t,x(E) + ‖∇e−itHPH>Nφ‖L2
t,x(E).
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For the low frequency piece, apply Hölder and the Bernstein inequalities to obtain

‖∇e−itHPH≤Nφ‖L2
t,x
. T

2
5R

6
5 ‖∇e−itHPH≤Nφ‖L10

t,x
. T

2
5R

6
5N‖e−itHφ‖L10

t,x
.

For the high-frequency piece, apply local smoothing and Bernstein:

‖∇e−itHPH>Nφ‖L2
t,x
. R

1
2 ‖PH>Nφ‖

1
2

L2‖H
1
2φ‖

1
2

Σ . R
1
2N−

1
2 ‖φ‖Σ.

Optimizing in N , we obtain

‖∇e−itHφ‖L2
t,x
. T

2
15R

11
15 ‖e−itHφ‖

1
3

L10
t,x
‖φ‖

2
3

Σ.

Combining this estimate with (2.19) yields the conclusion of the corollary. �

3. Local theory

We record some standard results concerning local-wellposedness for (1.1). These are direct analogues of
the theory for the scale-invariant equation. By Lemma 2.3 and Corollaries 2.4 and 2.5, we can use essentially
the same proofs as in that case. The reader should consult [22] for those proofs.

Proposition 3.1 (Local wellposedness). Let u0 ∈ Σ(Rd) and fix a compact time interval 0 ∈ I ⊂ R. Then
there exists a constant η0 = η0(d, |I|) such that whenever η < η0 and

‖H 1
2 e−itHu0‖

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ η,

there exists a unique solution u : I ×Rd → C to (1.1) which satisfies the bounds

‖H 1
2u‖

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ 2η and ‖H 1
2u‖S(I) . ‖u0‖Σ + η

d+2
d−2 .

Corollary 3.2 (Blowup criterion). Suppose u : (Tmin, Tmax) × Rd → C is a maximal lifespan solution
to (1.1), and fix Tmin < t0 < Tmax. If Tmax <∞, then

‖u‖
L

2(d+2)
d−2

t,x ([t0,Tmax))

=∞.

If Tmin > −∞, then

‖u‖
L

2(d+2)
d−2

t,x ((Tmin,t0])

=∞.

Proposition 3.3 (Stability). Fix t0 ∈ I ⊂ R an interval of unit length and let ũ : I × Rd → C be an
approximate solution to (1.1) in the sense that

i∂tũ = Hũ± |ũ|
4

d−2 ũ+ e

for some function e. Assume that

(3.1) ‖ũ‖
L

2(d+2)
d−2

t,x

≤ L, ‖H 1
2 ũ‖L∞t L2

x
≤ E,

and that for some 0 < ε < ε0(E,L) one has

(3.2) ‖ũ(t0)− u0‖Σ + ‖H 1
2 e‖N(I) ≤ ε,

Then there exists a unique solution u : I ×Rd → C to (1.1) with u(t0) = u0 and which further satisfies the
estimates

(3.3) ‖ũ− u‖
L

2(d+2)
d−2

t,x

+ ‖H 1
2 (ũ− u)‖S(I) ≤ C(E,L)εc

where 0 < c = c(d) < 1 and C(E,L) is a function which is nondecreasing in each variable.
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4. Concentration compactness

The purpose of this section is to prove a linear profile decomposition for the Strichartz inequality

‖e−itHf‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ C(|I|, d)‖f‖Σ.

Our decomposition resembles that of Keraani [17] in the sense that each profile has a characteristic length
scale and location in spacetime. But since the space Σ lacks both translation and scaling symmetry, the
precise definitions of our profiles are more complicated.

Keraani considered the analogous Strichartz estimate

‖eit∆f‖
L

2(d+2)
d−2

t,x (R×Rd)

. ‖f‖Ḣ1(Rd).

Recall that in that situation, if fn is a bounded sequence in Ḣ1 with nontrivial linear evolution, then one has
a decomposition fn = φn+rn where φn = eitn∆Gnφ, Gn are certain unitary scaling and translation operators
on Ḣ1 (defined as in (4.1)), and φ is a weak limit of G−1

n e−itn∆fn in Ḣ1. The “bubble” φn is nontrivial
and decouples from the remainder rn in various norms. By applying this decomposition inductively to the
remainder rn, one obtains the full collection of profiles constituting fn.

We follow the general presentation in [22, 32]. Let fn ∈ Σ be a bounded sequence. Using a variant of

Keraani’s argument, we seek an Ḣ1-weak limit φ in terms of fn and write fn = φn + rn where φn is defined
analogously as before by “moving the operators onto fn.” However, two main issues arise.

The first is that while fn belong to Σ, an Ḣ1 weak limit of a sequence like G−1
n eitnHfn need only belong

to Ḣ1. Indeed, the Ḣ1 isometries G−1
n will in general have unbounded norm as operators on Σ because of

the |x|2 weight. To define φn, we need to introduce spatial cutoffs to obtain functions in Σ.
Secondly, to establish the various orthogonality assertions one must understand how the linear propagator

e−itH interacts with the Ḣ1 symmetries of translation and scaling in certain limits. This interaction is
studied in Section 4.2. In particular, the convergence results obtained there serve as a substitute for the
scaling relation

eit∆Gn = Gne
iN2

nt∆ where Gnφ = N
d−2

2
n φ(Nn(· − xn)).

They can also be regarded as a precise form of the heuristic that as the initial data concentrates at a point
x0, the potential V (x) = |x|2/2 can be regarded over short time intervals as essentially equal to the constant
potential V (x0); hence for short times the linear propagator e−itH can be approximated up to a phase factor
by the free particle propagator. Section 5 addresses a nonlinear version of this statement.

4.1. An inverse Strichartz inequality. Unless indicated otherwise, 0 ∈ I in this section will denote a
fixed interval of length at most 1, and all spacetime norms will be taken over I ×Rd.

Suppose fn is a sequence of functions in Σ with nontrivial linear evolution e−itHfn. The following refined
Strichartz estimate shows that there must be a “frequency” Nn which makes a nontrivial contribution to
the evolution.

Proposition 4.1 (Refined Strichartz).

‖e−itHf‖
L

2(d+2)
d−2

t,x

. ‖f‖
4

d+2

Σ sup
N
‖e−itHPNf‖

d−2
d+2

L

2(d+2)
d−2

t,x

Proof. Using the Littlewood-Paley theory, we may quote essentially verbatim the proof of refined Strichartz
for the free particle propagator ([32] Lemma 3.1). Write fN for PNf , where PN = PHN unless indicated
otherwise. When d ≥ 6, apply the square function estimate (2.16), Hölder, Bernstein, and Strichartz to get

‖e−itHf‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

∼
∥∥∥(
∑
N

|e−itHfN |2)1/2
∥∥∥ 2(d+2)

d−2

2(d+2)
d−2

=

∫∫
(
∑
N

|e−itHfN |2)
d+2
d−2 dx dt

.
∑
M≤N

∫∫
|e−itHfM |

d+2
d−2 |e−itHfN |

d+2
d−2 dx dt

.
∑
M≤N

‖e−itHfM‖
4

d−2

L

2(d+2)
d−2

t,x

‖e−itHfM‖
L

2(d+2)
d−4

t,x

‖e−itHfN‖
4

d−2

L

2(d+2)
d−2

t,x

‖e−itHfN‖
L

2(d+2)
d

t,x
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. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖e−itHfM‖
L

2(d+2)
d−4

t L

2d(d+2)

d2+8
x

‖fN‖L2

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖fM‖L2
x
‖fN‖L2

x

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M

N
‖H1/2fM‖L2‖H1/2fN‖L2

x

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

‖f‖2Σ.

The cases d = 3, 4, 5 are handled similarly with some minor modifications in the applications of Hölder’s
inequality. �

The next proposition goes one step further and asserts that the sequence e−itHfn with nontrivial spacetime
norm must in fact contain a bubble centered at some (tn, xn) with spatial scale N−1

n . First we introduce
some vocabulary and notation which are common to concentration compactness arguments.

Definition 4.1. A frame is a sequence (tn, xn, Nn) ∈ I × Rd × 2N conforming to one of the following
scenarios:

(1) Nn ≡ 1, tn ≡ 0, and xn ≡ 0.
(2) Nn →∞ and N−1

n |xn| → r∞ ∈ [0,∞).

The parameters tn, xn, Nn will specify the temporal center, spatial center, and inverse length scale of
a function. The condition that |xn| . Nn reflects the fact that we only consider functions obeying some
uniform bound in Σ, and such functions cannot be centered arbitrarily far from the origin. We need to
augment the frame {(tn, xn, Nn)} by an auxiliary parameter N ′n, which corresponds to a sequence of spatial
cutoffs adapted to the frame.

Definition 4.2. An augmented frame is a sequence (tn, xn, Nn, N
′
n) ∈ I ×Rd× 2N×R belonging to one of

the following types:

(1) Nn ≡ 1, tn ≡ 0, xn ≡ 0, N ′n ≡ 1.
(2) Nn →∞, N−1

n |xn| → r∞ ∈ [0,∞), and either
(2a) N ′n ≡ 1 if r∞ > 0, or

(2b) N
1/2
n ≤ N ′n ≤ Nn, N−1

n |xn|(Nn

N ′n
)→ 0, and Nn

N ′n
→∞ if r∞ = 0.

Associated to an augmented frame (tn, xn, Nn, N
′
n) is a family of scaling and translation operators

(Gnφ)(x) = N
d−2

2
n φ(Nn(x− xn))

(G̃nf)(t, x) = N
d−2

2
n f(N2

n(t− tn), Nn(x− xn)),
(4.1)

as well as spatial cutoff operators

(4.2) Snφ =

{
φ, for frames of type 1 (i.e. Nn ≡ 1),

χ(Nn

N ′n
·)φ, for frames of type 2 (i.e. Nn →∞),

where χ is a smooth compactly supported function equal to 1 on the ball {|x| ≤ 1}. An easy computation
yields the following mapping properties:

lim
n→∞

Sn = I strongly in Ḣ1and in Σ,

lim sup
n→∞

‖Gn‖Σ→Σ <∞.
(4.3)

For future reference, we record a technical lemma that, as a special case, asserts that the Σ norm is
controlled almost entirely by the Ḣ1 norm for functions concentrating near the origin.

Lemma 4.2 (Approximation). Let (q, r) be an admissible pair of exponents with 2 ≤ r < d, and let
F = {(tn, xn, Nn, N ′n)} be an augmented frame of type 2.
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(1) Suppose F is of type 2a in Definition 4.2. Then for {fn} ⊆ LqtH1,r
x (R×Rd), we have

lim sup
n
‖G̃nSnfn‖Lq

tΣr
x
. lim sup

n
‖fn‖Lq

tH
1,r
x
.

(2) Suppose F is of type 2b and fn ∈ Lqt Ḣ1,r
x (R×Rd). Then

lim sup
n
‖G̃nSnfn‖Lq

tΣr
x
. lim sup

n
‖fn‖Lq

t Ḣ
1,r
x
.

Here H1,r(Rd) and Ḣ1,r(Rd) denote the Sobolev spaces equipped with the norms

‖f‖H1,r = ‖〈∇〉‖Lr(Rd), ‖f‖Ḣ1,r = ‖|∇|f‖Lr(Rd).

Proof. By time translation invariance we may assume tn ≡ 0. By Lemma 2.2, it suffices to separately bound
‖∇G̃nSnfn‖Lq

tL
r
x

and ‖|x|G̃nSnfn‖Lq
tL

r
x
. Using a change of variables, the admissibility of (q, r), Hölder, and

Sobolev embedding (hence the restriction r < d), we have

‖∇G̃nSnfn‖Lq
tL

r
x

= ‖∇[N
d−2

2
n fn(N2

nt,Nn(x− xn))χ(N ′n(x− xn))]‖Lq
tL

r
x

. ‖(∇fn)(t, x)‖Lq
tL

r
x

+
N ′n
Nn
‖fn(t, x)‖Lq

tL
r
x(R×{|x|∼Nn

N′n
})

. ‖∇fn‖Lq
t Ḣ

1,r
x
.

To estimate ‖|x|G̃nSnfn‖Lq
tL

r
x

we distinguish the two cases. Consider first the case where fn ∈ LqtH
1,r
x .

Using the bound |xn| . Nn and a change of variables, we obtain

‖|x|G̃nSnfn‖Lq
tL

r . N
d
2
n ‖fn(N2

nt,Nn(x− xn))‖Lr . ‖fn‖Lq
tL

r . ‖fn‖Lq
tH

1,r
x
.

Next, consider the case where fn are merely assumed to lie in Lqt Ḣ
1,r
x . For each t, we apply Hölder and

Sobolev embedding to get

‖|x|G̃nSnfn‖rLr
x

= N
dr
2 −d−r
n

∫
|x|.Nn

N′n

|xn +N−1
n x|r|fn(N2

nt, x)|rdx

. N
dr
2 −d
n

[
N−rn |xn|r +N−2r

n (Nn

N ′n
)r
] ∫
|x|.Nn

N′n

|fn(N2
nt, x)|rdx

. N
dr
2 −d
n

[
N−rn |xn|r(Nn

N ′n
)r + (N ′n)−2r

]
‖∇fn(N2

nt)‖rLr
x
.

By the hypotheses on the parameter N ′n in Definition 4.2, the expression inside the brackets goes to 0 as
n→∞. After integrating in t and changing variables, we conclude

‖|x|G̃nSnfn‖Lq
tL

r
x
. cn‖fn‖Lq

t Ḣ
1,r
x

where cn = o(1) as n→∞. This completes the proof of the lemma. �

Proposition 4.3 (Inverse Strichartz). Let I be a compact interval containing 0 of length at most 1, and
suppose fn is a sequence of functions in Σ(Rd) satisfying

0 < ε ≤ ‖e−itHfn‖
L

2(d+2)
d−2

t,x (I×Rd)

. ‖fn‖Σ ≤ A <∞.

Then, after passing to a subsequence, there exists an augmented frame

F = {(tn, xn, Nn, N ′n)}
and a sequence of functions φn ∈ Σ such that one of the following holds:

(1) F is of type 1 (i.e. Nn ≡ 1) and φn = φ where φ ∈ Σ is a weak limit of fn in Σ.

(2) F is of type 2, either tn ≡ 0 or N2
ntn → ±∞, and φn = eitnHGnSnφ where φ ∈ Ḣ1(Rd) is a weak

limit of G−1
n e−itnHfn in Ḣ1. Moreover, if F is of type 2a, then φ also belongs to L2(Rd).

The functions φn have the following properties:

(4.4) lim inf
n
‖φn‖Σ & A

(
ε
A

) d(d+2)
8 ,

(4.5) lim
n→∞

‖fn‖
2d

d−2
2d

d−2

− ‖fn − φn‖
2d

d−2
2d

d−2

− ‖φn‖
2d

d−2
2d

d−2

= 0,
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(4.6) lim
n→∞

‖fn‖2Σ − ‖fn − φn‖2Σ − ‖φn‖2Σ = 0.

Proof. Our plan is as follows. First we identify the parameters tn, xn, Nn, which define the location of the
bubble φn and its characteristic size, and dispose of the case where Nn ≡ 1.

The case where Nn → ∞ is more involved. First we define the profile φn and verify the assertions (4.4)
and (4.6). Passing to a subsequence, we may assume that the sequence N2

ntn converges in [−∞,∞]. If the

limit is infinite, decoupling (4.5) in the L
2d

d−2 norm will also follow. If instead N2
ntn has a finite limit, we show

that in fact the time parameter tn can actually be redefined to be identically zero after making a negligible
correction to the profile φn, and verify that the modified profile (with tn = 0 now) satisfies property (4.5)
in addition to (4.4) and (4.6). We shall see along the way that in this regime of short time scales and initial
data concentrated near the origin, the potential may be essentially regarded as constant.

By Proposition 4.1, there exist frequencies Nn such that

‖PNn
e−itHfn‖

L

2(d+2)
d−2

t,x

& ε
d+2

4 A−
d−2

4 .

The comparison of Littlewood-Paley projectors (2.10) implies

‖P̃Nn
e−itHfn‖

L

2(d+2)
d−2

t,x

& ε
d+2

4 A−
d−2

4 ,

where P̃N = e−H/N
2 − e−4H/N2

denote the projections based on the heat kernel. By Hölder, Strichartz, and
Bernstein,

ε
d+2

4 A−
d−2

4 . ‖P̃Nn
e−itHfn‖

L

2(d+2)
d−2

t,x

. ‖P̃Nn
e−itHfn‖

d−2
d

L
2(d+2)

d
t,x

‖P̃Nn
e−itHfn‖

2
d

L∞t,x

. (N−1
n A)

d−2
d ‖P̃Nne

−itHfn‖
2
d

L∞t,x
.

Therefore, there exist (tn, xn) ∈ I ×Rd such that

(4.7) |e−itnH P̃Nn
fn(xn)| & N

d−2
2

n A( εA )
d(d+2)

8 .

The parameters tn, xn, Nn will determine the center and width of a bubble.
We observe first that the boundedness of fn in Σ limits how far the bubble can live from the spatial origin.

Lemma 4.4. We have

|xn| ≤ CA,εNn.

Proof. Put gn = |e−itnHfn|. By the kernel bound (2.9),

N
d−2

2
n A( εA )

d(d+2)
8 . |P̃Nne

−itnHfn(xn)| . P̃∆
≤Nn

gn(xn) + P̃∆
≤Nn/2

gn(xn).

Thus one of the terms on the right side is at least half as large as the left side, and it suffices to consider the
case when

P̃∆
≤Nn

gn(xn) & N
d−2

2
n A( εA )

d(d+2)
8

since the argument with Nn replaced by Nn/2 differs only cosmetically. Informally, P̃∆
≤Nn

gn is essentially

constant over length scales of orderN−1
n , so if it is large at a point xn then it is large on the ball |x−xn| ≤ N−1

n .
More precisely, when |x− xn| ≤ N−1

n we have

P̃∆
≤Nn/2

gn(x) =
Nd

n

2d(2π)
d
2

∫
gn(x− y)e−

N2
n|y|

2

8 dy

=
Nd

n

2d(4π)
d
2

∫
gn(xn − y)e−

N2
n|y+x−xn|2

8 dy

≥ e−1 Nd
n

2d(4π)
d
2

∫
gn(xn − y)e−

N2
n|y|

2

2 dy = e−12−dP̃∆
≤Nn

gn(xn)

& N
d−2

2
n A( εA )

d(d+2)
8 .

On the other hand, the mapping properties of the heat kernel imply that

‖P̃∆
≤Nn/2

gn‖Σ . (1 +N−2
n )A.
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Thus,

A & ‖P̃∆
≤Nn/2

gn‖Σ & ‖xP̃∆
≤Nn/2

gn‖L2(|x−xn|≤N−1
n ) & |xn|N

− d
2

n N
d−2

2
n A( εA )

d(d+2)
8 ,

which yields the claim. �

Case 1. Suppose the Nn have a bounded subsequence, so that (passing to a subsequence) Nn ≡ N∞.
The xn’s stay bounded by Lemma 4.4, so after passing to a subsequence we may assume xn → x∞. We
may also assume tn → t∞ since the interval I is compact. The functions fn are bounded in Σ, hence (after
passing to a subsequence) converge weakly in Σ to some φ.

To see that φ is nontrivial in Σ, we have

〈φ, eit∞H P̃N∞δx∞〉 = lim
n
〈fn, eit∞H P̃N∞δx∞〉

= lim
n→∞

[e−itnH P̃N∞fn(xn) + 〈fn, (eit∞H − eitnH)P̃N∞δxn
〉

+ 〈fn, eit∞H P̃Nn
(δx∞ − δxn

)〉].

Using the heat kernel bounds (2.9) and the fact that, by the compactness of the embedding Σ ⊂ L2, the
sequence fn converges to φ in L2, one verifies easily that the second and third terms on the right side vanish.
So

|〈φ, eit∞H P̃N∞δx∞〉| = lim
n→∞

|e−itnH P̃N∞fn(xn)| & N
d−2

2∞ ε
d(d+2)

8 A−
(d−2)(d+4)

8 .

On the other hand, by Hölder and (2.9),

|〈φ, eit∞H P̃N∞δx∞〉| ≤ ‖e−it∞Hφ‖
L

2d
d−2
‖P̃N∞δx∞‖

L
2d

d+2

. ‖φ‖ΣN
d−2

2∞ .

Therefore

‖φ‖Σ & ε
d(d+2)

8 A−
(d−2)(d+4)

8 .

Set

φn ≡ φ,
and define the augmented frame (tn, xn, Nn, N

′
n) ≡ (0, 0, 1, 1). The decoupling in Σ (4.6) can be proved as in

Case 2 below, and we refer the reader to the argument detailed there. It remains to establish decoupling in

L
2d

d−2 . As the embedding Σ ⊂ L2 is compact, the sequence fn, which converges weakly to φ ∈ Σ, converges
to φ strongly in L2. After passing to a subsequence we obtain convergence pointwise a.e. The decoupling
(4.5) now follows from Lemma 2.6. This completes the case where Nn have a bounded subsequence.

Case 2. Now we address the case where Nn → ∞. The main nuisance is that the weak limits φ will
usually be merely in Ḣ1(Rd), not in Σ, so defining the profiles φn will require spatial cutoffs.

As the functions N
−(d−2)/2
n (e−itnHfn)(N−1

n · +xn) are bounded in Ḣ1(Rd), the sequence has a weak
subsequential limit

(4.8) N
− d−2

2
n (e−itnHfn)(N−1

n ·+xn) ⇀ φ in Ḣ1(Rd).

By Lemma 4.4, after passing to a further subsequence we may assume

(4.9) lim
n→∞

N−1
n |xn| = r∞ <∞ and lim

n→∞
N2
ntn = t∞ ∈ [−∞,∞].

It will be necessary to distinguish the cases r∞ > 0 and r∞ = 0, corresponding to whether the frame
{(tn, xn, Nn)} is type 2a or 2b, respectively.

Lemma 4.5. If r∞ > 0, the function φ defined in (4.8) also belongs to L2.

Proof. By (4.8) and the Rellich-Kondrashov compactness theorem, for each R ≥ 1 we have

N
− d−2

2
n (e−itnHfn)(N−1

n ·+xn)→ φ in L2({|x| ≤ R}).
By a change of variables,

N
− d−2

2
n (e−itnHfn)(N−1

n ·+xn)‖L2(|x|≤R) = Nn‖e−itnHfn‖L2(|x−xn|≤RN−1
n )

. ‖xe−itnHfn‖L2
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whenever |xn| ≥ Nnr∞
2 and RN−1

n ≤ r∞
10 , so we have uniformly in R ≥ 1 that

lim sup
n
‖N−

d−2
2

n (e−itnHfn)(N−1
n ·+xn)‖L2(|x|≤R) . sup

n
‖e−itnHfn‖Σ . 1.

Therefore ‖φ‖L2 = limR→∞ ‖φ‖L2(|x|≤R) . 1. �

Remark. The claim fails if r∞ = 0. Indeed, if φ ∈ Ḣ1(Rd) \ L2(Rd), then fn = N
(d−2)/2
n φ(Nn·)χ(·) are

bounded in Σ, and N
−(d−2)/2
n fn(N−1

n ·) = φ(·)χ(N−1
n ·) converges strongly in Ḣ1 to φ.

Next we prove that φ is nontrivial in Ḣ1.

Lemma 4.6. ‖φ‖Ḣ1 & A
(
ε
A

) d(d+2)
8 .

Proof. From (2.9) and (4.7),

N
d−2

2
n A

(
ε
A

) d(d+2)
8 . P̃∆

≤Nn
|e−itnHfn|(xn) + P̃∆

≤Nn/2
|e−itnHfn|(xn),

so one of the terms on the right is at least half the left side. Suppose first that

P̃∆
≤Nn
|e−itnHfn|(xn) & N

d−2
2

n A
(
ε
A

) d(d+2)
8 .

Put ψ̌ = P̃∆
≤1δ0 = e∆δ0. Since ψ̌ is Schwartz,

|〈|φ|, ψ̌〉L2 | ≤ ‖φ‖Ḣ1‖ψ̌‖Ḣ−1 . ‖φ‖Ḣ1 .

On the other hand, as the absolute values N
− d−2

2
n |e−itnHfn|(N−1

n ·+xn) converge weakly in Ḣ1 to |φ|,

〈|φ|, ψ̌〉L2 = lim
n
〈N−

d−2
2

n |e−itnHfn|(N−1
n ·+xn), ψ̌〉L2

= lim
n
P̃∆
≤Nn
|e−itnHfn|(xn) & A

(
ε
A

) d(d+2)
8 .

from which the claim follows. Similarly if

P̃∆
≤Nn/2

|e−itnHfn|(xn) & N
d−2

2
n A

(
ε
A

) d(d+2)
8 ,

then we obtain ‖φ‖Ḣ1 ∼ ‖φ(2·)‖Ḣ1 & N
d−2

2
n A

(
ε
A

) d(d+2)
8 . �

Having extracted a nontrivial bubble φ, we are ready to define the φn. The basic idea is to undo the
operations applied to fn in the definition (4.8) of φ. However, we need to first apply a spatial cutoff to
embed φ in Σ.

With the frame {(tn, xn, Nn)} defined according to (4.7), form the augmented frame {(tn, xn, Nn, N ′n)}
with the cutoff parameter N ′n chosen according to the second case in Definition 4.2. Let Gn, Sn be the Ḣ1

isometries and spatial cutoff operators associated to {(tn, xn, Nn, N ′n)}. Set

(4.10) φn = eitnHGnSnφ = eitnH [N
d−2

2
n φ(Nn(· − xn))χ(N ′n(· − xn))].

Let us check that φn satisfies the various properties asserted in the proposition.

Lemma 4.7. A
(
ε
A

) d(d+2)
8 . lim infn→∞ ‖φn‖Σ ≤ lim supn→∞ ‖φn‖Σ . 1.

Proof. By the definition of the Σ norm and a change of variables,

‖φn‖Σ = ‖GnSn‖Σ ≥ ‖Snφ‖Ḣ1 .

Lemma 4.6 and the remarks following Definition 4.2 together imply the lower bound

lim inf
n
‖φn‖Σ & A

(
ε
A

) d(d+2)
8 .

The upper bound follows immediately from the case (q, r) = (∞, 2) in Lemma 4.2. �
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Next we verify the decoupling assertion (4.6). By the Pythagorean theorem,

‖fn‖2Σ − ‖fn − φn‖2Σ − ‖φn‖2Σ = 2 Re〈fn − φn, φn〉Σ)

= 2 Re〈e−itnHfn −GnSnφ,GnSnφ〉Σ
= 2 Re〈wn, GnSnφ〉Σ.

where wn = e−itnHfn −GnSnφ. By definition,

〈wn, GnSnφ〉Σ = 〈wn, GnSnφ〉Ḣ1 + 〈xwn, xGnSnφ〉L2 .

From (4.3) and the definition (4.8) of φ, it follows that

G−1
n wn → 0 weakly in Ḣ1 as n→∞.

Hence

lim
n→∞

〈wn, GnSnφ〉Ḣ1 = lim
n→∞

〈G−1
n wn, Snφ〉Ḣ1 = lim

n→∞
〈G−1

n wn, φ〉Ḣ1 = 0.

We turn to the second component of the inner product. Fix R > 0, and estimate

|〈xwn, xGnSnφ〉L2 |

≤
∫
{|x−xn|≤RN−1

n }
|xwn||xGnSnφ| dx+

∫
{|x−xn|>RN−1

n }
|xwn||xGnSnφ| dx

= (I) + (II)

Use a change of variable and the bound |xn| . Nn to obtain

(I) .
∫
|x|≤R

|G−1
n wn||φ| dx→ 0 as n→∞.

Next, apply Cauchy-Schwartz and the upper bound of Lemma 4.7 to see that

(II)2 .
∫
{|x−xn|>RN−1

n }
|xGnSnφ|2 dx

. N−2
n

∫
R≤|x|.Nn

N′n

|xn +N−1
n x|2|φ(x)|2dx

. (N−2
n |xn|2 +N−2

n (N ′n)−2)

∫
R≤|x|.Nn

N′n

|φ(x)|2 dx.

Suppose that the frame {(tn, xn, Nn)} is of type 2a, so that limnN
−1
n |xn| > 0. By Lemma 4.5 and dominated

convergence, the right side above is bounded by∫
R≤|x|

|φ(x)|2 dx→ 0 as R→∞,

uniformly in n. If instead {(tn, xn, Nn)} is of type 2b, use Hölder to see that the right side is bounded by

(N−2
n |xn|(Nn

N ′n
)2 + (N ′n)−4)‖φ‖

L
2d

d−2
.

By Sobolev embedding and the construction of the parameter N ′n in Definition 4.2, the above vanishes as
n→∞. In either case, we obtain

lim
R→∞

lim sup
n→∞

(II) = 0.

Combining the two estimates and choosing R arbitrarily large, we conclude as required that

lim
n→∞

|〈xwn, xGnSnφ〉L2 | = 0.

To close this subsection, we verify the L
2d

d−2 decoupling property (4.5) when N2
ntn → ±∞. Assume first

that the φ appearing in the definition (4.10) of φn has compact support. By the dispersive estimate (2.5)
and a change of variables,

lim
n→∞

‖φn‖
L

2d
d−2
. |tn|−1‖Gnφ‖

L
2d

d+2
. (N2

n|tn|)−1‖φ‖
L

2d
d+2

= 0.

The claimed decoupling follows immediately.
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For general φ in H1 or Ḣ1 (depending on whether limnN
−1
n |xn| is positive or zero), select ψε ∈ C∞c

converging to φ in the appropriate norm as ε→ 0. Then for all n large enough, we have

‖φn‖
L

2d
d−2
≤ ‖eitnHGnSn[φ− ψε]‖

L
2d

d−2
+ ‖eitnHGnSnψε‖

L
2d

d−2
,

and decoupling follows from Lemmas 2.3 and 4.2 and the special case just proved. �

4.2. Convergence of linear propagators. To complete the proof of Proposition 4.3, we need a more
detailed understanding of how the linear propagator e−itH interacts with the Ḣ1-symmetries Gn associated
to a frame in certain limits. This section is inspired by the discussion surrounding [20, Lemma 5.2], which
proves analogous results relating the linear propagators of the 2D Schrödinger equation and the complexified
Klein-Gordon equation −ivt + 〈∇〉v = 0.

Definition 4.3. We say two frames F1 = {(t1n, x1
n, N

1
n)} and F2 = {(t2n, x2

n, N
2
n)} (where the superscripts

are indices, not exponents) are equivalent if

N1
n

N2
n
→ R∞ ∈ (0,∞), N1

n(x2
n − x1

n)→ x∞ ∈ Rd, (N1
n)2(t1n − t2n)→ t∞ ∈ R.

The frames are orthogonal should any of the above statements fail. Note that replacing the N1
n in the second

and third expressions above by N2
n yields an equivalent definition of orthogonality.

Remark. If F1 and F2 are equivalent, it follows from the above definition that they must be of the same
type in Definition 4.1, and that limn(N1

n)−1|x1
n| and limn(N2

n)−1|x2
n| are either both zero or both positive.

The following lemma and its corollary make precise the heuristic that when acting on functions con-
centrated at a point, e−itH can be approximated for small t by regarding the |x|2/2 potential as essen-
tially constant on the support of the initial data; thus one obtains a modulated free particle propagator

e−it|x0|2/2eit∆/2, where x0 is the spatial center of the data.

Lemma 4.8 (Strong convergence). Suppose

FM = (tMn , xn,Mn), FN = (tNn , yn, Nn)

are equivalent frames. Define

R∞ = lim
n→∞

Mn

Nn
, t∞ = lim

n→∞
M2
n(tMn − tNn ), x∞ = lim

n→∞
Mn(yn − xn),

r∞ = lim
n
M−1
n |xn| = lim

n
M−1
n |yn|.

Let GMn , G
N
n be the scaling and translation operators attached to the frames FM and FN respectively. Then

(e−it
N
n HGNn )−1e−it

M
n HGMn converges strongly as operators on Σ to the operator U∞ defined by

U∞φ = e−
it∞(r∞)2

2 R
d−2

2∞ [e
it∞∆

2 φ](R∞ ·+x∞).

Proof. If Mn ≡ 1, then by the definition of a frame we must have FM = FN = {(1, 0, 0)}, so the claim is
trivial. Thus we may assume that Mn →∞. Put tn = tMn − tNn . Using Mehler’s formula (2.4), we write

(e−it
N
n HGNn )−1e−it

M
n HGMn φ(x) = (GNn )−1e−itnHGMn φ(x)

= (Mn

Nn
)

d−2
2 eiγ(tn)|yn+N−1

n x|2e
iM2

n sin(tn)∆

2 [eiγ(tn)|xn+M−1
n ·|

2

φ](Mn

Nn
x+Mn(yn − xn)).

where

γ(t) = cos t−1
2 sin t = − t

4 +O(t3).

Observe that

eiγ(tn)|xn+M−1
n ·|

2

φ→ e−
it∞(r∞)2

4 φ in Σ.

Indeed,

‖∇[eiγ(tn)|xn+M−1
n ·|

2

φ− eiγ(tn)|xn|2φ]‖L2 = ‖∇[(eiγ(tn)[M−2
n |x|

2+2M−1
n xn·x] − 1)φ]‖L2

. ‖tn(M−2
n x+ 2M−1

n xn)φ‖L2 + ‖(eiγ(tn)[M−2
n |x|

2+2M−1
n xn·x] − 1)∇φ‖L2

. |tn|M−2
n ‖xφ‖L2 + |tn||xn|M−1

n ‖φ‖L2 + ‖(eiγ(tn)[M−2
n |x|

22M−1
n xn·x] − 1)∇φ‖L2 .
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As n → ∞, the first two terms vanish because ‖xφ‖2 + ‖φ‖2 . ‖φ‖Σ, while the third term vanishes by
dominated convergence. Dominated convergence also implies that

‖x[eiγ(tn)|xn+M−1
n x|2φ− eiγ(tn)|xn|2φ]‖L2 → 0 as n→∞.

On the other hand, since

γ(tn)|xn|2 = −M
2
ntnM

−2
n |xn|2
4 +O(M−4

n )→ − t∞(r∞)2

4
,

it follows that

‖eiγ(tn)|xn+M−1
n ·|

2

φ− e−
it∞(r∞)2

4 φ‖Σ → 0

as claimed. As e
iM2

n sin(tn)∆

2 → e
it∞∆

2 strongly, we obtain

e
iM2

n sin(tn)∆

2 [eiγ(tn)|xn+M−1
n ·|

2

φ]→ e−
it∞(r∞)2

4 e
it∞∆

2 φ in Σ,

and the conclusion quickly follows. �

Corollary 4.9. Let {(tMn , xn,Mn,M
′
n)} and {(tNn , yn, Nn, N ′n)} be equivalent frames, and SMn , S

N
n be the

associated spatial cutoff operators. Then

(4.11) lim
n→∞

‖e−it
M
n HGMn S

M
n φ− e−it

N
n HGNn S

N
n U∞φ‖Σ = 0

and

(4.12) lim
n→∞

‖e−it
M
n HGMn S

M
n φ− e−it

N
n HGNn U∞S

N
n φ‖Σ = 0

whenever φ ∈ H1 if the frames conform to case 2a and φ ∈ Ḣ1 if they conform to case 2b in Definition 4.2.

Proof. As before, the result is immediate if Mn ≡ 1 since all operators in sight are trivial. Thus we may
assume Mn →∞. Suppose first that φ ∈ C∞c . Using the unitarity of e−itH on Σ, the operator bounds (4.3),
and the fact that SMn φ = φ for all n sufficiently large, we write the left side of (4.11) as

‖GNn [(GNn )−1e−i(t
M
n −t

N
n )HGMn φ− SNn U∞φ]‖Σ

. ‖(GNn )−1e−i(t
M
n −t

N
n )HGMn φ− SNn U∞φ‖Σ

. ‖(GNn )−1e−i(t
M
n −t

N
n )HGMn φ− U∞φ‖Σ + ‖(1− SNn )U∞φ‖Σ

which goes to zero by Lemma 4.8 and dominated convergence. This proves (4.11) under the additional
hypothesis that φ ∈ C∞c .

We now remove this crutch and take φ ∈ H1 or Ḣ1 depending on whether the frames are of type 2a or 2b
in Definition 4.2, respectively. For each ε > 0, choose φε ∈ C∞c such that ‖φ−φε‖H1 < ε or ‖φ−φε‖Ḣ1 < ε,
respectively. Then

‖e−it
M
n HGMn S

M
n φ− e−it

N
n HGNn S

N
n U∞φ‖Σ ≤ ‖e−it

M
n HGMn S

M
n (φ− φε)‖Σ

+ ‖e−itnHGMn SMn φε − e−it
N
n HGNn S

N
n U∞φ

ε‖Σ + ‖e−it
N
n HGNn S

N
n U∞(φ− φε)‖Σ

In the limit as n→∞, the middle term vanishes and we are left with a quantity at most a constant times

lim sup
n→∞

‖GMn SMn (φ− φε)‖Σ + lim sup
n→∞

‖GNn SNn U∞(φ− φε)‖Σ.

Applying Lemma 4.2 and using the mapping properties of U∞ on Ḣ1 and H1, we see that

lim sup
n→∞

‖e−itnHGMn SMn φ− eit
N
n HGNn S

N
n U∞φ‖Σ . ε

for every ε > 0. This proves the claim (4.11). Similar considerations deal with the second claim (4.12). �

Lemma 4.10. Suppose the frames {(tMn , xn,Mn)} and {(tNn , yn, Nn)} are equivalent. Put tn = tMn − tNn .
Then for f, g ∈ Σ we have

〈(GNn )−1e−itnHGMn f, g〉Ḣ1 = 〈f, (GMn )−1eitnHGNn g〉Ḣ1 +Rn(f, g),

where |Rn(f, g)| ≤ C|tn|‖GMn f‖Σ‖GNn g‖Σ.
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Remark. It follows from Lemma 4.8 that

lim
n→∞

〈(GNn )−1e−itnHGMn f, g〉Ḣ1 = lim
n→∞

〈f, (GMn )−1eitnHGNn g〉Ḣ1

for fixed f, g ∈ Σ. The content of this lemma lies in the quantitative error bound.

Proof. We have

〈(GNn )−1e−itnHGMN f, g〉Ḣ1 = 〈f, (GMn )−1eitnHGNn g〉Ḣ1 +Rn(f, g)

where Rn(f, g) = 〈[∇, e−itnH ]GMn f,∇GNn g〉L2 −〈∇GMn f, [∇, eitnH ]GNn g〉L2 . The claim follows from Cauchy-
Schwartz and the commutator estimate

‖[∇, e−itH ]‖Σ→L2 = O(t),

which is a consequence of the standard identities

eitH i∇e−itH = i∇ cos t− x sin t

eitHxe−itH = i∇ sin t+ x cos t.

�

Next we prove a converse to Lemma 4.8.

Lemma 4.11 (Weak convergence). Assume the frames FM = {(tMn , xn,Mn)} and FN = {(tNn , yn, Nn)} are
orthogonal. Then for any f ∈ Σ,

(e−it
N
n HGNn )−1e−it

M
n HGMn f → 0 weakly in Ḣ1.

Proof. Put tn = tMn − tNn , and suppose that |M2
ntn| → ∞. Then

‖(GNn )−1e−itnHGMn f‖
L

2d
d−2
→ 0

for f ∈ C∞c by a change of variables and the dispersive estimate, thus for general f ∈ Σ by a density argument.

Therefore (GNn )−1e−itnHGMn f converges weakly in Ḣ1 to 0. Now consider the case where M2
ntn → t∞ ∈ R.

The orthogonality of FM and FN implies that either N−1
n Mn converges to 0 or ∞, or Mn|xn − yn| diverges

as n → ∞. In either case, one verifies easily that (GNn )−1GMn converge to zero weakly as operators on Ḣ1.

By Lemma 4.8, (GNn )−1e−itnHGMn f = (GNn )−1GMn (GMn )−1e−itnHGMn f converges to zero weakly in Ḣ1. �

Corollary 4.12. Let {(tMn , xn,Mn,M
′
n)} and {(tNn , yn, Nn, N ′n)} be orthogonal with corresponding operators

GMn , S
M
n and GNn , S

N
n . Then

(e−it
N
n HGNn )−1e−it

M
n HGMn S

M
n φ ⇀ 0 in Ḣ1

whenever φ ∈ H1 if FM is of type 2a and φ ∈ Ḣ1 if FM is of type 2b.

Proof. If φ ∈ C∞c , then SMn φ = φ for all large n, and the claim follows from Lemma 4.11. The case of

general φ in H1 or Ḣ1 then follows from an approximation argument similar to the one used to prove
Corollary 4.9. �

4.3. End of proof of inverse Strichartz. We return to the proof of Proposition 4.3. Thus far, we
have identified a frame {(tn, xn, Nn, N ′n)} and an associated profile φn such that the sequence N2

ntn has
a limit in [−∞,∞] as n → ∞. The φn were shown to satisfy properties (4.4), (4.5), and (4.6) if either
(tn, xn, Nn) = (0, 0, 1) or Nn → ∞ and N2

ntn → ±∞. Thus, it remains to prove that if Nn → ∞ and
N2
ntn remains bounded, then we may modify the frame so that tn is identically zero and find a profile φn

corresponding to this new frame which satisfies all the properties asserted in the proposition. The following
lemma will therefore complete the proof of the proposition.

Lemma 4.13. Let fn ∈ Σ satisfy the hypotheses of Proposition 4.3. Suppose {(tn, xn, Nn, N ′n)} is an
augmented frame with Nn → ∞ and N2

ntn → t∞ ∈ R as n → ∞. Then there is a profile φ′n = GnSnφ
′

associated to the frame {(0, xn, Nn, N ′n)} such that properties (4.4), (4.5), and (4.6) hold with φ′n in place
of φn.
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Proof. Let φn = eitnHGnSnφ be the profile defined by (4.10). We have already seen that φn satisfies
properties (4.4) and (4.6), and that

φ = Ḣ1-w-limn→∞G−1
n e−itnHfn.

As the sequence G−1
n fn is bounded in Ḣ1, it has a weak subsequential limit

φ′ = Ḣ1-w-limn→∞G−1
n fn.

For any ψ ∈ C∞c , apply Lemma 4.10 with f = G−1
n e−itnHfn to see that

〈φ′, ψ〉Ḣ1 = lim
n→∞

〈G−1
n fn, ψ〉Ḣ1 = lim

n→∞
〈G−1

n eitnHGnG
−1
n e−itnHfn, ψ〉Ḣ1

= lim
n→∞

〈G−1
n e−itnHfn, G

−1
n e−itnHGnψ〉Ḣ1 = 〈φ,U∞ψ〉Ḣ1 ,

where U∞ = s-limn→∞G−1
n e−itnHGn is the strong operator limit guaranteed by Lemma 4.8. As U∞ is

unitary on Ḣ1, we have the relation φ = U∞φ
′.

Put φ′n = GnSnφ
′. By Corollary 4.9,

‖φn − φ′n‖Σ = ‖eitnHGnSnφ−GnSnU−1
∞ φ‖Σ → 0 as n→∞.

Hence φ′n inherits property (4.4) from φn. The same proof as for φn shows that Σ decoupling (4.6) holds

as well. It remains to verify the last decoupling property (4.5). As G−1
n fn converges weakly in Ḣ1 to φ′,

by Rellich-Kondrashov and a diagonalization argument we may assume after passing to a subsequence that
G−1
n fn converges to φ′ almost everywhere on Rd. By the Lemma 2.6, the fact that limn→∞ ‖GnSnφ′ −

Gnφ
′‖ 2d

d−2
= 0, and a change of variables,

lim
n→∞

[
‖fn‖

2d
d−2
2d

d−2

− ‖fn − φ′n‖
2d

d−2
2d

d−2

− ‖φ′n‖
2d

d−2
2d

d−2

]
= lim
n→∞

[
‖G−1

n fn‖
2d

d−2
2d

d−2

− ‖G−1
n fn − φ′‖

2d
d−2
2d

d−2

− ‖φ′‖
2d

d−2
2d

d−2

]
= 0.

�

Remark. As limn→∞ ‖φn − φ′n‖Σ = 0, we see by Sobolev embedding that the decoupling (4.5) also holds
for the original profile φn = eitnHGnSnφ with nonzero time parameter tn.

4.4. Linear profile decomposition. As before, I will denote a fixed interval containing 0 of length at
most 1, and all spacetime norms are taken over I ×Rd unless indicated otherwise.

Proposition 4.14. Let fn be a bounded sequence in Σ. After passing to a subsequence, there exists
J∗ ∈ {0, 1, . . . } ∪ {∞} such that for each finite 1 ≤ j ≤ J∗, there exist an augmented frame Fj =
{(tjn, xjn, N j

n, (N
j
n)′)} and a function φj with the following properties.

• Either tjn ≡ 0 or (N j
n)2(tjn)→ ±∞ as n→∞.

• φj belongs to Σ, H1, or Ḣ1 depending on whether F j is of type 1, 2a, or 2b, respectively.

For each finite J ≤ J∗, we have a decomposition

(4.13) fn =

J∑
j=1

eit
j
nHGjnS

j
nφ

j + rJn =

J∑
j=1

φjn + rJn ,

where Gjn, S
j
n are the Ḣ1-isometry and spatial cutoff operators associated to F j. This decomposition has the

following properties:

(GJn)−1e−it
J
nHrJn

Ḣ1

⇀ 0 for all J ≤ J∗,(4.14)

sup
J

lim
n→∞

∣∣∣‖fn‖2Σ − J∑
j=1

‖φjn‖2Σ − ‖rJn‖2Σ
∣∣∣ = 0,(4.15)

sup
J

lim
n→∞

∣∣∣‖fn‖ 2d
d−2

L
2d

d−2
x

−
J∑
j=1

‖φjn‖
2d

d−2

L
2d

d−2
x

− ‖rJn‖
2d

d−2

L
2d

d−2
x

∣∣∣ = 0.(4.16)
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Whenever j 6= k, the frames {(tjn, xjn, N j
n)} and {(tkn, xkn, Nk

n)} are orthogonal:

(4.17) lim
n→∞

Nj
n

Nk
n

+
Nk

n

Nj
n

+N j
nN

k
n |tjn − tkn|+

√
N j
nNk

n |xjn − xkn| =∞.

Finally, we have

(4.18) lim
J→J∗

lim sup
n→∞

‖e−itnHrJn‖
L

2(d+2)
d−2

t,x

= 0,

Remark. One can also show a posteriori using (4.17) and (4.18) the fact, which we will neither prove nor
use, that

sup
J

lim
n→∞

∣∣∣‖e−itHfn‖ 2(d+2)
d−2

L

2(d+2)
d−2

t,x

−
J∑
j=1

‖e−itHφjn‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

− ‖e−itHwJn‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

∣∣∣ = 0.

The argument uses similar ideas as in the proofs of [17][Lemma 2.7] or Lemma 6.3; we omit the details.

Proof. Proceed inductively using Proposition 4.3. Let r0
n = fn. Assume that we have a decomposition up

to level J ≥ 0 obeying properties (4.14) through (4.16). After passing to a subsequence, define

AJ = lim
n
‖rJn‖Σ and εJ = lim

n
‖e−itnHrJn‖

L

2(d+2)
d−2

t,x

.

If εJ = 0, stop and set J∗ = J . Otherwise apply Proposition 4.3 to the sequence rJn to obtain a frame
(tJ+1
n , xJ+1

n , NJ+1
n , (NJ+1

n )′) and functions

φJ+1 ∈ Ḣ1, φJ+1
n = eit

J+1
n HGJ+1

n SJ+1
n φJ+1 ∈ Σ

which satisfy the conclusions of Proposition 4.3. In particular φJ+1 is the Ḣ1 weak limit of the sequence

(GJ+1
n )−1e−it

J+1
n HrJn . Let rJ+1

n = rJn − φJ+1
n . By the induction hypothesis, (4.15) and (4.16) are satisfied

with J replaced by J + 1. Also,

(GJ+1
n )−1e−it

J+1
n HrJ+1

n = [(GJ+1
n )−1e−it

J+1
n HrJn − φJ+1] + (1− SJ+1

n )φJ+1.

As n→∞, the first term goes to zero weakly in Ḣ1 while the second term goes to zero strongly. Thus (4.14)
holds at level J + 1 as well. After passing to a subsequence, we may define

AJ+1 = lim
n
‖rJ+1
n ‖Σ and εJ+1 = lim

n
‖e−itHrJ+1

n ‖
L

2(d+2)
d−2

t,x

.

If εJ+1 = 0, stop and set J∗ = J + 1. Otherwise continue the induction. If the algorithm never terminates,
set J∗ =∞. From (4.15) and (4.16), the parameters AJ and εJ satisfy the inequality

A2
J+1 ≤ A2

J [1− C( εJAJ
)

d(d+2)
4 ].

If lim supJ→J∗ εJ = ε∞ > 0, then as AJ are decreasing there would exist infinitely many J ’s so that

A2
J+1 ≤ A2

J [1− C( ε∞A0
)

d(d+2)
4 ],

which implies that limJ→J∗ AJ = 0. But this contradicts the Strichartz inequality which dictates that
lim supJ→J∗ AJ & lim supJ→J∗ εJ = ε0. We conclude that

lim
J→J∗

εJ = 0.

Thus (4.18) holds.
It remains to prove the assertion (4.17). Suppose otherwise, and let j < k be the first two indices for

which F j and Fk are equivalent. Thus F` and Fk are orthogonal for all j < ` < k. By the construction of
the profiles, we have

rj−1
n = eit

j
nHGjnS

j
nφ

j + eit
k
nHGknS

k
nφ

k +
∑
j<`<k

eit
`
nHG`nS

`
nφ

` + rkn,

therefore

(eit
j
nHGjn)−1rj−1

n = (eit
j
nHGjn)−1eit

j
nHGjnS

j
nφ

j + (eit
j
nHGjn)−1eit

k
nHGknS

k
nφ

k

+
∑
j<`<k

(eit
j
nHGjn)−1eit

`
nHG`nS

`
nφ

` + (eit
j
nHGjn)−1rkn.
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As n→∞, the left side converges to φj weakly in Ḣ1. On the right side, we apply Corollary 4.9 to see that
the first and second terms converge in Ḣ1 to φj and U jk∞φ

k, respectively, for some isomorphism U jk∞ of Ḣ1.

By Corollary 4.12, each of the terms in the summation converges to zero weakly in Ḣ1. Taking for granted
the claim that

(4.19) (eit
j
nHGjn)−1rkn → 0 weakly in Ḣ1,

it follows that
φj = φj + U jk∞φ

k,

so φk = 0, which contradicts the nontriviality of φk. Therefore, the proof of the proposition will be complete
upon verifying the weak limit (4.19). As that sequence is bounded in Ḣ1, it suffices to check that

〈(eit
j
nHGjn)−1rkn, ψ〉Ḣ1 → 0 for any ψ ∈ C∞c (Rd).

Write (eit
j
nHGjn)−1rkn = (eit

j
nHGjn)−1(eit

k
nHGkn)(eit

k
nHGkn)−1rkn, and use Lemma 4.10 and the weak limit

(4.14) to see that

lim
n→∞

〈(eit
j
nHGjn)−1rkn, ψ〉Ḣ1 = lim

n→∞
〈(eit

k
nHGkn)−1rkn, (e

itknHGkn)−1(eit
j
nHGjn)ψ〉Ḣ1

= lim
n→∞

〈(Gkn)−1e−it
k
nHrkn, (U

jk
∞ )−1ψ〉Ḣ1

= 0.

�

5. The case of concentrated initial data

The next step in the proof of Theorem 1.2 is to establish wellposedness when the initial data consists of a
highly concentrated “bubble”. The picture to keep in mind is that of a single profile φjn in Proposition 4.14
as n→∞. In the next section we combine this special case with the profile decomposition to treat general
initial data. Although we state the following result as a conditional one to permit a unified exposition, by
Theorem 1.1 the result is unconditionally true in most cases.

Proposition 5.1. Let I = [−1, 1]. Assume that Conjecture 1.1 holds. Suppose

F = {(tn, xn, Nn, N ′n)}
is an augmented frame with tn ∈ I and Nn → ∞, such that either tn ≡ 0 or N2

ntn → ±∞; that is, F is

type 2a or 2b in Definition 4.2. Let Gn, G̃n, and Sn be the associated operators defined in (4.1) and (4.2).

Suppose φ belongs to H1 or Ḣ1 depending on whether F is type 2a or 2b respectively. Then, for n sufficiently
large, there is a unique solution un : I ×Rd → C to the defocusing equation (1.1), µ = 1, with initial data

un(0) = eitnHGnSnφ.

This solution satisfies a spacetime bound

lim sup
n→∞

SI(un) ≤ C(E(un)).

Suppose in addition that {(qk, rk)} is any finite collection of admissible pairs with 2 < rk < d. Then for each
ε > 0 there exists ψε ∈ C∞c (R×Rd) such that

(5.1) lim sup
n→∞

∑
k

‖un − G̃n[e−
itN−2

n |xn|2

2 ψε]‖Lqk
t Σ

rk
x (I×Rd) < ε.

Assuming also that ‖∇φ‖L2 < ‖∇W‖L2 and E∆(φ) < E∆(W ), we have the same conclusion as above for
the focusing equation (1.1), µ = −1.

The proof proceeds in several steps. First we construct an approximate solution on I in the sense of Propo-
sition 3.3. Roughly speaking, when Nn is large and t = O(N−2

n ), solutions to (1.1) are well-approximated
up to a phase factor by solutions to the energy-critical NLS with no potential, which by Conjecture 1.1
exist globally and scatter. In the long-time regime N−2

n << |t| ≤ 1, the solution to (1.1) has dispersed and
resembles a linear evolution e−itHφ. By patching these approximations together, we obtain an approximate
solution over the entire time interval I with arbitrarily small error as Nn becomes large. It then follows by
Proposition 3.3 that for n large, (1.1) admits a solution on I with controlled spacetime bound. The last claim
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about approximating the solution by functions in C∞c (R×Rd) will follow essentially from our construction
of the approximate solutions.

We shall need a commutator estimate. In the sequel, P≤N , PN will denote the standard Littlewood-Paley
projectors based on −∆.

Lemma 5.2. Let v be a global solution to

(i∂t + 1
2∆)v = F (v), v(0) ∈ Ḣ1(Rd)

where F (z) = ±|z|
4

d−2 z. Then on any compact time interval I,

lim
N→∞

‖P≤NF (v)− F (P≤Nv)‖
L2

tH
1, 2d

d+2
x (I×Rd)

= 0

Proof. Recall [29, Lemma 3.11] that as a consequence of the spacetime bound (1.7), ∇v is finite in all
Strichartz norms:

(5.2) ‖∇v‖S(R) < C(‖v(0)‖Ḣ1) <∞.
It suffices to show separately that

lim
n→∞

‖P≤NF (v)− F (P≤Nv)‖
L2

tL
2d

d+2
x

= 0,(5.3)

lim
n→∞

‖∇[P≤NF (v)− F (P≤Nv)]‖
L2

tL
2d

d+2
x

= 0.(5.4)

Write

‖∇[P≤NF (v)− F (P≤Nv)]‖
L2

tL
2d

d+2
x

≤ ‖∇P>NF (v)‖
L2

tL
2d

d+2
x

+ ‖∇[F (v)− F (P≤Nv)]‖
L2

tL
2d

d+2
x

.
(5.5)

As P>N = 1− P≤N and

‖∇F (v)‖
L2

tL
2d

d+2
x

. ‖v‖
4

d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

≤ C(‖v(0)‖Ḣ1),

dominated convergence implies that

lim
N→∞

‖∇P>NF (v)‖
L2

tL
2d

d+2
x

= 0.

To treat the second term on the right side of (5.5), observe first that with F (z) = |z|
4

d−2 z,

|Fz(z)− Fz(w)|+ |Fz(z)− Fz(w)| .

{
|z − w|(|z|

6−d
d−2 + |w|

6−d
d−2 ), 3 ≤ d ≤ 5

|z − w|
4

d−2 , d ≥ 6.

Combining this with the pointwise bound

|∇[F (v)− F (P≤Nv)]| ≤ (|Fz(v)− Fz(P≤Nv)|+ |Fz(v)− Fz(P≤Nv)|)|∇v|
+ (|Fz(P≤Nv)|+ |Fz(P≤Nv)|)|∇P>Nv|,

Hölder, and dominated convergence, when d ≥ 6 we have

‖∇[F (v)− F (P≤Nv)]‖
L2

tL
2d

d+2
x

. ‖|P>Nv|
4

d−2 |∇v|‖
L2

tL
2d

d+2
x

+ ‖|P≤Nv|
4

d−2 |∇P>Nv|‖
L2

tL
2d

d+2
x

. ‖P>Nv‖
4

d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

+ ‖v‖
4

d−2

L

2(d+2)
d−2

t,x

‖P>N∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

→ 0 as N →∞.

(5.6)

If 3 ≤ d ≤ 5, the first term in the second line of (5.6) is replaced by

‖|P>Nv|(|v|
6−d
d−2 + |P≤Nv|

6−d
d−2 )|∇v|‖

L2
tL

2d
d+2
x

≤ ‖P>Nv‖
L

2(d+2)
d−2

t,x

‖v‖
6−d
d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x
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which goes to 0 by dominated convergence. This establishes (5.4). The proof of (5.3)is similar. Write

‖P≤NF (v)− F (P≤Nv)‖
L2

tL
2d

d+2
x

≤ ‖P>NF (v)‖
L2

tL
2d

d+2
x

+ ‖F (v)− F (P≤Nv)‖
L2

tL
2d

d+2
x

.

By Hölder, Bernstein, and the chain rule,

‖P>NF (v)‖
L2

tL
2d

d+2
x

. N−1‖v|
4

d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

= O(N−1).

Using Bernstein, Hölder, and Sobolev embedding, and the pointwise bound

|F (v)− F (P≤Nv)| . |P>Nv|(|v|
4

d−2 + |P≤Nv|
4

d−2 ),

we obtain

‖F (v)− F (P≤Nv)‖
L2

tL
2d

d+2
x

≤ ‖(|v|
4

d−2 + |P≤Nv|
4

d−2 )P>Nv‖
L2

tL
2d

d+2
x

.|I| (‖∇v‖
4

d−2

L∞t L2
x

+ +‖∇v‖
4

d−2

L∞t L2
x
)‖∇P>Nv‖L∞t L2

x
.

As v ∈ C0
t Ḣ

1
x(I × Rd), the orbit {v(t)}t∈I is compact in Ḣ1(Rd). The Riesz characterization of L2 com-

pactness therefore implies that the right side goes to 0 as N →∞. �

Now suppose that φn = eitnHGnSnφ as in the statement of Proposition 5.1. If µ = −1, assume also that
‖φ‖Ḣ1 < ‖W‖Ḣ1 , E(φ) < E∆(W ). We first construct functions ṽn which obey all of the conditions of the
Proposition 3.3 except possibly the hypothesis in (3.2) about matching initial data. A slight modification of
the ṽn will then yield genuine approximate solutions.

If tn ≡ 0, let v be the solution to the potential-free problem (1.6) provided by Conjecture 1.1 with

v(0) = φ. If N2
ntn → ±∞, let v be the solution to (1.6) which scatters in Ḣ1 to e

it∆
2 φ as t→ ∓∞. Note the

reversal of signs.
Put

(5.7) Ñ ′n = (Nn

N ′n
)

1
2 ,

let T > 0 denote a large constant to be chosen later, and define

(5.8) ṽTn (t) =


e−

it|xn|2
2 G̃n[SnP≤Ñ ′n

v](t+ tn) |t| ≤ TN−2
n

e−i(t−TN
−2
n )H ṽTn (TN−2

n ), TN−2
n ≤ t ≤ 2

e−i(t+TN
−2
n )H ṽTn (−TN−2

n ) −2 ≤ t ≤ −TN−2
n .

The awkward time translation by tn is needed to undo the time translation built into the operator G̃n;
see (4.1). We shall suppress the superscript T unless the role of that parameter needs to be emphasized.
Introducing the notation

vn(t, x) = [G̃nv](t+ tn, x) = N
d−2

2
n v(N2

nt,Nn(x− xn)),

χn(x) = χ(N ′n(x− xn)),

where χ is the function used to define the spatial cutoff operator Sn in (4.2), and using the identity G̃nχ =

χnG̃n, we can also write the top expression in (5.8) as

ṽn(t) = e−
it|xn|2

2 χnP≤Ñ ′nNn
vn, |t| ≤ TN−2

n .

As discussed previously, during the initial time window ṽn is essentially a modulated solution to (1.6)
with cutoffs applied in both space, to place the solution in CtΣx, and frequency, to enable taking an extra
derivative in the error analysis below.

If φ ∈ Ḣ1, use Lemma 4.2 and the fact that ‖v‖L∞t Ḣ1
x
≤ C(‖φ‖Ḣ1) (energy conservation) to deduce

lim sup
n
‖ṽn‖L∞t Σx(|t|≤TN−2

n ) ≤ C(‖φ‖Ḣ1),

therefore

lim sup
n
‖ṽn‖L∞t Σx([−2,2]) ≤ C(‖φ‖Ḣ1).(5.9)
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From (1.7), (5.9), and Strichartz, we obtain

‖ṽn‖
L

2(d+2)
d−2

t,x ([−2,2]×Rd)

≤ C(‖φ‖Ḣ1) for n large.(5.10)

Due to mass conservation, a similar bound holds when φ ∈ H1. Now let

en = (i∂t −H)ṽn − F (ṽn).

We show that

lim
T→∞

lim sup
n→∞

‖H 1
2 en‖N([−2,2]) = 0,(5.11)

so that by taking T large enough the ṽn will satisfy the second error condition in (3.2) for all n sufficiently
large.

First we deal with the time interval |t| ≤ TN−2
n .

Lemma 5.3. limT→∞ lim supn→∞ ‖H
1
2 en‖N(|t|≤TN−2

n ) = 0.

Proof. When −TN−2
n ≤ t ≤ TN−2

n , compute

en = e−
it|xn|2

2 [χnP≤Ñ ′nNn
F (vn)− χ

d+2
d−2
n F (P≤Ñ ′nNn

vn)

+
|xn|2 − |x|2

2
(P≤Ñ ′nNn

vn)χn +
1

2
(P≤Ñ ′nNn

vn)∆χn + (∇P≤Ñ ′nNn
vn) · ∇χn]

= e−
it|xn|2

2 [(a) + (b) + (c) + (d)],

and estimate each term separately in the dual Strichartz space N({|t| ≤ TN−2
n }). Write

(a) = χnP≤Ñ ′nNn
F (vn)− χ

d+2
d−2
n F (P≤Ñ ′nNn

vn)

= χn[P≤Ñ ′nNn
F (vn)− F (P≤Ñ′nNn

vn)] + χn(1− χ
4

d−2
n )F (P≤Ñ ′nNn

vn)

= (a′) + (a′′).

By the Leibniz rule and a change of variables,

‖∇(a′)‖
L2

tL
2d

d+2
x (|t|≤TN−2

n )

≤ ‖∇[P≤Ñ ′n
F (v)− F (P≤Ñ ′n

v)]‖
L2

tL
2d

d+2
x (|t|≤T )

+ ‖[P≤Ñ ′nNn
F (vn)− F (P≤Ñ ′nNn

vn)]∇χn‖
L2

tL
2d

d+2
x (|t|≤TN−2

n )
.

(5.12)

By Lemma 5.2, the first term disappears in the limit as n → ∞. That lemma also applies to the second
term after a change of variables to give

‖[P≤Ñ ′nNn
F (vn)− F (P≤Ñ ′nNn

vn)]∇χn‖
L2

tL
2d

d+2
x (|t|≤TN−2

n )

. N ′n‖P≤Ñ ′nNn
F (vn)− F (P≤Ñ ′nNn

vn)‖
L2

tL
2d

d+2
x (|t|≤TN−2

n )

. N ′n
Nn
‖P≤Ñ ′nF (v)− F (P≤Ñ ′n

v)‖
L2

tL
2d

d+2
x (|t|≤T )

→ 0 as n→∞.

Therefore
lim
n→∞

‖∇(a′)‖
L2

tL
2d

d+2
x (|t|≤TN−2

n )
= 0.

By changing variables, using the bound |xn| . Nn, and referring to Lemma 5.2 once more,

‖|x|(a′)‖
L2

tL
2d

d+2
x

. Nn‖P≤Ñ ′nNn
F (vn)− F (P≤Ñ ′nNn

vn)‖
L2

tL
2d

d+2
x (|t|≤TN−2

n )

. ‖P≤Ñ ′nF (v)− F (P≤Ñ ′n
v)‖

L2
tL

2d
d+2
x (|t|≤T )

→ 0 as n→∞.

It follows from Lemma 2.2 that

lim
n→∞

‖H 1
2 (a′)‖

L2
tL

2d
d+2
x (|t|≤TN−2

n )
= 0.
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To estimate (a′′), we use the Leibniz rule, a change of variables, Hölder, Sobolev embedding, the bound (5.2),
and dominated convergence to obtain

‖∇(a′′)‖
L2

tL
2d

d+2
x

. ‖|P≤ÑnNn
vn|

4
d−2∇P≤Ñ ′nNn

vn‖
L2

tL
2d

d+2
x (|t|≤TN−2

n , |x−xn|∼(N ′n)−1)

+
N ′n
Nn
‖P≤Ñ ′nNn

vn‖
d+2
d−2

L∞t L
2d

d−2
x

. ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

‖P≤Ñ ′nv‖
4

d−2

L

2(d+2)
d−2

t,x (|t|≤T, |x|∼Nn
N′n

)

+O(
N ′n
Nn

)

. C(E(v))(‖P>Ñ ′nv‖
L

2(d+2)
d−2

t,x

+ ‖v‖
L

2(d+2)
d−2

t,x (|t|≤T,|x|&Nn
N′n

)

)
4

d−2 +O(
N ′n
Nn

)

= o(1) +O(
N ′n
Nn

).

Similarly,

‖|x|(a′′)‖
L2

tL
2d

d+2
x

∼ ‖F (P≤Ñ ′n
v)‖

L

2(d+2)
d−2

t L
2d

d−2
x (|t|≤T,|x|∼Nn

N′n
)

. (‖P>Ñ ′nv‖
L

2(d+2)
d−2

t L
2d

d−2
x (|t|≤T )

+ ‖v‖
L

2(d+2)
d−2

t L
2d

d−2
x (|t|≤T,|x|∼Nn

N′n
)

)
d+2
d−2

= o(1).

Therefore

lim
N→∞

‖H 1
2 (a′′)‖

L2
tL

2d
d+2
t,x (|t|≤TN−2

n )
= 0

as well. This completes the analysis for (a).
For (b), note that on the support of the function we have

∣∣|xn|2 − |x|2∣∣ = |xn − x||xn + x| ∼ Nn(N ′n)−1.
Thus by Hölder and Sobolev embedding,

‖∇(b)‖L1
tL

2
x(|t|≤TN−2

n ) .
Nn

N ′n
‖∇P≤Ñ ′nNn

vn‖L1
tL

2
x(|t|≤TN−2

n )

+Nn‖P≤Ñ ′nNn
vn‖L1

tL
2
x(|t|≤TN−2

n , |x−xn|∼(N ′n)−1)

. (N ′nNn)−1‖∇vn‖L∞t L2
x
→ 0 as n→∞.

Using Hölder and Sobolev embedding, we have

‖|x|(b)‖L1
tL

2
x(|t|≤TN−2

n ) ∼
N2

n

N ′n
‖P≤Ñ ′nNn

vn‖L1
tL

2
x(|t|≤TN−2

n ,|x−xn|.(N ′n)−1)

.

{
(N ′n)−2‖∇vn‖L∞t L2

x
, limn→∞N−1

n |xn| = 0
‖vn‖L∞t L2

x
= O(N−1

n ), limn→∞N−1
n |xn| > 0,

which vanishes as n → ∞ in either case. Thus ‖H1/2(b)‖L1
tL

2
x
→ 0. The term (c) is dealt with similarly.

Finally, to estimate (d), apply Hölder, Bernstein, and the definition (5.7) of the frequency cutoffs Ñ ′n to
obtain

‖∇(d)‖L1
tL

2
x(|t|≤TN−2

n ) . N
′
n‖|∇|2P≤Ñ ′nNn

vn‖L1
tL

2
x

+ ‖|∇P≤Ñ ′nNn
vn|(|∇|2χn)‖L1

tL
2
x

.

[(
N ′n
Nn

) 1
2

+
(
N ′n
Nn

)2
]
‖∇vn‖L∞t L2

x
→ 0.

Using Hölder in time, we get

‖|x|(d)‖L1
tL

2
x(|t|≤TN−2

n ) .
N ′n
Nn
‖∇vn‖L∞t L2

x
→ 0.

This completes the proof of the lemma. �

Next, we estimate the error over the time intervals [−2, TN−2
n ] and [TN−2

n , 2].

Lemma 5.4. limT→∞ lim supn→∞ ‖H
1
2 en‖N([−2,TN−2

n ]∪[TN−2
n ,2]) = 0.
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Proof. We consider just the forward time interval as the other interval is treated similarly. Since ṽTn solves
the linear equation, the error en is just the nonlinear term:

en = (i∂t −H)ṽTn − F (ṽTn ) = −F (ṽTn ).

By the chain rule (Corollary 2.4) and Strichartz,

‖H 1
2 en‖N([TN−2

n ,2]) . ‖ṽ
T
n ‖

4
d−2

L

2(d+2)
d−2

t,x ([TN−2
n ,2])

‖ṽTn (TN−2
n )‖Σ.

By definition ṽTn (TN−2
n ) = e−

iTN−2
n |xn|2

2 G̃nSnP≤Ñ ′n
v(TN−2

n − tn), so Lemma 4.2 implies that

lim sup
n→∞

‖ṽTn (TN−2
n )‖Σ .

{
‖v|L∞t Ḣ1

x
, limn→∞N−1

n |xn| = 0,

‖v‖L∞t H1
x
, limn→∞N−1

n |xn| > 0

is bounded in either case. Using Strichartz and interpolation, it suffices to show

lim
T→∞

lim sup
n→∞

‖ṽTn ‖
L∞T L

2d
d−2
x ([TN−2

n ,2])
= 0.

As we are assuming Conjecture 1.1, there exists v∞ ∈ Ḣ1 so that

lim
t→∞

‖v(t)− e it∆
2 v∞‖Ḣ1

x
= 0;

if v(0) ∈ H1 the same limit holds with respect to the H1 norm. Then one also has

lim
t→∞

lim sup
n→∞

‖P≤Ñ ′nv(t)− e it∆
2 v∞‖Ḣ1

x
= 0,

(with the obvious modification if v(0) ∈ H1) and Lemma 4.2 implies that

lim
T→∞

lim sup
n→∞

‖ṽn(TN−2
n )− e−

iTN−2
n |xn|2

2 GnSn(e
iT∆

2 v∞)‖Σ = 0.

An application of Strichartz and Corollary 4.9 yields

ṽn(t) = e−i(t−TN
−2
n )H [ṽn(TN−2

n )]

= e−i(t−TN
−2
n )H [e−

iTN−2
n |xn|2

2 GnSne
iT∆

2 v∞] + error

= e−itH [GnSnv∞] + error

where limT→∞ lim supn→∞ ‖error‖Σ = 0 uniformly in t. By Sobolev embedding,

lim
T→∞

lim sup
n→∞

‖ṽn‖
L∞t L

2d
d−2
x ([TN−2

n ,2])

= lim
T→∞

lim sup
n→∞

‖e−itH [GnSnv∞]‖
L∞t L

2d
d−2
x ([TN−2

n ,2])
.

A standard density argument using the dispersive estimate for e−itH shows that the last limit is zero. �

Lemmas 5.3 and 5.4 together establish (5.11).

Lemma 5.5 (Matching initial data). Let un(0) = eitnHGnSnφ as in Proposition 5.1. Then

lim
T→∞

lim sup
n→ ∞

‖ṽTn (−tn)− un(0)‖Σ = 0.

Proof. If tn ≡ 0, then by definition ṽTn (0) = GnSnP≤N ′nφ, so Lemma 4.2 and the definition (5.7) of the
frequency parameter N ′n imply

lim
n→∞

‖ṽTn (0)− un(0)‖Σ . lim
n→∞

{
‖P>N ′nφ‖H1 , limn→∞N−1

n |xn| > 0
‖P>N ′nφ‖Ḣ1 , limn→∞N−1

n |xn| = 0

}
= 0.

Next we consider the case N2
ntn →∞; the case N2

ntn → −∞ works similarly. Arguing as in the previous

lemma and recalling that in this case, the solution v was chosen to scatter backward in time to e
it∆
2 φ, for n

large we have

ṽTn (−tn) = eitnH [GnSnφ] + error

where limT→∞ lim supn→∞ ‖error‖Σ → 0. The claim follows. �
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For each fixed T > 0, set

ũTn (t) = ṽTn (t− tn),(5.13)

which is defined for t ∈ [−1, 1]. Then for a fixed large value of T , this is an approximate solution for all n
sufficiently large in the sense of Proposition 3.3. Indeed, by (5.9) and (5.10), ũTn satisfy the hypotheses (3.1)
with E,L = C(‖φ‖Ḣ1). Lemmas 5.3, 5.4, 5.5, Sobolev embedding, and Strichartz show that for any ε > 0,
there exists T > 0 so that ũTn satisfies the hypotheses (3.2) for all large n. Invoking Proposition 3.3, we
obtain the first claim of Proposition 5.1 concerning the existence of solutions.

The remaining assertion of Proposition 5.1 regarding approximation by smooth functions will follow from
the next lemma. Recall the notation

‖f‖Lq
tΣr

x
= ‖H 1

2 f‖Lq
tL

r
x
.

Lemma 5.6. Fix finitely many admissible (qk, rk) with 2 ≤ rk < d. For every ε > 0, there exists a smooth
function ψε ∈ C∞c (R×Rd) such that for all k

lim sup
T→∞

lim sup
n→∞

‖ṽTn − G̃n[e−
itN−2

n |xn|2

2 ψε](t+ tn)‖Lqk
T Σ

rk
x ([−2,2]) < ε.

Proof. We continue using the notation defined at the beginning. Let

w̃Tn =


e−

it|xn|2
2 G̃n[Snv](t+ tn), |t| ≤ TN−2

n

e−i(t−TN
−2
n )H [w̃Tn (TN−2

n )], t ≥ TN−2
n

e−i(t+TN
−2
n )H [w̃Tn (−TN−2

n )], t ≤ −TN−2
n

This is essentially ṽTn in (5.8) without the frequency cutoffs. We see first that ṽTn can be well-approximated
by w̃Tn in spacetime:

lim sup
n→∞

‖ṽTn − w̃Tn ‖Lqk
t Σ

rk
x ([−2,2]) = 0,

sup
T>0

lim sup
n→∞

‖w̃Tn ‖Lqk
t Σ

rk
x ([−2,2]) <∞.

(5.14)

Indeed by dominated convergence,

‖∇(v − P≤Ñ ′nv)‖Lqk
t L

rk
x (R×Rd) → 0 as n→∞,

thus (5.14) follows from Lemma 4.2 and the Strichartz inequality for e−itH .
A consequence of the dispersive estimate is that most of the spacetime norm of w̃Tn is concentrated in the

time interval |t| ≤ TN−2
n :

(5.15) lim
T→∞

lim sup
n→∞

‖w̃Tn ‖Lqk
t Σ

rk
x ([−2,−TN−2

n ]∪[TN−2
n ,2]) = 0.

To see this, it suffices by symmetry to consider the forward interval. Recall that v scatters forward in Ḣ1

(and in H1 if v(0) ∈ H1) to some e
it∆
2 v∞. By Lemma 4.2,

lim
T→∞

lim sup
n→∞

‖(G̃nSnv(TN−2
n + tn)−GnSn(e

iT∆
2 v∞)‖Σ = 0.

By Strichartz,

lim
T→∞

lim sup
n→∞

‖e
iTN−2

n |xn|2

2 w̃Tn − e−i(t−TN
−2
n )H [GnSn(e

iT∆
2 v∞)]‖Lqk

t Σ
rk
x ([TN−2

n ,2]) = 0

By Corollary 4.9 and Strichartz, for each T > 0 we have

lim
n→∞

‖e−i(t−TN
−2
n )H [GnSn(e

iT∆
2 v∞)]− e

iT (r∞)2

2 e−itH [GnSnv∞]‖Lqk
t Σ

rk
x

= 0.

For each ε > 0, choose vε∞ ∈ C∞c such that ‖v∞ − vε∞‖Ḣ1 < ε. By the dispersive estimate,

‖e−itH [Gnv
ε
∞]‖Lqk

t L
rk
x ([TN−2

n ,2]) . T
− 1

qk ‖vε∞‖
L

r′
k

x

Combining the above with Strichartz and Lemma 4.2, we get

lim sup
n→∞

‖w̃Tn ‖Lqk
t Σ

rk
x ([TN−2

n ,2]) . o(1) + ε+Oε,qk(T
− 1

qk ) as T →∞.
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Taking T →∞, we find

lim sup
T→∞

lim sup
n→∞

‖w̃Tn ‖Lqk
t Σ

rk
x ([TN−2

n ,2]) . ε

for any ε > 0, thereby establishing (5.15).

Choose ψε ∈ C∞c (R ×Rd) such that
∑N
k=1 ‖v − ψε‖Lqk

t Ḣ
1,rk
x

< ε. By combining Lemma 4.2 with (5.14)

and (5.15), we get

lim
T→∞

lim sup
n→∞

‖ṽn(t, x)− e−
it|xn|2

2 G̃nψ
ε(t+ tn)‖Lqk

t Σ
rk
x ([−2,2]) . ε.

This completes the proof of the lemma, hence Proposition 5.1. �

Remark. From the proof it is clear that that the proposition also holds if the interval I = [−1, 1] is replaced
by any smaller interval.

6. Palais-Smale and the proof of Theorem 1.2

In this section we prove a Palais-Smale-type compactness property for sequences of blowing up solutions
to (1.1). This will quickly lead to Theorem 1.2.

For a maximal solution u to (1.1), define

S∗(u) = sup{SI(u) : I is an open interval with ≤ 1},
where we set SI(u) = ∞ if u is not defined on I. All solutions in this section are assumed to be maximal.
Set

Λd(E) = sup{S∗(u) : u solves (1.1), µ = +1, E(u) = E}
Λf (E) = sup{S∗(u) : u solves (1.1), µ = −1, E(u) = E,

‖∇u(0)‖L2 < ‖∇W‖L2}.
Finally, define

Ed = {E : Λd(E) <∞}, Ef = {E : Λf (E) <∞}.

By the local theory, Theorem 1.2 is equivalent to the assertions

Ed = [0,∞), Ef = [0, E∆(W )).

Suppose Theorem 1.2 failed. By the small data theory, Ed, Ef are nonempty and open, and the failure of
Theorem 1.2 implies the existence of a critical energy Ec > 0, with Ec < E∆(W ) in the focusing case, such
that Λd(E), Λf (E) =∞ for E > Ec and Λd(E), Λf (E) <∞ for all E < Ec.

Define the spaces

Ẋ1 =

 L10
t,x ∩ L5

tΣ
30
11
x ([− 1

2 ,
1
2 ]×R3), d = 3

L
2(d+2)
d−2

t,x ∩ L
2(d+2)

d
t Σ

2(d+2)
d

x ([− 1
2 ,

1
2 ]×Rd), d ≥ 4.

When d = 3, also define

Ẏ 1 = Ẋ1 ∩ L
10
3
t Σ

10
3
x ([− 1

2 ,
1
2 ]×R3).

Remark. The case d = 3 is singled out for technical reasons. Our choice of Strichartz norm L5
tΣ

30/11
x is

guided by the fact that 30
11 < 3, which is needed for Sobolev embedding. In higher dimensions the symmetric

Strichartz norm suffices since 2(d+2)
d < d for all d ≥ 4. This distinction necessitates a separate but essentially

parallel treatment of various estimates when d = 3.

Proposition 6.1 (Palais-Smale). Assume Conjecture 1.1 holds. Suppose that un : (tn− 1
2 , tn+ 1

2 )×Rd → C
is a sequence of solutions with

lim
n→∞

E(un) = Ec, lim
n→∞

S(tn− 1
2 ,tn](un) = lim

n→∞
S[tn,tn+ 1

2 )(un) =∞.

In the focusing case, assume also that Ec < E∆(W ) and ‖∇un(tn)‖L2 < ‖∇W‖L2 . Then there exists a
subsequence such that un(tn) converges in Σ.

Let us first see how this would imply the main theorem.
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Proof of Theorem 1.2. Suppose the theorem failed. In the defocusing case, there exist Ec ∈ (0,∞) and a
sequence of solutions un with E(un)→ Ec, S(− 1

4 ,0](un)→∞, and S[0, 14 )(un)→∞. The same is true in the

focusing case except Ec is restricted to the interval (0, E∆(W )) and lim supn ‖un(0)‖Ḣ1 < ‖W‖Ḣ1 . By Propo-
sition 6.1, after passing to a subsequence un(0) converges in Σ to some φ. Then E(φ) = limnE(un(0)) = Ec.

Let u∞ : (−Tmin, Tmax)→ C be the maximal lifespan solution to (1.1) with u∞(0) = φ. By comparing u
with the un and applying Proposition 3.3, we see that S([0, 12 )(u∞) = S(− 1

2 ,0](u∞) =∞. So −1/2 ≤ −Tmin <
Tmax ≤ 1/2. But Proposition 6.1 implies that the orbit {u∞(t) : t ∈ (−Tmin, Tmax)} is precompact in Σ,
thus there is a sequence of times tn increasing to Tmax such that u∞(tn) converges in Σ to some ψ. Taking
a local solution with initial data equal to ψ, we can then invoke Proposition 3.3 to extend u∞ to some larger
interval (−Tmin, Tmax + η), contradicting the maximality of u∞. �

Proof of Proposition 6.1. By replacing un(t) with un(t + tn), we may assume tn ≡ 0. Note that by energy
conservation and Corollary 7.2, this time translation does not change the hypotheses of the focusing case.

Observe (referring to the discussion in Section 7 for the focusing case) that the sequence un(0) is bounded
in Σ. Applying Proposition 4.14, after passing to a subsequence we have a decomposition

un(0) =

J∑
j=1

eit
j
nHGnSnφ

j + wJn =

J∑
j=1

φjn + wJn

with the properties stated in that proposition. In particular, the remainder has asymptotically trivial linear
evolution:

(6.1) lim
J→J∗

lim sup
n→∞

‖e−itHwJn‖
L

2(d+2)
d−2

t,x

,

and the energies asymptotically decouple:

(6.2) sup
J

lim
n→∞

|E(un)−
J∑
j=1

E(φjn)− E(wJn)| = 0.

Observe that lim infnE(φjn) ≥ 0. This is obvious in the defocusing case. In the focusing case, (4.15) and the
discussion in Section 7 imply that

sup
j

lim sup
n
‖φjn‖Σ ≤ ‖un‖Σ < ‖∇W‖L2 ,

so the claim follows from Lemma 7.1. Therefore, there are two possibilities.
Case 1: supj lim supn→∞E(φjn) = Ec.

By combining (6.2) with the fact that the profiles φjn are nontrivial in Σ, it follows that J∗ = 1 and

un(0) = eitnHGnSnφ+ wn, lim
n→∞

‖wn‖Σ = 0.

We argue that Nn ≡ 1 (thus xn = 0 and tn = 0). Suppose Nn →∞.
Proposition 5.1 implies that for all large n, there exists a unique solution un on [− 1

2 ,
1
2 ] with un(0) =

eitnHGnSnφ and lim supn→∞ S(− 1
2 ,

1
2 )(un) ≤ C(Ec). By perturbation theory (Proposition 3.3),

lim sup
n→∞

S[− 1
2 ,

1
2 ](un) ≤ C(Ec),

which is a contradiction. Therefore, Nn ≡ 1, tjn ≡ 0, xjn ≡ 0, and

un(0) = φ+ wn

for some φ ∈ Σ. This is the desired conclusion.
Case 2: supj lim supn→∞E(φjn) ≤ Ec − 2δ for some δ > 0.

By the definition of Ec, there exist solutions vjn : (− 1
2 ,

1
2 )×Rd → C with

‖vjn‖
L

2(d+2)
d−2

t,x ([− 1
2 ,

1
2 ])

.Ec,δ E(φjn)
1
2 .

By standard arguments (c.f. [29, Lemma 3.11]), this implies the seemingly stronger bound

(6.3) ‖vjn‖Ẋ1 .Ec,δ E(φjn)
1
2 .
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In the case d = 3, we also have ‖vjn‖Ẏ 1 . E(φjn)
1
2 . Put

(6.4) uJn =

J∑
j=1

vjn + e−itHwJn .

We claim that for sufficiently large J and n, uJn is an approximate solution in the sense of Proposition 3.3.
To prove this claim, we check that uJn has the following three properties:

(i) limJ→J∗ lim supn→∞ ‖uJn(0)− un(0)‖Σ = 0.
(ii) lim supn→∞ ‖uJn‖

L

2(d+2)
d−2

t,x ([−T,T ])

.Ec,δ 1 uniformly in J .

(iii) limJ→J∗ lim supn→∞ ‖H
1
2 eJn‖N([− 1

2 ,
1
2 ]) = 0, where

en = (i∂t −H)uJn − F (uJn).

There is nothing to check for part (i) as uJn(0) = un(0) by construction. The verification of (ii) relies on
the asymptotic decoupling of the nonlinear profiles vjn, which we record in the following two lemmas.

Lemma 6.2 (Orthogonality). Suppose that two frames F j = (tjn, x
j
n, N

j
n), Fk = (tk, xkn, N

k
n) are orthogonal,

and let G̃jn, G̃
k
n be the associated spacetime scaling and translation operators as defined in (4.1). Then for

all ψj , ψk in C∞c (R×Rd),

‖(G̃jnψj)(G̃knψk)‖
L

d+2
d−2
t,x

+ ‖(G̃jnψj)∇(G̃knψ
k)‖

L
d+2
d−1
t,x

+ ‖|x|(G̃jnψj)(G̃knψk)‖
L

d+2
d−1
t,x

+ ‖|x|2(G̃jnψ
j)(G̃knψ

k)‖
L

d+2
d

t,x

+ ‖(∇G̃jnψj)(∇G̃knψk)‖
L

d+2
d

t,x

→ 0

as n→∞. When d = 3, we also have

‖|x|2(G̃jnψ
j)(G̃knψ

k)‖
L5

tL
15
11
x

+ ‖(∇G̃jnψj)(∇G̃knψk)‖
L5

tL
15
11
x

→ 0.

Proof. The arguments for each term are similar, and we only supply the details for the second term. Suppose
Nk
n(N j

n)−1 →∞. By the chain rule, a change of variables, and Hölder,

‖(G̃jnψj)∇(G̃knψ
k)‖

L
d+2
d−1
t,x

= ‖ψj∇(G̃jn)−1G̃knψ
k‖
L

d+2
d−1
t,x

≤ ‖ψjχn‖
L

2(d+2
d−2

t,x

‖∇ψk‖
L

2(d+2)
d

t,x

,

where χn is the characteristic function of the support of ∇(G̃jn)−1G̃knψ
k. As the support of χn has measure

shrinking to zero, we have

lim
n→∞

‖ψjχn‖
L

2(d+2)
d−2

t,x

= 0.

A similar argument deals with the case where N j
n(Nk

n)−1 →∞. Therefore, we may suppose that

Nk
n

Nj
n
→ N∞ ∈ (0,∞).

Make the same change of variables as before, and compute

∇(G̃jn)−1G̃knψ
k(t, x) = (

Nk
n

Nj
n

)
d
2 (∇ψk)[

Nk
n

Nj
n
t+ (Nk

n)2(tjn − tkn),
Nk

n

Nj
n
x+Nk

n(xjn − xkn)].

The decoupling statement (4.17) implies that

(Nk
n)2(tjn − tkn) +Nk

n |xjn − xkn| → ∞.

Therefore, the supports of ψj and ∇(G̃jn)−1G̃knψ
k are disjoint for large n. �

Lemma 6.3 (Decoupling of nonlinear profiles). Let vjn be the nonlinear solutions defined above. Then when
d ≥ 4,

‖vjnvkn‖
L

2(d+2)
d−2

t,x

+ ‖vjn∇vkn‖
L

d+2
d−1
t,x

+ ‖|x|vjnvkn‖
L

d+2
d−1
t,x

+ ‖(∇vjn)(∇vkn)‖
L

2(d+2)
d

t,x

+ ‖|x|2vjnvkn‖
L

2(d+2)
d

t,x

→ 0
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as n→∞. When d = 3, the same statement holds with the last two expressions replaced by

‖(∇vjn)(∇vkn)‖
L5

tL
15
11
x

+ ‖|x|2vjnvkn‖
L5

tL
30
11
x

→ 0.

Proof. We spell out the details for the ‖vjn|x|vkn‖
L

d+2
d−1
t,x

term. Consider first the case d ≥ 4. As 2 < 2(d+2)
d < d,

by Proposition 5.1 we can approximate vjn in Ẋ1 by test functions

cjnG̃nψ
j , ψj ∈ C∞c (R×Rd), cjn(t) = e−

i(t−t
j
n)|xj

n|
2

2 .

By Hölder and a change of variables,

‖vjn|x|vkn‖
L

d+2
d−1
t,x

≤ ‖(vjn − cjnG̃jnψj)|x|vkn‖
L

d+2
d−1
t,x

+ ‖|x|G̃jnψj(vkn − cknG̃knψk)‖
L

d+2
d−1
t,x

+ ‖|x|G̃jnψjG̃knψk‖
L

d+2
d−1
t,x

≤ ‖(vjn − cjnG̃jnψj)‖
L

2(d+2)
d−2

t,x

‖vkn‖Ẋ1

+ ‖ψj‖
L

2(d+2)
d−2

t,x

‖(vkn − cknG̃knψk)‖Ẋ1 + ‖(G̃jnψj)|x|(G̃knψk)‖
L

d+2
d−1
t,x

By first choosing ψj , then ψk, then invoking the previous lemma, we obtain for any ε > 0 that

lim sup
n→∞

‖vjn|x|vkn‖
L

d+2
d−1
t,x

≤ ε.

When d = 3, we also approximate vjn in Ẋ1 (which is possible because the exponent 30
11 in the definition of

Ẋ1 is less than 3), and estimate

‖vjn|x|vkn‖
L

5
2
t,x

≤ ‖(vjn − cjnG̃jnψj)|x|vkn‖
L

5
2
t,x

+ ‖|x|G̃jnψj(vkn − cknG̃knψk)‖
L

5
2
t,x

+ ‖|x|G̃jnψjG̃knψk‖
L

5
2
t,x

≤ ‖(vjn − cjnG̃jnψj)‖L10
t,x
‖vkn‖Ẏ 1

+ ‖ψj‖L5
tL

30
x
‖vkn − cknG̃knψk‖Ẋ1 + ‖(G̃jnψj)|x|(G̃knψk)‖

L
5
2
t,x

which, just as above, can be made arbitrarily small as n→∞. Similar approximation arguments deal with
the other terms. �

Let us verify Claim (ii) above. In fact we shall show that

(6.5) lim sup
n→∞

‖uJn‖Ẋ1([− 1
2 ,

1
2 ]) .Ec,δ 1 uniformly in J.

First, observe that

S(uJn) =

∫∫
|
J∑
j=1

vjn + e−itHwJn |
2(d+2)
d−2 dxdt . S(

J∑
j=1

vjn) + S(e−itHwJn).

By the properties of the LPD, limJ→J∗ lim supn→∞ S(e−itHwJn) = 0. Recalling (6.3), write

S(

J∑
j=1

vjn) =
∥∥∥(

J∑
j=1

vjn)2
∥∥∥ d+2

d−2

L
d+2
d−2
t,x

≤ (

J∑
j=1

‖vjn‖2
L

2(d+2)
d−2

t,x

+
∑
j 6=k

‖vjnvkn‖
L

d+2
d−2
t,x

)
d+2
d−2

. (

J∑
j=1

E(φjn) + oJ(1))
d+2
d−2

where the last line used Lemma 6.3. As energy decoupling implies lim supn→∞
∑J
j=1E(φjn) ≤ Ec, we obtain

limJ→J∗ lim supn→∞ S(uJn) .Ec,δ 1.
By mimicking this argument one also obtains

lim sup
n→∞

(‖∇uJn‖
L

2(d+2)
d

t,x

+ ‖|x|uJn‖
L

2(d+2)
d

t,x

) .Ec,δ 1 uniformly in J.
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Property (ii) is therefore verified in the case d ≥ 4. The case d = 3 is dealt with similarly.

Remark. The above argument shows that for each J and each η > 0, there exists J ′ ≤ J such that

lim sup
n→∞

‖
J∑

j=J′

vjn‖Ẋ1([− 1
2 ,

1
2 ]) ≤ η.

It remains to check property (iii) above, namely, that

(6.6) lim
J→J∗

lim sup
n→∞

‖H1/2eJn‖N([− 1
2 ,

1
2 ]) = 0.

Let F (z) = |z|
4

d−2 z and decompose

(6.7) eJn = [

J∑
j=1

F (vjn)− F (

J∑
j=1

vjn)] + [F (uJn − e−itHwJn)− F (uJn)] = (a) + (b).

Consider (a) first. Suppose d ≥ 6. Using the chain rule ∇F (u) = Fz(u)∇u+ Fz(u)∇u and the estimates

|Fz(z)|+ |Fz(z)| = O(|z|
4

d−2 ), |Fz(z)− Fz(w)|+ |Fz(z)− Fz(w)| = O(|z − w|
4

d−2 ),

we compute

|∇(a)| .
J∑
j=1

∑
k 6=j

|vkn|
4

d−2 |∇vjn|.

By Hölder, Lemma 6.3, and the induction hypothesis (6.3),

‖∇(a)‖
L

2(d+2)
d+4

t,x

.
J∑
j=1

∑
k 6=j

‖|vkn||∇vjn|‖
4

d−2

L
d+2
d−1
t,x

‖∇vkn‖
d−6
d−2

L
2(d+2)

d
t,x

= oJ(1)

as n→∞. When 3 ≤ d ≤ 5, we have instead

|∇(a)| .
J∑
j=1

∑
k 6=j

|vkn||∇vjn|O(
∣∣∣ J∑
k=1

vkn

∣∣∣ 6−d
d−2

+ |vjn|
6−d
d−2 ),

thus

‖∇(a)‖
L

2(d+2)
d+4

t,x

.J

 J∑
j=1

‖vjn‖
6−d
d−2

L

2(d+2)
d−2

t,x

 J∑
j=1

∑
k 6=j

‖|vkn||∇vjn|‖
L

d+2
d−1
t,x

= oJ(1).

Similarly, writing

|(a)| ≤
J∑
j=1

∣∣∣|vjn| 4
d−2 − |

J∑
k=1

vkn|
4

d−2

∣∣∣|vjn| . J∑
j=1

∑
k 6=j

|vjn||vkn|
4

d−2 ,

we have

‖x(a)‖
L

2(d+2)
d+4

t,x

J∑
j=1

∑
k 6=j

‖|x|vjn‖
d−6
d−2

L
2(d+2)

d
t,x

‖|x|vjnvkn‖
4

d−2

L
d+2
d−1
t,x

= oJ(1).

When 3 ≤ d ≤ 5,

|(a)| .
J∑
j=1

∑
k 6=j

|vjn|vkn|O(
∣∣∣ J∑
k=1

vkn

∣∣∣ 6−d
d−2

+ |vjn|
6−d
d−2 ),

hence also

‖|x|(a)‖
L

2(d+2)
d+4

t,x

= oJ(1).

Summing up,

‖H1/2(a)‖
L

2(d+2)
d+4

t,x

. ‖∇(a)‖
L

2(d+2)
d+4

t,x

+ ‖x(a)‖
L

2(d+2)
d+4

t,x

= oJ(1).
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Next we estimate (b), restricting temporarily to dimensions d ≥ 4. When d ≥ 6, write

(b) = F (uJn − e−itHwJn)− F (uJn)

= (|uJn − e−itHwJn |
4

d−2 − |uJn|
4

d−2 )

J∑
j=1

vjn − (e−itHwJn)|uJn|
4

d−2

= O(|e−itHwJn |
4

d−2 )

J∑
j=1

vjn − (e−itHwJn)|uJn|
4

d−2 ,

and apply Hölder’s inequality:

‖|x|(b)‖
L

2(d+2)
d+4

t,x

. ‖e−itHwJn‖
4

d−2

L

2(d+2)
d−2

t,x

‖
J∑
j=1

|x|vjn‖
L

2(d+2)
d

t,x

+ ‖|x|uJn‖
4

d−2

L
2(d+2)

d
t,x

‖|x|e−itHwJn‖
d−6
d−2

L
2(d+2)

d
t,x

‖e−itHwJn‖
4

d−2

L

2(d+2)
d−2

t,x

(6.8)

When d = 4, 5,

(b) = (e−itHwJn)O(|uJn|
6−d
d−2 + |uJn − e−itHwJn |

6−d
d−2 )

J∑
j=1

vjn − (e−itHwJn)|uJn|
4

d−2 ,

thus

‖|x|(b)‖
L

2(d+2)
d+4

t,x

. ‖e−itHwJn‖
L

2(d+2)
d−2

t,x

‖|x|
J∑
j=1

vjn‖
L

2(d+2)
d

t,x

(‖uJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

+ ‖e−itHwJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

)

+ ‖e−itHwJn‖
L

2(d+2)
d−2

t,x

‖xuJn‖
L

2(d+2)
d

t,x

‖uJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

.

Using (6.5), Strichartz, and the decay property (6.1), we get

lim
J→J∗

lim sup
n→∞

‖|x|(b)‖
L

2(d+2)
d+4

t,x

= 0.

It remains to bound ∇(b). By the chain rule,

∇(b) . |e−itHwJn |
4

d−2 |
∣∣∣ J∑
j=1

∇vjn
∣∣∣+ |uJn|

4
d−2 |∇e−itHwJn |

= (b′) + (b′′).

The first term (b′) can be handled in the manner of (6.8) above. To deal with (b′′), fix a small parameter
η > 0, and use the above remark to obtain J ′ = J ′(η) ≤ J such that

‖
J∑

j=J′

vjn‖Ẋ1 ≤ η.

By the subadditivity of z 7→ |z|
4

d−2 (which is true up to a constant when d = 4, 5) and Hölder,

‖(b′′)‖
L

2(d+2)
d+4

t,x

= ‖|
J∑
j=1

vjn + e−itHwJn |
4

d−2 |∇e−itHwJn |‖
L

2(d+2)
d+4

t,x

. ‖e−itHwJn‖
4

d−2

L

2(d+2)
d−2

t,x

‖H1/2e−itHwJn‖
L

2(d+2)
d

t,x

+ ‖
J∑

j=J′

vjn‖
4

d−2

L

2(d+2)
d−2

t,x

‖H1/2e−itHwJn‖
L

2(d+2)
d

t,x

+ CJ′
J′−1∑
j=1

‖∇e−itHwJn‖
d−6
d−2

L
2(d+2)

d
t,x

‖|vjn||∇e−itHwJn‖
4

d−2

L
d+2
d−1
t,x

.
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By Strichartz and the decay of e−itHwJn in L
2(d+2)
d−2

t,x , the first term goes to 0 as J →∞, n→∞. By Strichartz
and the definition of J ′, the second term is bounded by

η
4

d−2 ‖wJn‖Σ
which can be made arbitrarily small since lim supn→∞ ‖wJn‖Σ is bounded uniformly in J . To finish, we check
that for each fixed j

lim
J→J∗

lim sup
n→∞

‖|vjn|∇e−itHwJn‖
L

d+2
d−1
t,x

= 0.(6.9)

For any ε > 0, there exist ψj ∈ C∞c (R×Rd) such that if

cjn = e−
i(t−t

j
n)|xj

n|
2

2

then

lim sup
n→∞

‖vjn − cjnG̃jnψj‖
L

2(d+2)
d−2

t,x ([− 1
2 ,

1
2 ])

< ε,

Note that G̃jnψ
j is supported on the set

{|t− tjn| . (N j
n)−2, |x− xjn| . (N j

n)−1}.
Thus for all n sufficiently large,

‖vjn∇e−itHwJn‖
L

d+2
d−1
t,x

≤ ‖vjn − cjnG̃jnψj‖
L

2(d+2)
d−2

t,x

‖∇e−itHwJn‖
L

2(d+2)
d

t,x

+ ‖G̃jnψj∇e−itHwJn‖
L

d+2
d−1
t,x

.Ec ε+ ‖(G̃jnψj)∇e−itHwJn‖
L

d+2
d−1
t,x

.

By Hölder, noting that d+2
d−1 ≤ 2 whenever d ≥ 4,

‖(G̃jnψj)∇e−itHwJn‖
L

d+2
d−1
t,x

.ε (N j
n)

d−2
2 ‖∇e−itHwJn‖

L
d+2
d−1
t,x (|t−tjn|.(Nj

n)−2,|x−xj
n|.(Nj

n)−1)

. N j
n‖∇e−itHwJn‖L2

t,x(|t−tjn|.(Nj
n)−2,|x−xj

n|.(Nj
n)−1);

Corollary 2.10 implies

‖vjn∇e−itHwJn‖
L

d+2
d−1
t,x

. ε+ Cε,Ec
‖e−itHwJn‖

1
3

L

2(d+2)
d−2

t,x

.

Sending n→∞, then J → J∗, then ε→ 0 establishes (6.9), and with it, Property (iii).

When d = 3, we estimate (b) in (6.7) instead in the L
5
3
t L

30
23
x dual Strichartz norm. Write

(b) = (e−itHwJn)vjnO(|uJn|3 + |uJn − e−itHwJn |3)

J∑
j=1

vjn − (e−itHwJn)|uJn|4,

and apply Hölder’s inequality:

‖|x|(b)‖
L

5
3
t L

30
23
x

. ‖e−itHwJn‖L10
t,x
‖uJn‖3L10

t,x
‖H1/2uJn‖

L5
tL

30
11
x

+ ‖e−itHwJn‖L10
t,x

(‖uJn‖3L10
t,x

+ ‖e−itHwJn‖3L10
t,x

)‖H 1
2

J∑
j=1

vjn‖
L5

tL
30
11
x

.
(6.10)

Using (6.1) and (6.5), we have

lim
J→J∗

lim sup
n→∞

‖|x|(b)‖
L

5
3
t L

30
11
x

= 0.

It remains to bound ∇(b). By the chain rule,

∇(b) = O

(|uJn − e−itHwJn |4 − |uJn|4)∇
J∑
j=1

vjn

+ |uJn|4|∇e−itHwJn |
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= (b′) + (b′′).

The first term (b′) can be treated in the manner of ‖|x|(b)‖
L

5
3
t L

30
23
x

above. We now concern ourselves with

(b′′). Fix a small parameter η > 0, and use the above remark to obtain J ′ = J ′(η) ≤ J such that

‖
J∑

j=J′

vjn‖Ẋ1 ≤ η.

Thus by the triangle inequality and Hölder,

‖(b′′)‖
L

5
3
t L

30
23
x

= ‖|
J∑
j=1

vjn + e−itHwJn |4(e−itHwJn)‖
L

5
3
t L

30
23
x

. ‖e−itHwJn‖4L10
t,x
‖H 1

2 e−itHwJn‖
L5

tL
30
11
x

+ ‖|
J∑

j=J′

vjn|4|∇e−itHwJn |‖
L

5
3
t L

30
23
x

+ CJ′
J′∑
j=1

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
23
x

. ‖e−itHwJn‖4L10
t,x
‖H 1

2 e−itHwJn‖
L5

tL
30
11
x

+ ‖
J∑

j=J′

vjn‖4Ẋ1‖|∇e−itHwJn |‖
L5

tL
30
11
x

+ CJ′
J′∑
j=1

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
23
x

By Strichartz and the decay of e−itHwJn in L10
t,x, the first term goes to 0 as J →∞, n→∞. By Strichartz

and the definition of J ′, the second term is bounded by

η4‖wJn‖Σ

which can be made arbitrarily small since lim supn→∞ ‖wJn‖Σ is bounded uniformly in J . To finish, we show
that for each fixed j

lim
J→J∗

lim sup
n→∞

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
11
x

= 0.

By Hölder,

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
23
x

≤ ‖vjn‖3L10
t,x
‖vjn∇e−itHwJn‖

L
10
3

t L
15
7

x

,

so by (6.3) it suffices to show

lim
J→J∗

lim sup
n→∞

‖vjn∇e−itHwJn‖
L

10
3

t L
15
7

x

= 0.(6.11)

For any ε > 0, there exists ψj ∈ C∞c (R×R3) and functions cjn(t), |cjn| ≡ 1 such that

lim sup
n→∞

‖vjn − cjnG̃jnψj‖L10
t,x([− 1

2 ,
1
2 ]) < ε,

Note that G̃jnψ
j is supported on the set

{|t− tjn| . (N j
n)−2, |x− xjn| . (N j

n)−1}.

Thus for all n sufficiently large,

‖vjn∇e−itHwJn‖
L

10
3

t L
15
7

x

≤ ‖vjn − cjnG̃jnψj‖L10
t,x
‖∇e−itHwJn‖

L5
tL

30
11
x

+ ‖G̃jnψj∇e−itHwJn‖
L

10
3

t L
15
7

x

.Ec ε+ ‖(G̃jnψj)∇e−itHwJn‖
L

10
3

t L
15
7

x

.

From the definition of the operators G̃jn, we have

‖(G̃jnψj)∇e−itHwJn‖
L

10
3

t L
15
7

x

.ε N
1
2
n ‖∇e−itHwJn‖

L
10
3

t L
15
7

x (|t−tjn|.(Nj
n)−2,|x−xj

n|.(Nj
n)−1)

.
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Corollary 2.10 implies

‖vjn∇e−itHwJn‖
L

10
3

t L
15
7

x

. ε+ Cε‖e−itHwJn‖
1
9

L10
t,x
‖wJn‖

8
9

Σ.

Sending n→∞, then J → J∗, then ε→ 0 establishes (6.11), and with it, Property (iii). This completes the
treatment of the case d = 3.

By perturbation theory, lim supn→∞ S(−T,T ) ≤ C(Ec) < ∞, contrary to the Palais-Smale hypothesis.
This rules out Case 2 and completes the proof of Proposition 6.1. �

7. Proof of Theorem 1.3

We begin by recalling some facts about the ground state

W (x) = (1 + |x|2
d(d−2) )−

d−2
2 ∈ Ḣ1(Rd)

This function satisfies the elliptic equation

1
2∆W +W

4
d−2W = 0.

It is well-known (c.f. Aubin [1] and Talenti [27]) that the functions witnessing the sharp constant in the
Sobolev inequality

‖f‖
L

2d
d−2 (Rd)

≤ Cd‖∇f‖L2(Rd),

are precisely those of the form f(x) = αW (β(x− x0)), α ∈ C, β > 0, x0 ∈ Rd.
For the reader’s convenience, we reiterate the definitions of the energy associated to the focusing energy-

critical NLS with and without potential:

E∆(u) =

∫
Rd

1
2 |∇u|

2 − (1− 2
d )|u|

2d
d−2 dx,

E(u) = E∆(u) + 1
2‖xu‖

2
L2 .

Lemma 7.1 (Energy trapping [16]). Suppose E∆(u) ≤ (1− δ0)E∆(W ) .

• Either ‖∇u‖L2 < ‖∇W‖L2 or ‖∇u‖L2 > ‖∇W‖L2 .
• If ‖∇u‖L2 < ‖∇W‖L2 , then there exists δ1 > 0 depending on δ0 such that

‖∇u‖L2 ≤ (1− δ1)‖∇W‖L2 ,

and E∆(u) ≥ 0.
• If ‖∇u‖L2 > ‖∇W‖L2 then there exists δ2 > 0 depending on δ0 such that

‖∇u‖L2 ≥ (1 + δ2)‖∇W‖L2 ,

and 1
2‖∇u‖

2
L2 − ‖u‖

2d
d−2

L
2d

d−2
≤ −δ0E∆(W ).

Now suppose E(u) < E∆(W ) and ‖∇u‖L2 ≤ ‖∇W‖L2 . The energy inequality can be written as

‖u‖2Σ + (1− 2
d )(‖W‖

2d
d−2

L
2d

d−2
− ‖u‖

2d
d−2

L
2d

d−2
) ≤ ‖∇W‖2L2 .

By the variational characterization of W , the difference of norms on the left side is nonnegative; therefore

‖u‖Σ ≤ ‖∇W‖L2 .

Combining the above with conservation of energy and a continuity argument, we obtain

Corollary 7.2. Suppose u : I × Rd → C is a solution to the focusing equation (1.1) with E(u) ≤ (1 −
δ0)E∆(W ). Then there exist δ1, δ2 > 0, depending on δ0, such that

• If ‖u(0)‖Ḣ1 ≤ ‖W‖Ḣ1 , then

sup
t∈I
‖u(t)‖Σ ≤ (1− δ1)‖W‖Ḣ1 and E(u) ≥ 0.

• If ‖u(0)‖Ḣ1 ≥ ‖W‖Ḣ1 , then

inf
t∈I
‖u(t)‖Σ ≥ (1 + δ2)‖W‖Ḣ1 and 1

2‖∇u‖
2
2 − ‖u‖

2d
d−2

L
2d

d−2
≤ −δ0E∆(W ).
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Proof of Theorem 1.3. Let u be the maximal solution to (1.1) with

u(0) = u0, E(u0) < E∆(W ), ‖∇u0‖2 ≥ ‖∇W‖2.

Let f(t) =
∫
Rd |x|2|u(t, x)|2 dx. It can be shown [8] that f is C2 on the interval of existence and

f ′′(t) =

∫
|∇u(t, x)|2 − 2|u(t, x)|

2d
d−2 − 1

2 |x|
2|u(t, x)|2 dx.

By the corollary, f ′′ is bounded above by some fixed C < 0. Therefore

f(t) ≤ A+Bt+ C
2 t

2

for some constants A and B. It follows that u has a finite lifespan in both time directions. �

8. Bounded linear potentials

In this section we show using a perturbative argument that

(8.1) i∂tu = (− 1
2∆ + V )u+ |u|

4
d−2u, u(0) = u0 ∈ H1(Rd)

is globally wellposed whenever V is a real-valued function with

Vmax := ‖V ‖L∞ + ‖∇V ‖L∞ <∞.

This equation defines the Hamiltonian flow of the energy functional

(8.2) E(u(t)) =

∫
Rd

1
2 |∇u(t, x)|2 + V |u(t, x)|2 + d−2

d |u|
2d

d−2 dx = E(u(0)).

Solutions to (8.1) also conserve mass:

M(u(t)) =

∫
Rd

|u(t, x)|2 dx = M(u(0)).

It will be convenient to assume V is positive and bounded away from 0. This hypothesis allows us to bound
the H1 norm of u purely in terms of E instead of both E and M , and causes no loss of generality because
for sign-indefinite V we could simply consider the conserved quantity E+CM for some positive constant C.

Theorem 8.1. For any u0 ∈ H1(Rd), (8.1) has a unique global solution u ∈ C0
t,locH

1
x(R×Rd). Further, u

obeys the spacetime bounds

SI(u) ≤ C(‖u0‖H1 , |I|)
for any compact interval I ⊂ R.

The proof follows the strategy pioneered by [29] and treats the term V u as a perturbation to (1.6), which
is globally wellposed. Thus Duhamel’s formula reads

(8.3) u(t) = e
it∆
2 u(t0)− i

∫ t

0

e
i(t−s)∆

2 [|u(s)|
4

d−2u(s) + V u(s)]ds.

We record mostly without proof some standard results in the local theory of (8.1). Introduce the notation

‖u‖X(I) = ‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

.

Lemma 8.2 (Local wellposedness). Fix u0 ∈ H1(Rd), and suppose T0 > 0 is such that

‖e it∆
2 u0‖X([−T0,T0]) ≤ η ≤ η0

where η0 = η0(d) is a fixed parameter. Then there exists a positive

T1 = T1(‖u0‖H1 , η, Vmax)

such that (8.1) has a unique (strong) solution u ∈ C0
tH

1
x([−T1, T1] ×Rd). Further, if (−Tmin, Tmax) is the

maximal lifespan of u, then ‖∇u‖S(I) <∞ for every compact interval I ⊂ (−Tmin, Tmax), where ‖ · ‖S(I) is
the Strichartz norm defined in Section 2.1.
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Proof sketch. Run the usual contraction mapping argument using the Strichartz estimates to show that

I(u)(t) = e
it∆
2 u0 − i

∫ t

0

e
i(t−s)∆

2 [|u(s)|
4

d−2u(s) + V u(s)]dx

has a fixed point in a suitable function space. Estimate the terms involving V in the L1
tL

2
x dual Strichartz

norm and choose the parameter T1 to make those terms sufficiently small after using Hölder in time. �

Lemma 8.3 (Blowup criterion). Let u : (T0, T1)×Rd → C be a solution to (8.1) with

‖u‖X((T0,T1)) <∞.
If T0 > −∞ or T1 <∞, then u can be extended to a solution on a larger time interval.

Our argument uses the stability theory for the energy-critical NLS (1.6).

Lemma 8.4 (Stability [28]). Let ũ : I ×Rd → C be an approximate solution to equation (1.6) in the sense
that

i∂tũ = − 1
2∆u± |ũ|

4
d−2 ũ+ e

for some function e. Assume that

(8.4) ‖ũ‖
L

2(d+2)
d−2

t,x

≤ L, ‖∇u‖L∞t L2
x
≤ E,

and that for some 0 < ε < ε0(E,L),

(8.5) ‖ũ(t0)− u0‖Ḣ1 + ‖∇e‖N(I) ≤ ε,

where ‖ · ‖N(I) was defined in Section 2.1. Then there exists a unique solution u : I ×Rd → C to (1.6) with
u(t0) = u0 which further satisfies the estimates

(8.6) ‖ũ− u‖
L

2(d+2)
d−2

t,x

+ ‖∇(ũ− u)‖S(I) ≤ C(E,L)εc

where 0 < c = c(d) < 1 and C(E,L) is a function which is nondecreasing in each variable.

Proof of Theorem 8.1. It suffices to show that for T sufficiently small depending only on E = E(u0), the
solution u to (8.1) on [0, T ] satisfies an a priori estimate

(8.7) ‖u‖X([0,T ]) ≤ C(E).

From Lemma 8.3 and energy conservation, it will follow that u is a global solution with the desired spacetime
bound.

By Theorem 1.1, the equation

(i∂t + 1
2∆)w = |w|

4
d−2w, w(0) = u(0).

has a unique global solution w ∈ C0
t,locḢ

1
x(R×Rd) with the spacetime bound (1.7). Fix a small parameter

η > 0 to be determined shortly, and partition [0,∞) into J(E, η) intervals Ij = [tj , tj+1) so that

(8.8) ‖w‖X(Ij) ≤ η.

For some J ′ < J , we then have

[0, T ] =

J′−1⋃
j=0

([0, T ] ∩ Ij).

We make two preliminary estimates. By Hölder in time,

(8.9) ‖V u‖N(Ij) + ‖∇(V u)‖N(Ij) . CV T‖u‖L∞t H1
x(Ij) ≤ ε

for any ε provided that T = T (E, V, ε) is sufficiently small. Further, observe that

(8.10) ‖e
i(t−tj)∆

2 w(tj)‖X(Ij) ≤ 2η

for η sufficiently small depending only on d. Indeed, from the Duhamel formula

w(t) = e
i(t−tj)∆

2 w(tj)− i
∫ t

tj

e
i(t−s)∆

2 (|w|
4

d−2w)(s)ds,
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Strichartz, and the chain rule, it follows that

‖e
i(t−tj)∆

2 w(tj)‖X(Ij) ≤ ‖w‖X(Ij) + cd‖∇(|w|
4

d−2w)‖
L2

tL
2d

d+2
x (Ij)

≤ η + cd‖w‖
d+2
d−2

X(Ij)

≤ η + cdη
d+2
d−2 .

Choosing η sufficiently small relative to cd yields (8.10).
Take ε < η in (8.9) (taking T small) and apply the Duhamel formula (8.3), Strichartz, Hölder, and (8.10)

to obtain

‖u‖X(I0) ≤ ‖e
it∆
2 u(0)‖X(I0) + cd‖u‖

d+2
d−2

X(I0) + C‖V u‖L1
tH

1
x(I0)

≤ 2η + cd‖u‖
d+2
d−2

X(I0) + CV T‖u‖L∞t H1
x(I0)

≤ 3η + cd‖u‖
d+2
d−2

X(I0).

By a continuity argument,

‖u‖X(I0) ≤ 4η.(8.11)

Choose ε sufficiently small in (8.9) so that the smallness condition (8.5) is satisfied, and invoke Lemma 8.4
with ‖u(0)− w(0)‖Ḣ1 = 0 to find that

(8.12) ‖∇(u− w)‖S(I0) ≤ C(E)εc.

On the interval I1, use (8.10), (8.12), and the usual estimates to obtain

‖u‖X(I1) ≤ ‖e
i(t−t1)∆

2 u(t1)‖X(I1) + cd‖u‖
d+2
d−2

X(I1) + CV T‖u‖L∞t H1
x(I1)

≤ C(E)εc + 2η + c‖u‖
d+2
d−2

X(I1) + η,

where the C(E) in the last line has absorbed the Strichartz constant c; this redefinition of C(E) will cause
no trouble because the number of times it will occur depends only on E, d, and V . By taking ε sufficiently
small relative to η and using continuity, we see that

‖u‖X(I1) ≤ 4η.

As before, taking T sufficiently small yields

‖∇(V u)‖Ṅ0(I1) ≤ ε

‖e
i(t−t1)∆

2 [u(t1)− w(t1)]‖X(I1) ≤ C(E)εc

for any ε ≤ ε0(E,L). Therefore by Lemma 8.4,

‖∇(u− w)‖S(I1) ≤ C(E)εc.

The parameters η, ε, T are chosen so that each depends only on the preceding parameters and on the
fixed quantities d,E, V . After iterating at most J ′ times and summing the bounds over 0 ≤ j ≤ J ′ − 1, we
conclude that for T sufficiently small depending on E and V ,

‖u‖X([0,T ]) ≤ 4J ′η ≤ C(E).

This establishes the bound (8.7). �
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[1] Aubin, T. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures
Appl. (9) 55, 3 (1976), 269–296.

[2] Bourgain, J. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math.

Soc. 12, 1 (1999), 145–171.
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