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Abstract. We develop refined Strichartz estimates at L2 regularity for a class of time-dependent
Schrödinger operators. Such refinements quantify near-optimizers of the Strichartz estimate, and
play a pivotal part in the global theory of mass-critical NLS. On one hand, the harmonic analysis is
quite subtle in the L2-critical setting due to an enormous group of symmetries, while on the other
hand, the spacetime Fourier analysis employed by the existing approaches to the constant-coefficient
equation are not adapted to nontranslation-invariant situations, especially with potentials as large
as those considered in this article.

Using phase space techniques, we reduce to proving certain analogues of (adjoint) bilinear Fourier
restriction estimates. Then we extend Tao’s bilinear restriction estimate for paraboloids to more
general Schrödinger operators. As a particular application, the resulting inverse Strichartz theorem
and profile decompositions constitute a key harmonic analysis input for studying large data solutions
to the L2-critical NLS with a harmonic oscillator potential in dimensions ≥ 2. This article builds
on recent work of Killip, Visan, and the author in one space dimension.

1. Introduction

In this article, we prove sharpened forms of the Strichartz inequality for nontranslation-invariant
linear Schrödinger equations with L2 initial data. Recall that solutions to the linear constant-
coefficient Schrödinger equation

i∂tu = −1

2
∆u, u(0, ·) = u0 ∈ L2(Rd),(1)

satisfy the Strichartz inequality [Str77]

‖u‖
L

2(d+2)
d

t,x (R×Rd)

≤ C‖u(0, ·)‖L2(Rd).(2)

On the other hand, it is also known if u a solution that comes close to saturating this inequality, then
it must exhibit some “concentration”; see [CK07, MV98, MVV99, BV07]. Such inverse theorems
may be equivalently formulated as a refined estimate

‖u‖
L

2(d+2)
d

t,x

. ‖u‖θX‖u(0, ·)‖1−θ
L2(Rd)

,(3)

where the norm X is weaker than the right side of (2) but measures the “microlocal concentration”
of the solution. We pursue analogues of such refinements when the right side of (1) is replaced by
a more general Schrödinger operator −1

2∆ + V (t, x).
Inverse theorems for the Strichartz inequality have provided a key input to the study of the

L2-critical NLS

i∂tu = −1

2
∆u± |u|

4
du, u(0, ·) ∈ L2(Rd),(4)

so termed because the rescaling u 7→ uλ(t, x) := λd/2u(λ2t, λx) preserves both the equation (1) and
the L2-norm M [u] := ‖u(t)‖L2(Rd) = ‖u(0)‖L2(Rd). Indeed, they are used to construct the pro-
file decompositions underpinning the Bourgain-Kenig-Merle concentration compactness and rigidity
method by identifying potential blowup scenarios for nonlinear solutions with large data. Using this
method, the large data global regularity problem for (4) was recently settled by Dodson [Dod16a,
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Dod16b, Dod12, Dod15], building on earlier work of Killip, Visan, Tao, and Zhang [KTV09,
KVZ08, TVZ07]. For further discussion of this equation we refer the interested reader to the
lecture notes [KV13].

The large group of symmetries for the inequality (2) is a significant obstruction to characterizing
its near-optimizers. Besides translation and scaling symmetry, both sides are also invariant under
Galilei transformations

u 7→ uξ0(t, x) := ei[〈x,ξ0〉−
1
2
t|ξ0|2]u(t, x− tξ0), ξ0 ∈ Rd.

This last symmetry emerges only at L2 regularity and creates an additional layer of complexity. In
particular, while the Littlewood-Paley decomposition is extremely well-adapted to higher Sobolev
regularity variants of (2), such as the Ḣ1-critical estimate

‖u‖
L

2(d+2)
d−2

t,x

. ‖∇u(0)‖L2(Rd),

it is useless for inverting the L2-critical estimate because one has no a priori knowledge of where the
solution is concentrated in frequency. Instead, the mass-critical refinements cited above combine
spacetime Fourier-analytic arguments with restriction theory for the paraboloid.

In physical applications, one is naturally led to consider variants of the mass-critical equation (4)
with external potentials, such as the harmonic oscillator

i∂tu =
(
−1

2
∆ +

∑
j

ω2
jx

2
j

)
u± |u|

4
du, u(0, ·) ∈ L2(Rd).(5)

For instance, the cubic equation (with a |u|2u nonlinearity) has been proposed as a model for Bose-
Einstein condensates in a laboratory trap [Zha00] where ‖u(t)‖L2 represents the total number of
particles, and in two space dimensions the critical Sobolev norm for this equation is precisely L2.

While introducing the potential breaks scaling symmetry, one nonetheless expects solutions with
highly concentrated initial data to be approximated, for short times, by solutions to the scale-
invariant equation (4). Less obviously, the equation is invariant under “generalized” Galilei boosts,
detailed in Lemma 1.1 below, where the spatial and frequency parameters act together on the
solutions; in the constant coefficient setting, this reduces to the usual independent space translation
and Galilei boost symmetries.

This article develops refined Strichartz estimates for the linear equation

i∂tu =
(
−1

2
∆ + V

)
u, u(0, ·) ∈ L2(Rd),

for a class V of real-valued potentials V (t, x) that merely satisfy similar bounds as the harmonic
oscillator and possibly also depend on time. Specifically, define

V := {V : R×Rd → R : ‖∂αxV ‖L∞t,x ≤M|α| for 2 ≤ |α| ≤ N = N(d).}(6)

for fixed constants 0 < M1,M2, . . . ,MN . These estimates play a key role in the large data theory
for nontranslation-invariant L2-critical Cauchy problems typified by (5). We briefly discuss the
nonlinear problem in the last section of the introduction.

The case of one space dimension was treated in a previous joint work with Killip and Visan [JKV].
This paper extends the methods introduced there to higher dimensions.

1.1. The setup. To clarify the structure of our arguments we begin with a slightly more general
setup. Hence we consider time-dependent, real-valued symbols a(t, x, ξ) which are measurable in t
and satisfy

|∂αx ∂
β
ξ a| ≤ cαβ for all |α|+ |β| ≥ 2.(7)



MASS-CRITICAL REFINED STRICHARTZ 3

Further, we assume the characteristic curvature condition∣∣|det aξξ| − 1
∣∣+
∣∣‖aξξ‖ − 1

∣∣ ≤ ε(8)

for some small 0 < ε < 1. For concreteness, all matrix norms in this article denote the Hilbert-
Schmidt norm, but the exact choice of norm is inessential.

These hypotheses encompass several interesting situations:

• Schrödinger Hamiltonians with time-dependent scalar potentials a = 1
2 |ξ|

2 + V (t, x), where
V ∈ V.
• Electromagnetic-type symbols a = 1

2 |ξ|
2 + b(x, ξ) + V (t, x), where the first order symbol

b(x, ξ) is real and satisfies |∂αx ∂
β
ξ b| ≤ cαβ for all |α|+ |β| ≥ 1, and V ∈ V is a scalar potential

as before.
• The frequency 1 portion of the Laplacian on a curved background.

For a symbol as defined above, write aw(t, x,D) for its Weyl quantization. Let U(t, s) denote its
unitary propagator on L2(Rd), so that u := U(t, s)us is the solution to the equation

(Dt + aw(t, x,D))u = 0, u(s, ·) = us ∈ L2(Rd),(9)

Evolution equations of this type were studied by Koch and Tataru [KT05]. While translations and
modulations do not preserve the equation (9), they do preserve the class of equations defined by our
assumptions. For an element (x0, ξ0) of classical phase space, define the “phase space translation”
operator π(x0, ξ0) by

π(z0)f(x) = ei〈x−x0,ξ0〉f(x− x0).

Then a direct computation, as in the proof of [KT05, Proposition 4.3], yields

Lemma 1.1. If U(t, s) is the propagator for the symbol a and σ 7→ zσ = (xσ, ξσ) is a bicharacteristic
of a, then

U(t, s)π(zs0)f = ei(φ(t,z0)−φ(s,z0))π(zt0)U z0(t, s),

where U z0 is the propagator for the equation

[Dt + (az0)w(t, x,D)]u = 0,

az0(t, z) = a(t, zt0 + z)− 〈x, ax(t, zt0)〉 − 〈ξ, aξ(t, zt0)〉 − a(zt0),

and the phase is defined by

φ(t, z0) =

∫ t

0
〈aξ(τ, zτ0 ), ξτ0 〉 − a(τ, zτ0 ) dτ.

Observe that the transformed symbol az0 satisfies the same estimates assumed of a. As a special
case, symbols of the form a = 1

2 |ξ|
2 + 〈A(t, x), ξ〉 + ωjk(t)x

jxk are themselves preserved by the

mapping a 7→ az0 if A = Ajdx
j is a 1-form whose components are linear functions of the space

variables with time-dependent coefficients. In two and three space dimensions, such A are potentials
for uniform magnetic fields.

The preceding hypotheses imply that the equation (9) satisfies a local-in-time dispersive estimate:

Lemma 1.2. If the symbol a satisfies the conditions (7) and 8, there exists T0 > 0 such that the
propagator U(t, s) for the evolution equation (9) satisfies the estimate

‖U(t, s)‖L1
x→L∞x . |t− s|

−d/2 for all |t− s| ≤ T0.(10)

Hence, the solutions to (9) satisfy local-in-time Strichartz estimates

‖u‖LqtLrx(I×Rd) .|I| ‖us‖L2(Rd)

for any compact time interval I, and for all Strichartz exponents (q, r) satisfying 2 ≤ q, r ≤ ∞,
2
q + d

r = d
2 , and (q, r, d) 6= (2,∞, 2).
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Proof sketch. The dispersive estimate is shown in Koch-Tataru using wavepacket parametrices [KT05,
Proposition 4.7]. Standard arguments (see Ginibre-Velo [GV95] and Keel-Tao [KT98]) then yield
the Strichartz estimates. �

It suffices to choose the time increment T0 so that

T0 ≤ 1, T0‖axξ‖+ T 2
0 ‖axx‖ ≤ η,(11)

where η = η(d) is a small parameter depending only on the dimension.

Remark. The concrete cases of scalar potentials and magnetic potentials were studied much ear-
lier by Fujiwara and Yajima, respectively, who proved the dispersive bound using Fourier integral
parametrices [Fuj79, Yaj91].

We seek refinements of the Strichartz inequality analogous to those for the constant-coefficient
equation. The earlier arguments for constant coefficient equation relied crucially on subtle bilinear
estimates from Fourier restriction theory. We isolate and reformulate the technical lynchpin in the
present context.

Hypothesis 1. There exist T0 > 0 and 1 < p < d+2
d such that the following holds: if f, g ∈ L2(Rd)

have frequency supports in sets of diameter . N which are separated by distance ∼ N , then

‖U sλ(t)fU sλ(t)g‖Lpt,x([−T0,T0]×Rd) . N
−δ‖f‖L2(Rd)‖g‖L2(Rd),(12)

for all s ∈ [−1, 1] and all 0 < λ ≤ 1, where U sλ(t) = U sλ(t, 0) are the propagators for the time-
translated and rescaled symbols asλ := λ2a(s+ λ2t, λx, λ−1ξ).

When a = 1
2 |ξ|

2, the scaling and translation parameters λ, s are extraneous, and inequalities
of the form (12) are called (adjoint) bilinear Fourier restriction estimates. They were utilized by
Bégout-Vargas to obtain mass-critical Strichartz refinements in dimension 3 and higher [BV07] (the
results in dimensions 1 and 2, due to Carles-Keraani, Merle-Vega, and Moyua-Vargas-Vega utilized
linear restriction estimates [CK07, MV98, MVV99]). For further discussion of such estimates see
for instance [Tao03] and the references therein.

In the first part of this paper, we connect (12) to Strichartz refinements. To measure concentra-
tion in the solution we test it against scaled, modulated, and translated wavepackets. Set

ψ(x) = cde
− |x|

2

2 , ψx0,ξ0 = π(x0, ξ0)ψ, cd = 2−d/2π−3d/4,(13)

where Sλ is the the unitary rescaling Sλf(x) := λ−d/2f(λ−1x).

Theorem 1.3. If Hypothesis 1 holds, then there exists 0 < θ < 1 such that for all initial data
u0 ∈ L2(Rd), the solution u to the equation (9) satisfies

‖u‖
L

2(d+2)
d ([−1,1]×Rd)

.
(

sup
0<λ≤1, |t|≤1, (x0,ξ0)∈T ∗Rd

|〈Sλψx0,ξ0 , u(t)〉L2(Rd)|
)θ‖u0‖1−θL2(Rd)

.(14)

The generality of our hypotheses requires us to formulate the estimates locally in time. Indeed,
for most potentials the left side of the Strichartz estimate (14) is infinite if one integrates over
R×Rd; for instance, the harmonic oscillator potential V = |x|2 admits periodic-in-time solutions.
Nonetheless, our methods do yield (a new proof of) a global-in-time refined Strichartz estimate

‖u‖
L

2(d+2)
d

t,x (R×Rd)

.
(

sup
λ>0, t∈R, (x0,ξ0)∈T ∗Rd

|〈Sλψx0,ξ0 , u(t)〉L2(Rd)|
)θ
‖u0‖1−θL2(Rd)

.

for solutions to the constant coefficient equation (1).
In applications to PDE, such a refined estimate is nowadays interpreted in the framework of con-

centration compactness, and yields profile decompositions via repeated application of the following
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Lemma 1.4. Assume the estimate (14) holds. Let un := U(t)fn be a sequence of linear solutions
with initial data un(0) = fn ∈ L2(Rd) such that ‖fn‖L2(Rd) ≤ A < ∞ and ‖un‖

L
2(d+2)
d

t,x

≥ ε > 0.

Then, after passing to a subsequence, there exist parameters

{(λn, tn, xn, ξn)}n ⊂ (0, 1]× [−1, 1]×Rd
x ×Rd

ξ

and a function 0 6= φ ∈ L2(Rd) such that

π(xn, ξn)−1S−1
λn
un ⇀ φ in L2

‖φ‖L2 & ε
( ε
A

) 1−θ
θ
.

Further,

‖fn‖2L2 − ‖fn − U(tn)−1Sλnπ(xn, ξn)Sλnφ‖2L2 − ‖U(tn)−1Sλnπ(xn, ξn)Sλnφ‖2L2 → 0.

Proof. By the estimate (14), there exist λn, tn, xn, ξn such that

|〈Sλnψxn,ξn , U(tn)fn〉| = |〈ψ, π(xn, ξn)−1S−1
λn
U(tn)fn〉| & ε

( ε
A

) 1−θ
θ
.

The sequence π(xn, ξn)−1S−1
λn
U(tn)fn is bounded in L2, and therefore converges weakly in L2 to

some φ after passing to a subsequence. The lower bound on ‖φ‖L2 is immediate, while

‖fn‖2L2 − ‖fn − U(tn)−1Sλnπ(xn, ξn)φ‖2L2 − ‖U(tn)−1Sλnπ(xn, ξn)φ‖2L2

= 2 Re〈fn − U(tn)−1Sλnπ(xn, ξn)φ,U(tn)−1Sλnπ(xn, ξn)φ〉
= 2 Re〈π(xn, ξn)−1S−1

λn
U(tn)fn − φ, φ〉 → 0.

�

Further discussion of profile decompositions and inverse Strichartz theorems may be found in
the lecture notes [KV13] and the references therein.

In the second part of this paper, we verify Hypothesis 1 for scalar potentials.

Theorem 1.5. Consider a Schrödinger operator of the form H(t) = −1
2∆ +V (t, x), where V ∈ V.

Suppose S1, S2 ⊂ Rd
ξ are subsets of Fourier space with diam(Sj) ≤ N and c−1N ≥ dist(S1, S2) ≥ cN

for some 0 < c < 1. There exists a constant η = η(c) > 0 such that if τ0 > 0 satisfies

(τ0 + τ2
0 )‖∂2

xV ‖L∞ < η,

then for any f, g ∈ L2(Rd) with supp(f̂) ⊂ S1 and supp(ĝ) ⊂ S2, the corresponding linear solutions
u = U(t, 0)f and v = U(t, 0)g satisfy the estimate

‖uv‖Lq([−T0,T0]×Rd) .ε N
d− d+2

q
+ε‖f‖L2‖g‖L2 for all

d+ 3

d+ 1
≤ q < d+ 2

d
(15)

for any ε > 0, N ≥ 1, and V ∈ V.

For V = 0, the above estimate was conjectured by Klainerman and Machedon without the epsilon
loss, and first proved by Wolff for the wave equation [Wol01] and subsequently by Tao [Tao03] for
the Schrödinger equation (both with the epsilon loss). Strictly speaking, the time truncation is not
present in the original formulations of those estimates, but may be easily removed by a rescaling
and limiting argument.

Finally, while we make no attempt to address general magnetic potentials, a simple case with
some physical relevance does essentially follow from the proof for scalar potentials. The necessary
modifications for the following theorem are sketched in the last section.
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Theorem 1.6. The conclusion of the previous theorem holds for Schrödinger operators of the form
H(t) = −1

2(∇ − iA)2 + V (t, x) where A = Ajdx
j is a 1-form whose components are linear in the

space variables (i.e. the vector potential for a uniform magnetic field), and condition on the time
increment τ0 is replaced by

τ0‖axξ‖+ (τ0 + τ2
0 )‖axx‖ < η.

We remark that the restriction estimate (12) does not hold for all symbols satisfying the con-
ditions (7) and (8). For instance, it was observed by Vargas [Var05] that when U(t) = eit∂x∂y

is the “nonelliptic” Schrödinger propagator in two space dimensions (thus a = ξxξy), the bilinear
restriction estimate (7) can fail unless the frequency supports of the two inputs are not only disjoint
but also separated in both Fourier coordinates. In fact, the refinement (14) as stated is false for
the nonelliptic equation; for a correct formulation, one should enlarge the symmetry group on the
right side to include the hyperbolic rescalings u(x, y) 7→ u(µx, µ−1y); see the work of Rogers and
Vargas [RV06].

While the classical bicharacteristics of elliptic and nonelliptic propagators seemingly have no
qualitative difference—and indeed the dispersive estimates hold equally well for both—the quantum
propagators have radically different behavior in terms of oscillations in time. If one compares the
travelling wave solutions

ei[xξx+yξy− t2 (ξ2
x+ξ2

y)], ei[xξx+yξy−tξxξy ],

it is evident that unlike in the elliptic case, two solutions to the nonelliptic equation which are
well-separated in spatial frequency need not decouple in time.

The lesson of this counterexample is that while the dispersive and Strichartz estimates follow
directly from properties of the classical Hamiltonian flow, an inverse Strichartz estimate depends
more subtly on the temporal oscillations of the quantum evolution, which is connected to the
bilinear decoupling estimates.

1.2. The main ideas. Suppose one has initial data u0 ∈ L2 such that the corresponding solu-
tion u has nontrivial Strichartz norm. Then, we need to identify a bubble of concentration in u,
characterized by several parameters that reflect the underlying symmetries in the problem. In the
L2-critical setting, the relevant features consist of a significant length scale λ0 as well as the position
x0, frequency ξ0, and time t0 when concentration occurs.

The existing proofs of Strichartz refinements for the constant-coefficient equation first use space-
time Fourier analysis (including restriction estimates) to identify a cube Q in Fourier space ac-
counting for a significant portion of the spacetime norm of u, which reveals the frequency center ξ0

and scale λ0 of the concentration. For example, Begout-Vargas [BV07] first establish an extimate
of the form

‖e
it∆
2 f‖

L
2(d+2)
d
.
(

sup
Q dyadic cubes

|Q|1−
p
2

∫
Q
|f̂(ξ)|p dξ

)µ
‖f‖1−µp

L2(Rd)

Then, the time t0 and position x0 are recovered via a separate physical-space argument. These
arguments ultimately rely on the fact that when V = 0, the equation is diagonalized by the Fourier
transform.

For equations with variable coefficients, it is more natural to consider position x0 and frequency
ξ0 together as a point in phase space, which propagates along the bicharacteristics for the equation.
Following the approach in [JKV] for the one-dimensional equation, we work in the physical space
and first isolate a significant time interval [t0 − λ2

0, t0 + λ2
0], which also suggests a characteristic

scale λ0. Then x0 and ξ0 are recovered by phase space techniques.
The first part of the argument in [JKV] carries over essentially unchanged; however, the ensuing

phase space analysis in higher dimensions is more involved and occupies the bulk of this article.
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1.3. An application to mass-critical NLS. This article was originally motivated by the problem
of proving global wellposedness for the mass-critical quantum harmonic oscillator

i∂tu =
(
−1

2
∆ +

∑
j

ω2
jx

2
j

)
u± |u|

4
du.(16)

By spectral theory, the Cauchy problem for (16) is naturally posed in the “harmonic” Sobolev
spaces

u0 ∈ Hs := {u0 ∈ L2 : (−∆ +
∑
j

ω2
j |x|2)s/2, u0 ∈ L2}

Global existence for data in the “energy” space H1 was studied by Zhang [Zha05]. More recently,
Poiret, Robert, and Thomann established probabilistic wellposedness in two space dimensions for
all subcritical cases 0 < s < 1, as well as for other supercritical problems [PRT14]. Another recent
contribution by Burq, Thomann, and Tzvetkov constructs Gibbs measures and proves probabilistic
global wellposedness for the critical case in one dimension [BTT13].

It is well-known that the isotropic harmonic oscillator ωj ≡ 1
2 may be “trivially” solved; to

construct solutions on unit length time intervals for arbitrary L2 data, it suffices to observe that u
is a solution of (4) on Rt ×Rd

x iff its Lens transform

Lu(t, x) :=
1

(cos t)d/2
u
(

tan t,
x

cos t

)
e−

i|x|2 tan t
2

solves (16) on (−π/2×π/2)t×Rd
x with the same initial data. However, this trick relies on algebraic

cancellations that no longer hold for more general harmonic oscillators. For further discussion of
the nonlinear harmonic oscillator as well as its connection with the Lens transform, consult the
article of Carles [Car11].

To solve (16) for large data in the critical space L2, the concentration compactness and rigidity
approach is much more promising. Experience has shown that constructing suitable profile de-
compositions is a core difficulty implementing this strategy for dispersive equations with broken
symmetries (e.g. loss of translation-invariance). For instance, see [Jao16] for the energy-critical
variant of the quantum harmonic oscillator, as well as [IPS12, KVZ], and the references therein, for
other energy-critical NLS on non-Euclidean domains. Thus this article supplies the main harmonic
analysis input for the deterministic large data theory of (16) at the critical regularity.

Acknowledgements. The author is grateful to Michael Christ, Rowan Killip, Daniel Tataru,
and Monica Visan for many helpful discussions, and also wishes to thank the anonymous referee for
numerous suggestions for improving the original manuscript. This research was partially supported
by the National Science Foundation under Award No. 1604623. Part of this work was completed
during the 2017 Oberwolfach workshop in “Nonlinear Waves and Dispersive Equations.”

2. Preliminaries

2.1. Notation. We use the Japanese bracket notation 〈x〉 := (1 + |x|2)
1
2 .

2.2. Classical flow estimates. We collect some elementary properties of the classical Hamiltonian
flow {

ẋ = aξ, x(0) = y

ξ̇ = −ax, ξ(0) = η.
(17)

Solutions to this system are bicharacteristics. For a point z = (x, ξ) in phase space, let σ 7→ zσ =
(xσ, ξσ) denote the bicharacteristic initialized at (x, ξ). Write (y, η) 7→ (xt(y, η), ξt(y, η)) for the
flow map.

The linearization of (17) satisfies the following Gronwall estimates:
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Lemma 2.1. Suppose |t|‖∂2
x,ξa‖L∞ ≤ 1. Then

∂xt

∂η
=

∫ t

0
aξξ(τ, x

τ , ξτ ) dτ +O(t2‖axξ‖aξξ‖) +O(t3‖axx‖‖aξξ‖2)

∂ξt

∂η
= I +O(t‖aξx‖) +O(t2‖axx‖‖aξξ‖)

∂xt

∂y
= I +O(t‖axξ‖) +O(t2‖axx‖‖aξξ‖)

∂ξt

∂y
=

∫ t

0
−axx(τ, xτ , ξτ ) dτ +O(t2‖axx‖‖axξ‖) +O(t3‖axx‖2‖aξξ‖)

.(18)

Proof. The linearized system takes the form

ẏ = aξxy + aξξη,

η̇ = −axxy − axξη.

A preliminary application of Gronwall implies |y(t)|+ |η(t)| . |y(0)|+ |η(0)|.
Consider initial data y(0) = I, η(0) = 0. Then

|η(t)| ≤
∫ t

0
|axxy| dτ +

∫ t

0
|axξη(τ)| dτ,

so |η(t)| . t‖axx‖. Substituting this into the equation for y, we deduce

|y − I| ≤
∫ t

0
|aξxy| dτ +

∫ t

0
|aξξη| dτ . t‖aξx‖+ t2‖aξξ‖‖axx‖.

This in turn yields the refinement∣∣∣η(t) +

∫ t

0
axx dτ

∣∣∣ . t2‖axx‖‖aξx‖+ t3‖axx‖2‖aξξ‖.

The case y(0) = 0, η(0) = I is similar. We have

|y(t)| ≤
∫ t

0
|aξξη| dτ +

∫ t

0
|aξxy| dτ ⇒ |y(t)| . t‖aξξ‖,

which yields

|η(t)− I| .
∫ t

0
‖axx‖‖aξξ‖τ dτ +

∫ t

0
|axξη| dτ . t‖axξ‖+ t2‖axx‖‖aξξ‖,∣∣∣y(t)−

∫ t

0
aξξ dτ

∣∣∣ . t2‖aξx‖‖aξξ‖+ t3‖axx‖‖aξξ‖2.

�

These imply, in view of the normalizations (8), the integrated estimates

xt1 − xt2 = xs1 − xs2 + [I ′ +O(ε)](t− s)(ξs1 − ξs2)

+O(|t− s|‖axξ‖)(|xs1 − xs2|+ |t− s||ξs1 − ξs2|)
+O(|t− s|2‖axx‖)(|xs1 − xs2|) + |t− s||ξs1 − ξs2|).

ξt1 − ξt2 = ξs1 − ξs2
+O(|t− s|‖axx‖)|xs1 − xs2|
+O(|t− s|2‖axx‖‖axξ‖)|xs1 − xs2|+O(|t− s|‖axξ‖)|ξs1 − ξs2|
+O(|t− s|3‖axx‖2)|xs1 − xs2|+O(|t− s|2‖axx‖)|ξs1 − ξs2|,

(19)
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where I ′ is an orthogonal matrix which equals the identity if aξξ is positive-definite. In particular,
we have

Corollary 2.2. If |xs1 − xs2| ≤ r, then |xt1 − xt2| ≥ Cr whenever 2Cr
|ξs1−ξs2|

≤ |t− s| ≤ T0.

Physically, this means that two particles colliding with sufficiently large relative velocity will
only interact once in the time window of interest.

Next, we record a technical lemma first proved in the 1d case [JKV, Lemma 2.2]. This is used
in the proof of Lemma 4.3 below but the computations use the preceding estimates.

Lemma 2.3. There exists a constant C = C(‖∂2a‖) > 0 so that if Qη = (0, η) + [−1, 1]2d ⊂ T ∗Rd

and r ≥ 1, then ⋃
|t−t0|≤min(|η|−1,1)

Φ(t)−1(zt0 + rQη) ⊂ Φ(t0)−1(zt00 + CrQη).

In other words, if the bicharacteristic zt starting at z ∈ T ∗Rd passes through the cube zt0 + rQη
in phase space during some time window |t − t0| ≤ min(|η|−1, 1), then it must lie in the dilate
zt00 + CrQη at time t0.

Proof. If z ∈ Φ(t)−1(zt0 + rQη), by definition we have |xt− xt0| ≤ r and |ξt− ξt0− η| ≤ r. Assuming
that |η| ≥ 1, the estimates (19) imply that

|xt0 − xt00 | ≤ r + |η|−1(|η|+ r)

+O(|η|−1‖∂2a‖)(r + |η|−1(|η|+ r)) +O(|η|−2‖∂2a‖)(r + |η|−1(|η|+ r))

≤ Cr
|ξt0 − ξt00 − η| ≤ r +O(|η|−1‖axx‖)r + (|η|−2‖axx‖‖axξ‖)r +O(|η|−1‖axξ‖)(|η|+ r)

+ (|η|−3‖axx‖2)r +O(|η|−2‖axx|)(|η|+ r)

≤ Cr.

The case |η| < 1 is similar. �

2.3. Wavepackets. Let R ≥ 1 be a scale and z0 = (x0, ξ0) be a point in phase space. A scale-R

wavepacket at z0 is a Schwartz function φz0 such that φz0 and its Fourier transform φ̂z0 concentrate

in the regions |x− x0| ≤ R1/2 and |ξ − ξ0| ≤ R−1/2, respectively:

|(R1/2∂x)kφz0(x)| .k,N
〈x− x0

R1/2

〉−N
, |(R−1/2∂ξ)

kφ̂z0(ξ)| .k,N
〈ξ − ξ0

R−1/2

〉−N
∀k,N ≥ 0.

There are many ways to decompose L2 functions into linear combinations of wavepackets. For the
first part of this article, it is technically more convenient to use a continuous decomposition. Later
on in Section 6.3, we switch to a discrete version which is more common in the restriction theory
literature.

In this section we recall a standard continuous wavepacket transform. To keep things simple
we work at unit scale since that is all we shall need. For a function f ∈ L2(Rd), its Bargmann
transform or FBI transform is the function Tf ∈ L2(T ∗Rd) defined by

Tf(z) = 〈f, ψz〉L2(Rd), ψz = π(z)ψ as in (13).

The transform satisfies a Plancherel identity ‖Tf‖L2(T ∗Rd) = ‖f‖L2(Rd); dually, for any wavepacket

coefficients F ∈ L2(T ∗Rd
z), one has

‖T ∗F‖L2
x

=
∥∥∥∫

T ∗Rd

F (z)ψz dz
∥∥∥
L2
x

≤ ‖F‖L2
z
.
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Indeed, TT ∗ is the orthogonal projection onto TL2(Rd). Then as T ∗T = I, any f ∈ L2(Rd) can
be resolved (nonuniquely) into a continuous superposition of wavepackets

f(x) =

∫
T ∗Rd

fzψz(x) dz.

Applying the propagator U(t) to both sides and using linearity and the next lemma, one obtains
a wavepacket decomposition

u(t, x) =

∫
uz(t, x) dz, uz(t, x) = fz[U(t)ψz](x)

of Schrödinger solutions. For brevity we sometimes omit the arguments and write f =
∫
fz dz, u =∫

uz dz.

Lemma 2.4 (Evolution of a packet). If ψz0 is a scale-1 wavepacket, U(t) is the propagator for the
equation (9), and z0 7→ zt0 is the bicharacteristic starting at z0, then U(t)ψz0 is a scale-1 wavepacket
concentrated at zt0 for all |t| = O(1).

Proof sketch. Using Lemma 1.1 we reduce to the case z0 = 0 and also ensure that the symbol
a(t, x, ξ) vanishes to second order at (x, ξ) = (0, 0) in addition to satisfying the bounds (7). Then
it suffices to show that propagator U(t) for such symbols maps Schwartz functions to Schwartz
functions on unit time scales. This is done using weighted Sobolev estimates as in [KT05, Section 4].

�

The term wavepacket shall also refer to spacetime functions of the form U(t)ψz, not just the fixed
time slices. Later it will be essential to exploit not just the spacetime localization of wavepackets
but also their phase as described in Lemma 1.1.

3. Choosing a length scale

We begin with the following lemma from [JKV, Proposition 3.1], obtained by a variant of the
usual TT ∗ derivation of the Strichartz estimates. While that article concerned just Schrödinger
operators with scalar potentials, the proof works equally well in the current more general setting.

Proposition 3.1. Suppose U(t, s) satisfies a local in time dispersive estimate as in Lemma 1.2.
Let (q, r) be Strichartz exponents (i.e. satisfying the conditions in that Lemma) with 2 < q < ∞.
Assume that f ∈ L2(Rd) satisfies ‖f‖L2(Rd) = 1 and

‖U(t)f‖LqtLrx([−1,1]×Rd) ≥ ε.

Then there is a time interval J ⊂ [−1, 1] such that

‖U(t, s)f‖
Lq−1
t Lrx(J×Rd)

& |J |
1

q(q−1) ε
q
q−2 .

Equivalently,

‖U(t, s)f‖LqLr .
(

sup
J∈[−1,1]

|J |−
1

q(q−1) ‖U(t, s)f‖
Lq−1
t Lrx(J×Rd)

)1− 2
q ‖f‖

2
q

L2(Rd)
.

Note that by pigeonholing we may always assume that |J | ≤ T0, where T0 is the time increment
selected in (11).

Now let (q, r) be the Strichartz exponents determined by the conditions 2
q + d

r = d
2 and q−1 = r.

It is easy to see that 2 < r < 2(d+2)
d < q <∞.

For each J = [s− µ, s+ µ] ⊂ [−1, 1], we write

U(t, s)f =
(T0

µ

)d/4
Ũ
(T0

µ
(t− s), 0

)
f̃
(√T0

µ
x), f̃ =

( µ
T0

)d/4
f
(√ µ

T0
x
)
,
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where Ũ(t, s) is the propagator for the rescaled equation (Dt + ãw)ũ = 0, and

ã(t, x, ξ) :=
µ

T0
a
(
s+

µ

T0
t,

√
µ

T0
x,

√
T0

µ
ξ
)
.

Changing variables, we obtain

|J |−
1

q(q−1) ‖U(t, s)f‖
Lq−1
t Lr(J×Rd)

= ‖Ũ(t)f̃‖
Lq−1
t Lrx([−T0,T0]×Rd)

.

By interpolating with L2
t,x([−T0, T0]×Rd), which is bounded by unitarity, we see that Theorem 1.3

would follow if we prove that for some 2 < q0 <
2(d+2)
d and 0 < θ < 1, the scale-1 refined estimate

‖U sλ(t)f‖Lq0 ([−T0,T0]×Rd) . (sup
z
|〈ψz, f〉|)θ‖f‖1−θL2 .(20)

holds for all s ∈ [−1, 1], 0 < λ ≤ 1, where the notation U sλ(t) is as in Hypothesis 1.
Over the next two sections we establish

Proposition 3.2. If Hypothesis 1 holds, then so does the estimate (20).

4. A refined bilinear L2 estimate

In previous work [JKV], we proved (20) when d = 1 with q0 = 4 by viewing the inequality as a
bilinear L2 estimate and exploit orthogonality. Such a direct approach fails in d ≥ 2 dimensions;

since 2 < 2(d+2)
d ≤ 4, the left side of (20) could well be infinite when q0 = 4. To obtain a refined

linear Lq0 estimate for q0 < 2(d+2)
d , we also begin by interpreting it as a refined bilinear Lq0/2

estimate, but use dyadic decomposition and interpolate between two microlocalized estimates:

• A refined bilinear L2 estimate (“refined” in the sense of exhibiting a sup over wavepacket
coefficients) with some loss in the frequency separation of the inputs.
• A bilinear Lp estimate for some p < d+2

d which yields gains in the frequency separation,
essentially the content of Hypothesis 1.

This section discusses the former. In the next section we put together the two estimates, and
the Lp estimate is established in the remainder of the paper.

Proposition 4.1. Suppose f =
∫
fzψz dz and g =

∫
gzψz dz are L2(Rd) initial data with cor-

responding Schrödinger evolutions u =
∫
uz dz and v =

∫
vz dz, where uz(t, x) = fz[U(t)ψz](x),

vz(t, x) = gz[U(t)ψz](x). Then∥∥∥∫
|ξ1−ξ2|∼N

uz1vz2 dz1dz2

∥∥∥
L2([−T0,T0]×Rd)

. Nα(sup
z
|fz|1/p

′‖fz‖1/pL2
z

)(sup
z
|gz|1/p

′‖gz‖1/pL2
z

)(21)

for some α = α(d) and 1 < p < 2.

Proof. Square the left side and expand∫
fz1gz2fz3gz4KN (z1, z2, z3, z4) dz1dz2dz3dz4,

where KN := Kχ|ξ1−ξ2|∼N, |ξ3−ξ4|∼N , and

K(z1, z2, z3, z4) = 〈U(t)ψz1U(t)ψz2 , U(t)ψz3U(t)ψz4〉L2
t,x([−T0,T0]×Rd).

The estimate would follow if we could show that

(22) N−α〈z1 − z2〉θ〈z3 − z4〉θ|KN (~z)| is a bounded operator on L2
z1,z2 for some θ > 0,
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as Young’s inequality would then imply∥∥∥∫ uz dz
∥∥∥2

L4
.

(∫
|fz1gz2 |2〈z1 − z2〉−2θ dz1dz2

)1/2(∫
|fz3gz4 |2〈z3 − z4〉−2θdz3dz4

)1/2

. sup
z
|fz|2/p

′
sup
z
|gz|2/p

′‖f‖2/p
L2 ‖g‖

2/p
L2 for some 1 < p < 2.

In view of the crude bound |K(~z)| . minj,k〈zj − zk〉−1, which follows simply from the spacetime
supports of the wavepackets, (22) would follow from

Lemma 4.2. The localized kernel KN satisfies

‖|KN |1−δ‖L2
z1z2
→L2

z3z4
. Nα,

where α is a constant depending only on the dimension.

Proof of Lemma 4.2. In view of the unit scale spatial localization of the wavepackets and the prop-
agation estimates (19), we may further truncate the kernel to the phase space region

R = {|x1 − x2| ≤ 4|ξ1 − ξ2|, |x3 − x4| ≤ 4|ξ3 − ξ4|}.
For instance, if |xs1−xs2| ≥ 4|ξs1−ξs2| and |t−s| ≤ T0 with the parameter η in (11) chosen sufficiently
small,

|xt1 − xt2| ≥ (1− |t− s|2‖∂2
xV ‖L∞e|t−s|

2‖∂2
xV ‖L∞ )|xs1 − xs2|

− (|t− s|+ |t− s|3‖∂2
xV ‖L∞e|t−s|

2‖∂2
xV ‖L∞ )|ξs1 − ξs2|

≥ 1

2
|xs1 − xs2| −

3

2
|t− s||ξs1 − ξs2|

≥ 1

8
|xs1 − xs2|,

therefore |KN (1−χR)| .M 〈x1−x2〉−M 〈x3−x4〉−MN−M for any M > 0. Thus it suffices to prove
that

‖KNχR‖L2→L2 . Nα.

An estimate of this flavor was proved in the 1d case [JKV]. We shall argue similarly, but the proof
is somewhat simpler since we aim for a cruder bound at this stage, completely ignoring temporal
oscillations, and defer the more delicate analysis to the bilinear Lp estimate.

Partition the 4-particle phase space (T ∗Rd)4 according to the degree of physical interaction
between the particles. Let

E0 = {~z ∈ (T ∗Rd)4 : min
|t|≤T0

max
j,k
|xtj − xtk| ≤ 1},

Ek = {~z ∈ (T ∗Rd)4 : 2k−1 < min
|t|≤T0

max
j,k
|xtj − xtk| ≤ 2k},

and decompose the kernel KN =
∑

k≥0KNχEk . Then we have the following pointwise bound

|K(~z)| .M 2−kM
〈ξt(~z)1 + ξ

t(~z)
2 − ξt(~z)3 − ξt(~z)4 〉−M

〈|ξt(~z)1 − ξt(~z)2 |+ |ξt(~z)3 − ξt(~z)4 |〉
, ~z ∈ Ek,(23)

where t(~z) is a time minimizing the “mutual distance” maxi,j |xti − xtj |. Further, the additional

localization to R implies, by the estimates (19), that

|ξt1 − ξt2 − (ξ1 − ξ2)| . 1

10
|ξ1 − ξ2|

|ξt3 − ξt4 − (ξ3 − ξ4)| . 1

10
|ξ3 − ξ4|
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drawing.eps

Figure 1. Zµ1,µ2 comprises all (z1, z2) such that zt1 and zt2 belong to the depicted
phase space boxes for t in the interval I.

for all |t| ≤ T0. In particular |ξt(~z)1 − ξt(~z)2 | ∼ |ξt(~z)3 − ξt(~z)4 | ∼ N ; thus, while the ξtj may vary rapidly

with time if xtj are extremely far from the origin, the relative frequencies retain the same order of
magnitude.

Assuming the bound (23) for the moment, we apply Schur’s test to complete the proof of
Lemma 4.2. Fix (z3, z4) belonging to the projection Ek → T ∗Rd

z3 × T
∗Rd

z4 , define

Ek(z3, z4) = {(z1, z2) : (z1, z2, z3, z4) ∈ Ek},

and let t1 be the time minimizing |xt13 −x
t1
4 | ≤ 2k. For any (z1, z2) ∈ Ek(z3, z4), the mutual distance

maxj,k |xtj − xtk| between xt1, x
t
2, x

t
3, x

t
4 is minimized in the time window

I = {t : |t− t1| . min
(
1,

2k

|ξ3 − ξ4|
)
},

as for all other times we have |xt3 − xt4| � 2k (Corollary 2.2).
We estimate the size of the level sets of |K|. For a momentum ξ ∈ Rd, let Qξ = (0, ξ)+[−1, 1]d×

[−1, 1]d ⊂ T ∗Rd denote the unit phase space box centered at (0, ξ), and write Φt = Φ(t, 0) for the
propagator on classical phase space relative to time 0 for the Hamiltonian h(x, ξ) = 1

2 |ξ|
2 +V (t, x).

For µ1, µ2 ∈ Rd, define

Zµ1,µ2 =
⋃
t∈I

(Φt ⊗ Φt)−1
(zt3 + zt4

2
+ 2kQµ1

)
×
(zt3 + zt4

2
+ 2kQµ2

)
.

This set is depicted schematically in Figure 1 when k = 0, and corresponds to the pairs of wave
packets (z1, z2) ∈ Em(z3, z4) with momenta (µ1, µ2) relative to the wavepackets (z3, z4) at the
“collision time” t(~z).

We note that Ek(z3, z4) ⊂
⋃
µ1,µ2∈Zd Zµ1,µ2 , and recall the following estimate from the 1d paper,

whose proof we reproduce below for convenience:

Lemma 4.3.

|Zµ1,µ2 | . 24dk max(1, |µ1, |, |µ2|)|I|.(24)

Proof. Without loss assume |µ1| ≥ |µ2|. Partition the interval I into subintervals of length |µ1|−1

if µ1 6= 0 and in subintervals of length 1 if µ1 = 0. For each t′ in the partition, Lemma 2.3 implies
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that for some constant C > 0 we have⋃
|t−t′|≤min(1,|µ1|−1)

Φ(t)−1
(zt3 + zt4

2
+ 2kQµ1

)
⊂ Φ(t′)−1

(zt′3 + zt
′

4

2
+ C2kQµ1

)
⋃

|t−t′|≤min(1,|µ1|−1)

Φ(t)−1
(zt3 + zt4

2
+ 2kQµ2

)
⊂ Φ(t′)−1

(zt′3 + zt
′

4

2
+ C2kQµ2

)
,

and so ⋃
|t−t′|≤min(1,|µ1|−1)

(Φ(t)⊗ Φ(t))−1
(zt3 + zt4

2
+ 2kQµ1

)
×
(zt3 + zt4

2
+ 2kQµ2

)
⊂ (Φ(t′)⊗ Φ(t′))−1

(zt′3 + zt
′

4

2
+ C2kQµ1

)
×
(zt′3 + zt

′
4

2
+ C2kQµ2

)
.

By Liouville’s theorem, the right side has measure O(24dk) in (T ∗Rd)2. The claim follows by
summing over the partition. �

For each (z1, z2) ∈ Ek(z3, z4) ∩ Zµ1,µ2 , we have by definition z
t(~z)
j ∈ z

t(~z)
3 +z

t(~z)
4

2 + 2kQµj , thus

ξ
t(~z)
1 + ξ

t(~z)
2 − ξt(~z)3 − ξt(~z)4 = µ1 + µ2 +O(2k)

ξ
t(~z)
1 − ξt(~z)2 = µ1 − µ2 +O(2k)

Hence when (z1, z2) ∈ Zµ1,µ2 , for any M we have

|K(~z)| .M 2−Mk 〈µ1 + µ2〉−M

〈|µ1 − µ2|+ |ξt(~z)3 − ξt(~z)4 |〉
.(25)

To apply Schur’s test, we combine the estimates (24), (25), and evaluate∫
|KN (z1, z2, z3, z4)|1−δχEk(~z) dz1dz2 ≤

∑
µ1,µ2∈Zd

∫
Zµ1,µ2

|K1−δ
N χEk dz2dz2

.M 2−Mk
∑

|µ1−µ2|.N+2k

2−Mk〈µ1 + µ2〉−M

. Nd2−(M−d)k.

For fixed z1, z2, the integral over z3 and z4 is estimated the same way. This concludes the proof of
Lemma 4.2, modulo some remarks on the crucial pointwise bound (23).

To obtain that estimate, we use Lemma 1.1 to write

K(~z) =

∫
eiΦ

4∏
j=1

U zj (t)ψ(x− xtj), dxdt,

Φ(t, x;~z) =
∑
j

σj

[
〈x− xtj , ξtj〉+ φ(t, x0, ξ0)

]
where σ = (+,+,−,−), and we denote

∏
j cj := c1c2c3c4.

It is convenient to partition the integral further, writing

U~zj (t)ψ(x− xtj) =
∑
`j≥0

U~zj (t)ψ(x− xtj)θ`j (x− x
t
j)
)
,
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where
∑

`≥0 θ` is a partition of unity with θ` supported on the dyadic annulus of radius ∼ 2`. For
~z ∈ Ek, only the terms

K~̀(~z) :=

∫
eiΦ

4∏
j=1

U zj (t)ψ(x− xtj)θ`j (x− x
t
j) dxdt

with `∗ := maxj `j & k will be nonzero.
By Lemma 2.1, the integral is supported on the spacetime region

{(t, x) : |t− t(~z)| . min
(

1,
2`
∗

maxi,j |ξt(~z)i − ξt(~z)k |

)
and |x− xtj | . 2`j},

and for all such t we have

|xtj − xtk| . 2`
∗
, |ξtj − ξtk − (ξ

t(~z)
j − ξt(~z)k )| . 2`

∗
.

Integrating by parts in x, we may produce as many factors of |ξt1 + ξt2 − ξt3 − ξt4|−1 as desired and
freeze t = t(~z) to obtain

|K~̀(~z)| .M 2−`
∗M 〈ξ

t(~z)
1 + ξ

t(~z)
2 − ξt(~z)3 − ξt(~z)4 〉−M

〈|ξt(~z)1 − ξt(~z)2 |+ |ξt(~z)3 − ξt(~z)4 |〉
for any M ≥ 0,

and the bound (23) follows upon summing over ~̀. �

This completes the proof of Proposition 4.1. �

5. Proof of Theorem 1.3

We prove Proposition 3.2 and hence Theorem 1.3. Begin with a Whitney decomposition of

(Rd ×Rd) \ {(ξ, ξ) : ξ ∈ Rd} =
⋃
N∈2Z

⋃
Q∈QN

Q,

where QN is the set of dyadic cubes in Rd × Rd with diameter ∼ N and distance ∼ N to the

diagonal. For each Q ∈ QN , its characteristic function factorizes χQN (ξ1, ξ2) = χQ,1N (ξ2)χQ,2N (ξ2),

where χQ,jN are characteristic functions of d-dimensional cubes of width N . Then we can decompose

1(ξ1, ξ2) = χ0(ξ1, ξ2) +
∑
N≥1

∑
Q∈QN

χQ,1N (ξ1)χQ,2N (ξ2),

where χ0(ξ1, ξ2) is supported on the set |ξ1 − ξ2| . 1.
Now suppose u and v are linear solutions with initial data f =

∫
fzψz dz and g =

∫
gzψz dz,

respectively, where fz = 〈f, ψz〉 and gz = 〈g, ψz〉. Writing uz = fzU(t)ψz, vz = gzU(t)ψz, we
deduce as a consequence of Hypothesis 1 that∥∥∥ ∑

Q∈QN

∫
Q
uz1vz2 dz1dz2

∥∥∥
Lq([−T0,T0]×Rd)

. N−δ‖fz‖L2
z
‖gz‖L2

z
.(26)

for each N ≥ 1. Indeed, for each cube Q the integral has a product structure∫
Q
uz1vz2dz1dz2 =

(∫
uz1χ

Q,1
N (ξ1) dx1dξ1

)(∫
vz2χ

Q,2
N (ξ2) dx2dξ2

)
= U(t)

[∫
fz1χ

Q,1
N (ξ1)ψz1 dx1dξ1

]
U(t)

[∫
gz2χ

Q,1
N (ξ2)ψz2 dx2dξ2

]
.
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By the rapid decay of the wavepackets, we may harmlessly insert frequency cutoffs χ̃Q,jN (D), where

χ̃Q,jN are slightly fattened versions of χQ,jN and still have supports separated by distance ∼ N , and
apply Hypothesis 1 to estimate∥∥∥∫

Q
uz1vz2 dz1dz2

∥∥∥
Lq
. N−δ

∥∥∥∫ fz1χ
Q,1
N (ξ1) dx1dξ1

∥∥∥
L2(Rd)

∥∥∥∫ gz2χ
Q,2
N (ξ2) dx2dξ2

∥∥∥
L2(Rd)

. N−δ‖fzχQ,1N (ξ)‖L2
z
‖gzχQ,2N χ(ξ)‖L2

z
.

The left side of (26) is therefore bounded by∑
Q∈QN

N−δ‖fzχQ,1N (ξ)‖L2
z
‖gzχQ,2N χ(ξ)‖L2

z
≤ N−δ

( ∑
Q∈QN

‖fzχQ,1N (ξ)‖2L2
z

)1/2( ∑
Q∈QN

‖gzχQ,2N (ξ)‖2L2
z

)1/2
. N−δ‖fz‖L2

z
‖gz‖L2

z
,

as claimed.
Now decompose the product

uv =

∫
uz1vz2χ0(ξ1, ξ2) dz1dz2 +

∑
N≥1

∑
Q∈QN

∫
Q
uz1vz2 dz1dz2,

and estimate each group of terms in Lq for q between p and 2. For the sum over QN we interpolate
between the Lp and L2 bounds. Writing 1

q = 1−θ
p + θ

2 , we have∥∥∥ ∑
Q∈QN

∫
Q
uz1vz2 dz1dz2

∥∥∥
Lq
≤
∥∥∥ ∑
Q∈QN

∫
Q
uz1vz2 dz1dz2

∥∥∥1−θ

Lp

∥∥∥ ∑
Q∈QN

∫
Q
uz1vz2 dz1dz2

∥∥∥θ
L2

. N−δ(1−θ)+αθ
[
(sup
z
|〈f, ψz|)1/p′ sup

z
|〈g, ψz|)1/p′

]θ
(‖f‖L2

x
‖g‖L2

x
)
1−θ+ 1θ

p

and for q sufficiently close to p (hence θ sufficiently small) the exponent of N is negative.
For the “near-diagonal” sum, we interpolate between L1 and L2. For the L1 bound we simply use

Minkowski’s inequality and the estimate ‖U(t)ψz1U(t)ψz2‖L1 .N 〈x1 − x2〉−N when |ξ1 − ξ2| ≤ 1
to obtain ∥∥∥∫ uz1vz2χ0(ξ1, ξ2)dx1dx2dξ1dξ2

∥∥∥
L1
x

.
∫
|fz1gz2 |〈x1 − x2〉−Nχ0(ξ1, ξ2) dz1dz2

. ‖fz‖L2
z
‖gz‖L2

z
,

which when combined with Proposition 4.1 yields∥∥∥∫ uz1vz2χ0(ξ1, ξ2) dz1dz2

∥∥∥
Lq
.
∥∥∥∫ uz1vz2χ0(ξ1, ξ2) dz1dz2

∥∥∥1−θ′

L1

∥∥∥∫ uz1vz2χ0(ξ1, ξ2) dz1dz2

∥∥∥θ′
L2

.
[
(sup
z
|fz|)1/p′(sup

z
|gz|)1/p′

]θ′
(‖fz‖L2

z
‖gz‖L2

z
)
1−θ′+ θ′

p

. (sup
z
|〈f, ψz〉| sup

z
|〈g, ψz〉|)θ/p

′
(‖f‖L2‖g‖L2)

1−θ+ θ
p

for some 1 < p < 2, where 1
q = 1− θ′ + θ′

2 .

Summing in N , we conclude that

‖uv‖Lq .
[
(sup
z
|〈f, ψz|)1/p′(sup

z
|〈g, ψz〉|)1/p′

]θ
(‖f‖L2

x
‖g‖L2

x
)
1− θ

p′

for some θ = θ(p) ∈ (1, d+2
d ). Taking u = v we obtain Proposition 3.2.
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6. The restriction-type estimate

This purpose of this section is to prove Theorem 1.5.
We shall systematically use the following notation. For N ≥ 1 and a potential V , we consider

the rescaled potentials

VN (t, x) := N−2V (N−2t,N−1x).

Let U(t, s) and UN (t, s) denote the propagators for the corresponding Schrödinger operatorsH(t) :=
−1

2∆ + V and HN (t) := −1
2∆ + VN . We will often use the letter U to write the propagators for

different potentials V ∈ V; this ambiguity will not cause any serious issue, however, since all the
estimates we shall need are valid uniformly over V. Further, due to the time translation invariance of
our assumptions we shall usually just consider the propagator from time 0 and write U(t) := U(t, 0),
UN (t) := UN (t, 0).

In the sequel, the letter C will denote a constant, depending only on the dimension d, which may
change from line to line.

6.1. Preliminary reductions. The hypotheses of Theorem 1.5 are invariant under various trans-
formations of u and v.

• Galilei boosts u(0) 7→ π(z0)u(0), u 7→ π(zt0)uz0 , where uz0 satisfies (Dt − ∆ + V z0)uz0 =
0, uz0(0) = u(0).
• Spatial rotations: for an orthogonal matrix g, (g · u)(t, x) := u(t, g−1 · x) satisfies

[Dt(g · u)−∆ + (g · V )](g · u) = 0.

• Rescaling u 7→ uλ = λ−
d
2u(λ−2t, λ−1x) for λ > 1. Then uλ satisfies (Dt −∆ + Vλ)uλ = 0

with a smoother potential Vλ(t, x) = λ−2V (λ−2t, λ−1x).

We may and shall assume hereafter that V vanishes to second order at x = 0, that is, V (t, 0) = 0
and ∂xV (t, 0) = 0 for all t. Indeed let zt0 = (xt0, ξ

t
0) be the bicharacteristic with (x0, ξ0) = (0, 0).

Then by Lemma 1.1,

‖U(t)fU(t)g‖
L
d+3
d+1

= ‖(π(zt0)U z0(t)f)(π(zt0)U z0(t)g)‖
L
d+3
d+1

= ‖U z0(t)fU z0(t)g‖
L
d+3
d+1

,

and the potential V z0(t, x) = V (t, xt0 +x)−V (t, xt0)−x∂xV (t, xt0) vanishes to second order at x = 0.
Theorem 1.5 is equivalent by rescaling to

Theorem 6.1. Given S1, S2 ⊂ Rd
ξ with diam(Sj) ≤ 1 and c−1 ≥ dist(S1, S2) ≥ c for some

0 < c < 1, there exists a constant η = η(c) > 0 such that if V ∈ V and τ0 > 0 satisfies

(τ0 + τ2
0 )‖∂2

xV ‖L∞t,x < η,(27)

then for any f, g ∈ L2(Rd) with supp(f̂) ⊂ S1 and supp(ĝ) ⊂ S2, the corresponding Schrödinger
solutions uN = UN (t)f and vN = UN (t)g satisfy the estimate

‖uNvN‖Lq([−τ0N2,τ0N2]×Rd) .ε N
ε‖f‖L2‖g‖L2 for all

d+ 3

d+ 1
≤ q < d+ 2

d
(28)

for any ε > 0 and N ≥ 1.

In fact it suffices to take S1 and S2 of the form

S1 = {ξ : |ξ − c

2
e1| ≤

c

100
}, S2 = {ξ : |ξ +

c

2
e1| ≤

c

100
}.(29)

General Sj can be reduced to this case by decomposing f̂ =
∑

j f̂j and ĝ =
∑

k ĝk into pieces

supported in small balls and applying an appropriate Galilei boost and rotation for each pair (fj , gk)
and possibly also a rescaling to bring the Fourier supports closer, which only reduces ‖∂2

xV ‖L∞ .
Henceforth we shall assume (29).
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6.2. General remarks. We use the induction on scales method pioneered by Wolff for the cone [Wol01]
and adapted by Tao to the paraboloid [Tao03]. Our proof is modeled closely on Tao’s treatment
of the V = 0 case, and the reader may find it helpful to read the following exposition in parallel
with [Tao03]. The main differences are as follows:

• The induction scheme (section 6.5) is complicated by the fact that frequency is not con-
served, so one cannot directly apply an induction hypothesis which involves assumptions
on the frequency supports at time 0 to a spacetime ball at a later time.
• The low regularity of V in time makes the bilinear L2 estimate (section 6.8) more delicate

and we obtain weaker decay from temporal oscillations.
• In the final Kakeya-type estimate, the tubes in the key combinatorial lemma (Lemma 6.11,

the analogue of Lemma 8.1 in Tao) are curved. Also, we need to be slightly more precise
to compensate for the weaker decay in the L2 bound.

6.3. Discrete wavepacket decomposition. While the first part of this paper employed continu-
ous wavepacket transforms, the following discrete decomposition, taken essentially from Tao [Tao03],
is more conventional in restriction theory and convenient for the combinatorial arguments involved.
To each z0 = (x0, ξ0) in classical phase space with bicharacteristic γz0(t) = (xt0, ξ

t
0), we associate a

spacetime “tube”

Tz0 := {(t, x) : |x− xt0| ≤ R1/2, |t| ≤ R}.

For such a tube T , let z(T ) = (x(T ), ξ(T )) denote the corresponding initial point in phase space.
A wavepacket φ associated to the bicharacteristic z0 7→ zt0 is essentially supported in spacetime on
the tube Tz0 , and we shall often emphasize this fact by writing φT .

Lemma 6.2. Let u = UN (t)f be a linear Schrödinger solution with supp(f̂) ⊂ S1. For each
1 ≤ R ≤ N2, there exists a collection of tubes T and a decomposition

u =
∑
T∈T

aTφT ,

into R× (R1/2)d wave packets with the following properties:

• Each T ∈ T satisfies (x(T ), ξ(T )) ∈ R1/2Zd ×R−1/2Zd.
• Each wavepacket φT is a Schrödinger solution localized near the bicharacteristic (x(T )t, ξ(T )t),

i.e. which satisfies the pointwise bounds

|(R1/2∂x)kφT (t)| .k,M
〈x− x(T )t

R1/2

〉−M
,

|(R−1/2∂ξ)
kφ̂T (t)| .k,M

〈ξ − ξ(T )t

R−1/2

〉−M for all k, M ≥ 0.(30)

Moreover, φ̂T [0] is supported in a R−1/2 neighborhood of ξ(T ) ∈ S1.
• The complex coefficients aT are square-summable:∑

T

|aT |2 . ‖f‖2L2 .

Moreover, for any subcollection of tubes T′ ⊂ T and complex numbers aT , one has

‖
∑
T∈T′

aTφT ‖2L2 .
∑
T∈T′

|aT |2.

A similar decomposition also holds for v = UN (t)g.

Proof sketch. We outline the main steps as this construction is fairly standard; consult for instance
Lemma 4.1 in [Tao03]. Begin with partitions of unity 1 =

∑
x0∈Zd η(x−x0) and 1 =

∑
ξ0∈Zd χ(ξ−ξ0)
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such that χ and η̂ are compactly supported. By rescaling and quantizing, we obtain a pseudo-
differential partition of unity used to decompose the initial data

f =
∑

(x0,ξ0)

η
(x− x0

R1/2

)
χ(R1/2(D − ξ0))f.

The propagation estimates then follow from the next lemma. �

Lemma 6.3. If φz0 is a scale-R wavepacket concentrated at z0, and UN (t) is the propagator for
H(t) = −1

2∆ + VN , then UN (t) is a scale-R wavepacket concentrated at zt0 for all |t| ≤ R.

Proof. By rescaling we reduce to R = 1 and replace V by VN/R1/2 which also belongs to V since

N/R1/2 ≥ 1. Then the symbol a = 1
2 |ξ|

2 + VN/R1/2(t, x) satisfies the estimates (7), and we can

appeal to Lemma 2.4. �

6.4. Localization. The proof of Theorem 6.1 begins with the observation that it suffices to estab-
lish the same estimate with the spacetime norm restricted to a box of the form

ΩN = [−N2, N2]× [−AN2, AN2]d.

Theorem 6.4. Assume the hypotheses and notation of Theorem 6.1 and replace c by c/2 and take
diam(Sj) ≤ 11/10. Then there exists A = A(c) > 0 such that

‖uNvN‖
L
d+3
d+1 (ΩN )

.ε N
ε‖f‖L2‖g‖L2(31)

for any ε > 0.

Remark. In the wavepacket decomposition of uN and vN , the Fourier supports of the wavepackets
are contained in a slight dilate Sj+B(0, CN−1) of Sj. Hence at various junctures we need to adjust
various constants to accommodate this minor enlargement of Fourier supports.

The full theorem then follows from an approximate finite speed of propagation argument:

Lemma 6.5. Theorem 6.4 implies Theorem 6.1.

Proof of Lemma. Partition physical space Rd =
⋃
j∈Zd Qj into cubes of width ∼ N2, where Qj

denotes the cube with center N2j ∈ N2Zd. Decompose u := uN and v := vN into N2 × (N)d

wavepackets, and group the terms in the product according to their relative initial positions. Write

u =
∑
T

aTφT =
∑
j∈Zd

∑
T∈Tj

uT ,

v =
∑
T ′

bT ′φT ′ =
∑
j′∈Zd

∑
T ′∈T′

j′

vT ′ ,

where Tj = {T ∈ T : x(T ) ∈ Qj} and similarly for Tj′ . Using the triangle inequality we estimate

‖uv‖
L
d+3
d+1
≤
∑
k≥0

∥∥∥ ∑
|j−j′|∼2k

∑
T∈Tj , T ′∈T′j′

uT vT ′
∥∥∥
L
d+3
d+1

.(32)

For the kth sum, note from (19) that if (x1, ξ1) := (x(T ), ξ(T )) and (x2, ξ2) := (x(T ′), ξ(T ′)), we
have

|xt1 − xt2| ≥ (1− Ct2‖∂2
xVN‖L∞)|x1 − x2| − (|t|+ C|t|3‖∂2

xVN‖L∞)|ξ1 − ξ2|
≥ (1− Cτ2

0 ‖∂2
xV ‖L∞)|x1 − x2| −N2(1 + Cτ2

0 ‖∂2
xV ‖L∞ |ξ1 − ξ2|

≥ (1− Cη)|x1 − x2| −N2(1 + Cη)|ξ1 − ξ2|,

where C hides the harmless Gronwall factor. As |ξ1 − ξ2| ≤ c−1, there exists k(c) such that if
|x1 − x2| ≥ 2kN2 and η is chosen small enough we obtain |xt1 − xt2| & 2kN2 for k ≥ k(c). Thus
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the tubes in Tj and T′j are separated in space by distance & 2kN2, and since each wavepacket φT
decays rapidly away from its tube T in units of N , we have

‖φTφT ′‖
L
d+3
d+1
. 2−101dkN−101d,

and estimate crudely as follows:∥∥∥ ∑
|j−j′|∼2k

∑
T∈Tj , T ′∈T′j

uT vT ′
∥∥∥
L
d+3
d+1
. 2−101dkN−101d

∑
|j−j′|∼2k

∑
T∈Tj , T ′∈T′j′

|aT bT ′ |

. 2−101dkN−100d
∑

|j−j′|∼2k

( ∑
T∈Tj

|aT |2
) 1

2
( ∑
T ′∈T′

j′

|bT ′ |2
) 1

2

. 2−100dkN−100d
(∑

j

∑
T∈Tj

|aT |2
) 1

2
(∑

j

∑
T∈T′

j′

|bT ′ |2
) 1

2

. 2−100dkN−100d‖f‖L2‖g‖L2 .

For the “near diagonal” part of the sum (32), where |j− j′| ≤ 2k(c), we group the terms by their
average initial positions:∥∥∥ ∑

|j−j′|.1

∑
T∈Tj ,T ′∈T′j′

uT vT ′
∥∥∥
L
d+3
d+1
≤

∑
m∈Zd+Zd

∑
|j−j′|.1,j+j′=m

∥∥∥ ∑
T∈Tj , T ′∈T′j′

uT vT ′
∥∥∥
L
d+3
d+1

.(33)

For each pair (j, j′), we translate the initial data by the midpoint xjj′ := j+j′

2 N2 of Qj and Qj′ ,
using Lemma 1.1 to write

uT = π(ztjj′)aT φ̃T =: ũT , vT = bT ′π(ztjj′)φ̃T ′ =: ṽT ,

where zjj′ = (xjj′ , 0) and

φ̃T (t) = U (xjj′ ,0)(t)π(−xjj′ , 0)φT [0]

is a wavepacket solution for the modified potential V (xjj′ ,0). The norm on the right side above
therefore can be written as ∥∥∥ ∑

T∈T̃j ,T ′∈T̃′j

ũT ṽT ′
∥∥∥
L
d+3
d+1

,

where the initial positions x(T ) and x(T ′) of the tubes now belong to the translated cubes Q̃j :=

Qj −xjj′ , Q̃j′ −xjj′ , which are now distance . N2 from the origin (note however that the tubes in

T̃j are not simply translates of those in Tj).
By simple bicharacteristic estimates and the wavepacket bounds (30), for large A the norm

outside ΩN := [−N2, N2]× [−AN2, AN2]d is negligible:∥∥∥ ∑
T∈T̃j ,T ′∈T̃′j

ũT ṽT ′
∥∥∥
L
d+3
d+1 ([−N2,N2]×([−AN2,AN2]c))

. N−100d
( ∑
T∈T̃j

|aT |2
)1/2( ∑

T ′∈T̃′j

|bT |2
)1/2

. N−100d
( ∑
T∈Tj

|aT |2
)1/2( ∑

T ′∈T′j

|bT |2
)1/2

Inside ΩN we invoke Proposition (6.4) using the fact that the V (xjj′ ,0) also satisfies the hypothe-
sis (27), and that the wavepacket decompositions of uN and vN satisfy the relaxed Fourier support
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conditions in that proposition. Altogether, the right side of (33) is bounded by∑
m∈Zd+Zd

∑
|j−j′|.1, j+j′=m

N ε
( ∑
T∈Tj

|aT |2
)1/2( ∑

T ′∈T′j

|bT |2
)1/2

. N ε
∑
m

( ∑
|j−m

2
|.1

∑
T∈Tj

|aT |2
)1/2( ∑

|j′−m
2
|.1

∑
T∈T′

j′

|bT ′ |2
)1/2

. N ε
(∑

T

|aT |2
)1/2(∑

T ′

|bT ′ |2
)1/2

. N ε‖f‖L2‖g‖L2 ,

thus recovering Theorem 6.1. �

6.5. Induction on scales. Our induction scheme is set up slightly differently from Tao’s to ac-
commodate the non-conservation of frequency support of solutions.

In this section, we explicitly display the dependence of the propagator on the potential, and
write UVN (t) = UVN (t, 0) for the propagator with potential VN .

Let IH(α) denote the following statement:

There exists Cα > 0 such that for each N ≥ 1 and for all potentials V ∈ Vη, the
estimate

‖UVN (t)fUVN (t)g‖
L
d+3
d+1 (ΩN )

≤ CαN2α‖f‖L2‖g‖L2(34)

holds for all f, g ∈ L2(Rd) with f̂ , ĝ supported in S1 and S2, respectively.

We prove:
Inductive Step: If IH(α) holds, then IH(max

(
(1− δ)α,Cδ) + ε) holds for all 0 < δ, ε� 1.

By choosing δ and ε sufficiently small depending on α, we can always arrange that max
(
(1 −

δ)α,Cδ
)

+ Cε < α− cα2 for some absolute constant c, and Theorem 6.4 follows.
The inductive hypothesis IH(α) shall be used to improve the estimate (34) over subregions

QR ⊂ ΩN at smaller scales diam(QR) ∼ N2(1−δ) � N2.

Proposition 6.6. Suppose IH(α) holds. Then for all 1 ≤ R ≤ N2/16 and all spacetime balls
QR ⊂ 2ΩN of diameter R, the estimate

‖UVN (t)fUVN (t)g‖
L
d+3
d+1 (QR)

≤ CαRα‖f‖L2‖g‖L2

holds for all f, g ∈ L2(Rd) with f̂ , ĝ supported in S̃1 := S1 + B(0, c
100) and S̃2 := S2 + B(0, c

100),
respectively.

Proof. We begin by estimating how much the Fourier supports can shift.

Lemma 6.7. For 1 ≤ R ≤ N2, let QR ⊂ 2ΩN be a spacetime ball with center (tQ, xQ) and diameter

R. Suppose the initial data f, g satisfy supp(f̂) ⊂ S̃1 and supp(ĝ) ⊂ S̃2. There exist decompositions
u(tQ) = f1 + f2 and v(tQ) = g1 + g2, with the following properties:

• f̂1 and ĝ1 are supported in sets S′1, S
′
2 with diam(S′j) ≤ c

10 and dist(S′1, S
′
2) ∈ [4c

5 ,
5c
4 ].

• ‖f2‖L2 . N−100d‖f‖L2 and ‖g2‖L2 . N−100d‖g‖L2.

Proof. Begin by decomposing u = UVN f and v = UVN g into N2 × (N)d wavepackets:

u =
∑
T∈T1

aTφT , v =
∑
T∈T2

bTφT .(35)
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By the spatial localization (30), we may ignore in u and v the packets whose tubes T ∈ Tj do not
intersect 2QN := [−N2, N2] × [−2AN2, 2AN2], as the portion of the sum involving those terms
contributes at most O(N−100d)‖f‖L2‖g‖L2 . Thus there are O(N2d) remaining terms.

Suppose φT1 and φT2 are wavepackets in the decomposition for u.
Let (xt1, ξ

t
1) and (xt2, ξ

t
2) be bicharacteristics with |x1|, |x2| ≤ 2AN2. By (19), for |t| ≤ τ0N

2 we
have

|ξt1 − ξt2 − (ξ1 − ξ2)| ≤ Cτ0N
2N−4‖∂2

xV ‖L∞(2AN2 + τ0N
2|ξ1 − ξ2|)

≤ C(τ0A+ τ2
0 )‖∂2

xV ‖L∞ ≤ Cη.

Therefore, recalling the definitions of S̃j , we see that we have |ξtQ1 − ξ
tQ
2 | ≤ c

20 + Cη if ξ1, ξ2 both

belong to S̃1 or S̃2, while |ξtQ1 −ξ
tQ
2 | ∈ [ 9c

10 ,
10c
9 ] if ξ1 ∈ S̃1 and ξ2 ∈ S̃2. Choosing η = η(c) sufficiently

small,
Consequently, if

S̃tj := {ξt : ξ ∈ S̃j , |x| ≤ AN2}(36)

denotes the set of frequencies of the wavepackets at time t, then diam(S̃tj) ≤ diam(Sj) + Cη and

dist(S̃t1, S̃
t
2) ≥ 9

10 dist(S1, S2). Now let S′j denote O(N−9/10) neighborhoods of S̃tj , and decompose

u(tQ) = f1 + f2, v(tQ) = g1 + g2,

where f̂1 is supported on S̃1 and f̂2 on the complement, and similarly for g1, g2. For N large enough
we have dist(S′1S

′
2) ∈ [4c

5 ,
5c
4 ]. The estimates in the second bullet point now follow from the rapid

decay of each wavepacket from its central frequency on the N−1 scale (the estimates (30) with
R = N2). �

The proof of the proposition concludes with several applications of Lemma 1.1. Write

U(t, tQ)f1 = U(t, tQ)π(xQ, 0)π(−xQ, 0)f1 = π(ztQ)U zQ(t, tQ)f̃1 = π(ztQ)ũ(t+ tq)

where z
tQ
Q = (xQ, 0). For |t−tQ| ≤ R and |xQ| ≤ AN2 we have |xtQ−x

tQ
Q | ≤ 2|t−tQ| ≤ 2R provided

that η is sufficiently small. Therefore, denoting Q̃R = 2(QR − (tQ, xQ)),

‖uv‖
L
d+3
d+1 (QR)

. ‖ũṽ‖
L
d+3
d+1 (Q̃R)

+N−100d‖f‖L2‖g‖L2

It remains to consider the first term on the right side. The initial data f̃1, g̃1 for ũ and ṽ have
Fourier transforms supported in S′1, S

′
2. We abuse notation and redenote

f := f̃1, g := g̃1.

Cover S′j =
⋃
k Bj,k by finitely overlapping balls of radius c

200 . Using a subordinate partition of

unity, we reduce to the case where supp f̂ ⊂ B1,k1 and supp ĝ ⊂ B2,k2 . Again using Lemma 1.1, we
may assume B1,k1 = −B2,k2 and that their centers lie on the e1 axis.

Since 2c ≥ dist(B1,k1 , B2,k2) ≥ c
2 , there exists some scaling factor λ ∈ [1

2 , 2] such that λ−1Bj,kj ⊂
Sj . Consider the rescalings

uλ = UVN
λ

(t)fλ = U Ṽ
(2R)

1
2
(t)fλ, vλ = UVN

λ

(t)gλ = U Ṽ
(2R)

1
2
(t)gλ,

where

Ṽ (t, x) = 2Rλ2N−2V (2Rλ2N−2t, (2R)
1
2λN−1x).
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The potential Ṽ satisfies ‖∂2
xṼ ‖L∞ ≤ ‖∂2

xV ‖L∞ since 2Rλ2N−2 ≤ 8RN−2 ≤ 1
2 , and ûλ(0) and

v̂λ(0) are supported in S1 and S2. Hence we can apply IH(α) to conclude that

‖ũṽ‖
L
d+3
d+1 (Q̃R)

. ‖uλvλ‖
L
d+3
d+1 (Q̃2R)

≤ CαRα‖fλ‖L2‖gλ‖L2 .

�

From here on the argument hews closely to Tao’s. We recall the following notation: write

A / B

if A .ε N εB for all N � 1 and for all ε > 0.
To reiterate, we want to prove

‖UVN fUVN g‖
L
d+3
d+1 (ΩN )

/ N2 max((1−δ)α,Cδ)‖f‖L2‖g‖L2(37)

assuming supp(f̂) ⊂ S1 and supp(ĝ) ⊂ S2 with diam(Sj) ≤ 1 and dist(S1, S2) ≥ c.
Normalize f and g in L2, and decompose

u := UVN f =
∑
T

aTφT , v := UVN =
∑
T

bTφT

As in the proof of Lemma 6.7, we discard all but the O(N2d) wavepackets whose tubes intersect
2ΩN . We also throw away the terms where |aT | = O(N−100d) or |bT | = O(N−100d), as that portion
of the product can be bounded using the estimates (30) and Cauchy-Schwartz.

Consequently, in the decompositions of u and v we only consider the tubes T with N−100d .
|aT |, |bT | . 1. Partitioning the interval [N−100d, 1] into logN dyadic groups, we may further restrict
to the tubes with |aT | ∼ γ1 and |bT | ∼ γ2 for dyadic numbers N−100d . γ1, γ2 . 1. Let T1, T2 be
the tubes for u and v, respectively with this property. It therefore suffices to prove∥∥∥ ∑

T1∈T1

φT1

∑
T2∈T2

φT2

∥∥∥
L
d+3
d+1 (ΩN )

/ (N2(1−δ)α +N2Cδ)#T
1/2
1 #T

1/2
2

(we have absorbed the complex phases into the wavepackets).
We have in effect reduced to considering the region of phase space {(x, ξ) : |x| . N2, |ξ| . 1},

where the potential makes only a small perturbation to the Euclidean flow. For if |xs| . N2 and
|t− s| ≤ N2, one has

|xt| . N2

|ξt − ξs| ≤
∫ t

s
|∂x(VN )(τ, xτ )| dτ .

∫ t

s
|xτ |

∫ 1

0
|∂2
xVN (τ, sxτ )| ds dτ . τ0‖∂2

xV ‖L∞ . η,

Thus if ξ ∈ Sj , then ξt belongs to a small neighborhood of Sj provided that η � c is a small
multiple of c. For concreteness we choose η so that

|ξt − ξs| ≤ c

100
.(38)

6.6. Coarse scale decomposition. Following Tao, for small δ > 0 we decompose ΩN =
⋃
B∈B′ B

into O(N2δd) smaller balls of radius N2(1−δ), and estimate∥∥∥ ∑
T1∈T1

∑
T2∈T2

φT1φT2‖
L
d+3
d+1 (ΩN )

.
∑
B∈B
‖
∑
T1∈T1

∑
T2∈T2

φT1φT2‖
L
d+3
d+1 (B)

.

Let ∼ be a relation between tubes and balls to be specified later. Estimate the norm by the local
part ∑

B∈B

∥∥∥ ∑
T1∼B

φT1

∑
T2∼B

φT2

∥∥∥
L
d+3
d+1 (B)

(39)
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and the global part ∑
B∈B

∥∥∥ ∑
T1�B or T2�B

φT1φT2

∥∥∥
L
d+3
d+1 (B)

.(40)

We use Proposition 6.6 with R = N2(1−δ) ≤ N2/16 to estimate the local term by

(39) /
∑
B∈B

N2(1−δ)α
( ∑
T1∼B

1
)1/2( ∑

T2∼B
1
)1/2

/
( ∑
T1∈T1

#{B : T1 ∼ B}
)1/2( ∑

T2∈T2

#{B : T2 ∼ B}
)1/2

/ 1

if the relation ∼ is chosen so that each T is associated to / 1 balls. Note that this step is why we

the Fourier supports are enlarged in that proposition, as supp(φ̂T1(0)) is not quite contained in S1.
Heuristically, a judicious choice of ∼ allows one to avoid the worst interactions that would

otherwise occur in the bilinear L2 estimate if one were to natively interpolate between L1 and
L2. For example, if all the tubes were to intersect in a single ball B, it would be better to bound

L
d+3
d+1 (B) directly using the inductive hypothesis rather than attempt to estimate L2(B).
The global piece (40) is controlled by interpolating between L1 and L2. By Cauchy-Schwartz

and conservation of L2 norm,∑
B

∥∥∥ ∑
T1�B or T2�B

φT1φT2

∥∥∥
L1(B)

.
∑
B

(∥∥∥ ∑
T1∼B

φT

∥∥∥
L2(B)

+
∥∥∥∑
T1�B

φT

∥∥∥
L2(B)

)(∥∥∥ ∑
T2∼B

φT

∥∥∥
L2(B)

+
∥∥∥∑
T2�B

φT

∥∥∥
L2(B)

)
. N2δN2#T

1/2
1 #T

1/2
2 .

(41)

The remaining sections prove the L2 estimate∥∥∥ ∑
T1�B or T2�B

φT1φT2

∥∥∥
L2(B)

/ N−
d−1

2 NCδ#T
1/2
1 T

1/2
2 .(42)

6.7. Fine scale decomposition. Cover ΩN =
⋃
q∈q q by a finitely overlapping collection q of

balls of radius N . It suffices to show∑
q∈q:q⊂2B

∥∥∥ ∑
T1�B or T2�B

φT1φT2

∥∥∥2

L2(q)
/ N−(d−1)NCδ#T1T2

We adopt the following notation from Tao. Fix q ∈ q and let µ1, µ2, λ1 be dyadic numbers.

• Tj(q) is the set of tubes T ∈ Tj such that T ∩N δq is nonempty, where N δq denotes a N δ

neighborhood of q.
• T�B

j (q) = {T ∈ Tj(q) : T � B}.
• q(µ1, µ2) is the set of balls q such that #{Tj ∈ Tj : Tj ∩N δq 6= φ} ∼ µj .
• λ(T, µ1, µ2) is the number of (N δ neighborhoods of) balls q ∈ q(µ1, µ2) that T intersects.
• Tj [λ1, µ1, µ2] is the set of tubes T ∈ Tj such that λ(T, µ1, µ2) ∼ λ1.

Pigeonholing dyadically in µ1, µ2, and λ1, it suffices to show∑
q∈q(µ1,µ2):q⊂2B

∥∥∥ ∑
T1∈T�B

1 (q)∩T1[λ1,µ1,µ2]

∑
T2∈T2(q)

φT1φT2

∥∥∥2

L2(q)
/ NCδN−(d−1)#T1#T2.
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6.8. The L2 bound. Fix a ball q = q(tq, xq) ∈ q(µ1, µ2) centered at (tq, xq). Suppose want to
estimate an expression of the form ∥∥∥∑

T1

∑
T2

φT1φT2

∥∥∥2

L2(q)
.

There are two main points to keep in mind:

• Only tubes that intersect N δq will make a nontrivial contribution; that is, tubes whose
bicharacteristics (xt, ξt) satisfy |xtq − xq| ≤ N1+δ.
• To decouple the contributions of tubes that all overlap near q, one needs to exploit oscillation

in space and time. While Tao employs the spacetime Fourier transform, we instead integrate
by parts in space and time. Expanding out the L2 norm∑

T1,T2

∑
T3,T4

〈φT1φT2 , φT3φT4〉(43)

and integrating by parts in both space and time, we shall obtain terms of the form

(N |ξt1 + ξt2 − ξt3 − ξt4|)−1,
(
N
∣∣|ξt1 − ξt2|2 − |ξt3 − ξt4|2∣∣)−1

,

where (xtj , ξ
t
j) are bicharacteristics with |xtqj − xq| ≤ N1+δ. Since, by (19), the relative

frequencies ξtj − ξtk vary by at most O(N−2+2δ) during the O(N1+δ) time window when the

wavepackets intersect the ball N δq, we can freeze t = tq above; see Lemma 6.10 below.

Hence, the integral (43) will be small unless |xtqj − xq| ≤ N1+δ for all j and the frequencies ξtj
satisfy both resonance conditions

|ξtq1 + ξ
tq
2 − ξ

tq
3 − ξ

tq
4 | = O(N−1), |ξtq1 − ξ

tq
2 |

2 − |ξtq3 − ξ
tq
4 |

2 = O(N−1).(44)

The preceding discussion motivates the following definition. Let

Zq,j := {(x, ξ) : |x| ≤ 2AN2, ξ ∈ Sj , |xtq − xq| ≤ N1+δ}.
For frequencies ξ1 and ξ′2, define the “spacetime resonance” set

Z(ξ1, ξ
′
2) =

{
(x′1, ξ

′
1) ∈ Zq,1 : there exists (x2, ξ2) ∈ Zq,2 such that

ξ1 + ξ
tq
2 = (ξ′1)tq + ξ′2 and |ξ1 − ξ

tq
2 |

2 = |(ξ′1)tq − ξ′2|2
}
,

π(ξ1, ξ
′
2) =

{
(ξ′1)tq : (x′1, ξ

′
1) ∈ Z(ξ1, ξ

′
2)
}
.

This is a slight modification of Tao’s definition which reflects the time dependence of frequency.
The following lemma follows from elementary geometry.

Lemma 6.8. The set π(ξ1, ξ
′
2) is contained in the hyperplane passing through ξ1 and orthogonal

to ξ′2 − ξ1 and is therefore transverse to ζ ′2 − ζ1 if ζ1 and ζ ′2 are small perturbations of ξ1 and ξ′2,
respectively.

Due to the limited time regularity of the phase, we can actually integrate by parts just once in
time. The resulting weaker decay still turns out to be just enough provided that we slightly refine
the analogue of Tao’s main combinatorial estimate for tubes (estimate (48) below). Hence we need
to account more carefully for the contributions away from the “resonant set” π.

For ξ1, ξ
′
2 and k > 0, define the “time nonresonance” sets

Zt0(ξ1, ξ
′
2) =

{
(x′1, ξ

′
1) ∈ Zq,1 : there exists (x2, ξ2) ∈ Zq,2 such that

|ξ1 + ξ
tq
2 − (ξ′1)tq − ξ′2| ≤ N−1+Cδ and

∣∣|ξ1 − ξ
tq
2 |

2 = |(ξ′1)tq − ξ′2|2
∣∣ ≤ N−1+Cδ

}
,

Ztk(ξ1, ξ
′
2) =

{
(x′1, ξ

′
1) ∈ Zq,1 : for all (x2, ξ2) ∈ Zq,2 with |ξ1 + ξ

tq
2 − (ξ′1)tq − ξ′2| ≤ N−1+Cδ,∣∣|ξ1 − ξ

tq
2 |

2 − |(ξ′1)tq − ξ′2|2
∣∣ ∈ (2k−1N−1+Cδ, 2kN−1+Cδ]

}
,



26 CASEY JAO

the “space nonresonance” set

Zs(ξ1, ξ
′
2) =

{
(x′1, ξ

′
1) ∈ Zq,1 :|ξ1 + ξ

tq
2 − (ξ′1)tq + ξ′2| > N−1+Cδ for all (x2, ξ2) ∈ Bq,2

}
,

and the corresponding frequencies at time tq

πtk(ξ1, ξ
′
2) = {(ξ′1)tq : (x′1, ξ

′
1) ∈ Ztk(ξ1, ξ

′
2)},

πs(ξ1, ξ
′
2) = {(ξ′1)tq : (x′1, ξ

′
1) ∈ Zs(ξ1, ξ

′
2)}.

An elementary computation shows that

dist(πtk, π) . 2kN−1+Cδ.(45)

Indeed, writing δ1 := (ξ′1)tq − ξ1, δ2 := ξ
tq
2 − ξ′2, and decomposing δj = δ

‖
j + δ⊥j into the components

parallel and orthogonal to ξ1 − ξ′2, we have

|ξ1 − ξ
tq
2 |

2 − |(ξ′1)tq − ξ′2|2 = |ξ1 − ξ′2 − δ2|2 − |δ1 + ξ1 − ξ′2|2

= −2〈ξ1 − ξ′2, δ1 + δ2〉+ δ2
2 − δ2

1

= −2〈ξ1 − ξ′2, δ
‖
1 + δ

‖
2〉+O(N−1+Cδ) (since |δ1 − δ2| ≤ N1+δ)

= −4〈ξ1 − ξ′2, δ
‖
1〉+O(N−1+Cδ).

Thus |(ξ′1)tq − ξ1, ξ1 − ξ′2〉| . 2kN−1+Cδ and the claim follows from Lemma 6.8.
For q ∈ q(µ1, µ2) with q ⊂ 2B, define

T�B
1 (q, λ1, µ1, µ2, ξ1, ξ

′
2, k)

to be the collection of tubes T ∈ T�B
1 (q) ∩T1[λ1, µ1, µ2] such that ξ(T )tq ∈ πtk(ξ1, ξ

′
2). Set

νk(q, λ1, µ1, µ2) := sup
ξ1∈S1, ξ′2∈S2

#T∼B1 (q, λ1, µ1, µ2, ξ
tq
1 , (ξ

′
2)tq , k),(46)

where |xtq1 − xq|+ |(x′2)tq − xq| . N1+δ.
Then, the analogue of Tao’s Lemma 7.1 is:

Lemma 6.9. For each q ∈ q(µ1, µ2), we have∥∥∥ ∑
T1∈T�B

1 (q)∩T1[λ1,µ1,µ2]

∑
T2∈T2(q)

φT1φT2

∥∥∥2

L2(q)

/ NCδN−(d−1) sup
k

2−kνk(q, λ1, µ1, µ2)#(T�B
1 (q) ∩T1[λ1, µ1, µ2])#T2(q).

Proof. For conciseness, set

T′1 := T�B
1 (q) ∩T1[λ1, µ1, µ2]

T2 := T2(q).

Then the norm L2(q) is bounded by the norm L2(ηNdxdt), where ηN (t) is a smooth weight equal
to 1 on |t− tq| ≤ N1+δ and supported in |t− tq| ≤ 2N1+δ.∥∥∥ ∑

T1∈T′1

∑
T2∈T′2

φT1φT2

∥∥∥2

L2(ηNdxdt)
=

∑
T1,T ′1∈T′1

∑
T2,T ′2∈T′2

〈φT1φT2 , φT ′1φT ′2〉L2(χNdxdt).

By the bounds (30) and the tranversality of the tubes in T′1 and T′2, the integrand has magnitude
N−2d and is essentially supported on a spacetime ball of width N . Thus we have the crude bound

|〈φT1φT2 , φT ′1φT ′2〉| . N
CδN−2dNd+1 = NCδN−(d−1).

On the other hand, we may integrate by parts to obtain a more refined bound.
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Lemma 6.10. For each k1, k2, ` ≥ 0 and for all tubes T1, T3 ∈ T′1, T2, T4 ∈ T′2, we have

|〈φT1φT2 , φT3φT4〉| .k1,k2 N
CδN−(d−1) min

[
N−`|ξtq1 + ξ

tq
2 − ξ

tq
3 − ξ

tq
4 |
−`,

N−1
∣∣|ξtq1 − ξtq2 |2 − |ξtq3 − ξtq4 |2∣∣−1

]
.

Proof. The proof has a similar flavor to the earlier estimate (23) but takes advantage of oscillation
in both space and time.

Let ztj = (xtj , ξ
t
j) denote the bicharacteristic for φTj , j = 1, 2, 3, 4. By Lemmas 1.1 and 6.2, we

can write

〈φT1φT2 , φT3φT4〉 =

∫
eiΨφ1φ2φ3φ4 ηN (t) dxdt,(47)

where φj is a Schrödinger solution which satisfies

(N∂x)kφj(t, x) .k,M N−d/2〈N−1(x− xtj)〉−M ,

and

Ψ =
4∑
j=1

σj

[
〈x− xtj , ξtj〉 −

∫ τ

0

1

2
|ξτj |2 − V (τ, xτj ) dτ

]
, σ = (+,+,−,−).

Using the rapid decay of each φj , we may harmlessly (with O(N−100d) error) localize φj to a N δ

neighborhood of the tube Tj , so that φj(t) is supported in a O(N1+δ) neighborhood of the classical
path xtj .

Then

∂xΨ =
∑
j

σjξ
t
j , −∂tΨ =

1

2

∑
j

σj |ξtj |2 +
∑
j

σj
[
V (t, xtj) + 〈x− xtj , ∂xV (t, xtj)

]
.

The first bound in the statement of the lemma results from integrating by parts in x, as in the
proof of (23), to gain factors of (N |ξt1 + ξt2 − ξt3 − ξt4|)−1. Since

ξt1 + ξt2 − ξt3 − ξt4 = ξ
tq
1 + ξ

tq
2 − ξ

tq
3 − ξ

tq
4 +O(N−2+2δ)

during the time window |t− tq| ≤ O(N1+δ) when |xtj − xq| ≤ N1+δ, we may replace t by tq.

As in our work in one space dimension (more specifically, the proof of Lemma 4.4 in [JKV]),
instead of integrating by parts purely in time we use a vector field adapted to the average bichar-
acteristic for the four wavepackets φTj . Defining

xt :=
1

4

4∑
j=1

xtj , ξt :=
4∑
j=1

ξtj ,

L := ∂t + 〈ξt, ∂x〉,

we compute as in that paper that

−LΨ =
1

2

∑
σj |ξtj |2 +

∑
σj
[
V z(t, xtj) + 〈x− xtj , ∂x(V z)(t, xtj)〉,

where

xtj := xtj − xt, ξtj := ξtj − ξt

denote the coordinates of φTj (t) in phase space relative to (xt, ξt); see Figure 2.
We cannot yet integrate by parts since that would require two time derivatives of the phase

Ψ, but the assumptions on V only allow Ψ to be differentiated once in time. However, we can
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drawing_2.eps

Figure 2. Phase space coordinates relative to the “center of mass”.

decompose Ψ = Ψ1 + Ψ2, where Ψ2 has two time derivatives and accounts for the majority of the
oscillation of eiΨ; indeed, we define Ψ1 and Ψ2 via the ODE

−LΨ2 =
1

2

∑
j

σj |ξtj |2 =
1

4

(
|ξtq1 − ξ

tq
2 |

2 − |ξtq3 − ξ
tq
4 |

2
)

+O(N−2+2δ),

−LΨ1 =
∑

σj

[
V z(t, xtj) + 〈x− xtj , ∂x(V z)(t, xtj)〉

]
= O(N−2+2δ);

As before we have frozen t = tq in the main term with error at most O(N−2+2δ), and also used the

estimates |xtj | ≤ maxj,k |xtj − xtk| . N1+δ, |x − xtj | . N1+δ on the support of the integrand (47).

Note also that the equation d
dtξ

t
j = −∂xV (t, xtj) implies L2Ψ2 = O(N−2). Now integrate by parts

using the phase Ψ2 to obtain

RH (47) =

∫
eiΨ2eiΨ1

∏
j

φj ηN (t) dxdt = i

∫
eiΨ2

〈
L,

LΨ2

|LΨ2|2
〉eiΨ1φ1φ2φ3φ4 ηN (t)dxdt

= i

∫
eiΨ
[
− L2Ψ2

|LΨ2|2
+ 〈 LΨ2

|LΨ2|2
, iLΨ1 + L〉

]
φ1φ2φ3φ4 ηN (t)dxdt,

and the second bound in the lemma follows. �

Returning to the proof of Lemma 6.9, we decompose the sum∑
(T1,T ′2)∈T′1×T′2

[ ∑
T ′1∈Ts1

∑
T2∈T′2

+
∑

0≤k.logN

∑
T ′1∈T′1,k

∑
T2∈T′2

]
,

where Ts
1 is the set of tubes in T′1 whose bicharacteristic ((x′1)t, (ξ′1)t) satisfies (ξ′1)tq ∈ πs(ξtq1 , (ξ′2)tq),

and we abbreviate

T′1,k := T�B
1 (q, λ1, µ1, µ2, ξ

tq
1 , (ξ

′
2)tq , k)

The contribution from the “space nonresonance” terms Ts
1 is O(N−100d).

Now consider the kth sum. Lemma 6.10 implies that

|〈φT1φT2 , φT ′1φT ′2〉| . N
CδN−(d−1)2−k.
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For each T ′1 ∈ T�B
1 (q, λ1, µ1, µ2, ξ

tq
1 , (ξ

′
2)tq , k), the possible tubes T2 correspond to the bicharacter-

istics (xt2, x
t
2) such that

|xtq2 − xq| ≤ N
1+δ, ξ

tq
1 + ξ

tq
2 − (ξ′1)tq − (ξ′2)tq = O(N−1+Cδ).

The preimage of this set under the time tq Hamiltonian flow map is a (N1+Cδ)d× (N−1+Cδ)−d box,

so there are O(NCδ) choices of tubes T2. Therefore, the kth sum is at most

NCδN−(d−1)2−kνk#T′1#T′2,

whereupon the sum over k is replaced by the supremum at the cost of a logN factor. �

It remains to show that∑
q∈q(µ1,µ2):q⊂2B

2−kνk(q, λ1, µ1, µ2)#(T�B
1 (q) ∩T1[λ1, µ1, µ2])#T2(q) / NCδ#T1#T2.(48)

6.9. Tube combinatorics. This section begins exactly as in [Tao03, Section 8]. We define the

relation ∼ between tubes and radius N2(1−δ) balls. For a tube T ∈ T1[λ1, µ1, µ2], let B(T, λ1, µ1, µ2)
be a ball B ∈ B that maximizes

#{q ∈ q(µ1, µ2) : T ∩N δq 6= φ; q ∩B 6= φ}.

As T intersects roughly λ1 (neighborhoods of) balls q ∈ q(µ1, µ2) in total and there are O(N2δ)
many balls in B, B(T, λ1, µ1, µ2) must intersect at least N−2δλ1 of those balls.

Declare T ∼λ1,µ1,µ2 B
′ if T ∈ T1[λ1, µ1, µ2] and B′ ⊂ 10B(T, λ1, µ1, µ2). Finally, for T ∈ T1 set

T ∼ B if T ∼λ1,µ1,µ2 B for some λ1, µ1, µ2. Evidently T ∼ B for at most (logN)3 / 1 many balls.
The relation between tubes in T2 and balls in B is defined similarly.

Now we begin the proof of (48). On one hand,∑
q∈q(µ1,µ2)

#(T1[λ1, µ1, µ2] ∩T1(q)) =
∑

q∈q(µ1,µ2)

∑
T1∈T1[λ1,µ1,µ2]∩T1(q)

1T1∩Nδq 6=0

=
∑

T∈T1[λ1,µ1,µ2]

∑
q∈q(µ1,µ2)

1T1∩Nδq 6=φ

.
∑
T∈T1

λ1

= λ1#T1.

On the other hand, by definition #T2(q) . µ2. The claim (48) would therefore follow if we could
show that

νk(q0, λ1, µ1, µ2) / 2kNCδ#T2

λ1µ2
(49)

for all q0 ∈ q(µ1, µ2) such that q0 ⊂ 2B.
Fix ξ1 ∈ S1, ξ′2 ∈ S2, and a ball q0 = q0(tq, xq). Recalling the definition (46) of νk, we need to

show that

#T�B
1 (q0, λ1, µ1, µ2, ξ

tq
1 , (ξ

′
2)tq , k) / 2kNCδ#T2

λ1µ2
.

For brevity write T′1 := T�B
1,k (q0, λ1, µ1, µ2, ξ

tq
1 , (ξ

′
2)tq , k).

Fix T1 ∈ T′1. Since T1 � B, the ball 2B(T1, λ1, µ1, µ2) has distance & N2(1−δ) from q0. Thus

#{q ∈ q(µ1, µ2) : T1 ∩N δq 6= φ, dist(q, q0) ' N2(1−δ)} ' N−2δλ1.

As each q ∈ q(µ1, µ2) intersects approximately µ2 (N δ-neighborhoods of) tubes in T2,

#{(q, T2) ∈ q(µ1, µ2)×T2 : T1 ∩N δq 6= φ, T2 ∩N δq 6= φ, dist(q, q0) ' N2(1−δ)} ' N−2δλ1µ2.
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Therefore

#{(q, T1, T2) ∈ q×T′1 ×T2 : T1 ∩N δq 6= φ, T2 ∩N δq 6= φ, dist(q, q0) ' N−2δN2}

' N−2δλ1µ2#T′1

On the other hand, the cardinality can be bounded above by the following analogue of Tao’s
Lemma 8.1:

Lemma 6.11. For each T2 ∈ T2,

#{(q, T1) ∈ q×T′1 : T1 ∩N δq, T2 ∩N δq 6= φ, dist(q, q0) ' N−2δN2} / 2kNCδ.

Proof. We estimate in two steps.

• For any tubes T1 ∈ T′1 and T2 ∈ T2, the intersection N δT1 ∩N δT2 is contained in a ball of
radius NCδ.
• The number of tubes T1 ∈ T′1 such that T1 intersects N δT2 at distance ' N−2δN2 from q0

bounded above by 2kNCδ.

The first is evident from transversality. Hence we turn to the second claim.
In Tao’s situation, the tubes in T′1 are all constrained to a O(N−1+Cδ) neighborhood of a

spacetime hyperplane transverse to the tube T2 (basically because of Lemma 6.8), and there are
O(NCδ) many such tubes that intersect T2 at distance ' N−2δN2 from q0. The extra 2k factor
results from the fact that we allow the tubes to deviate from that hyperplane by distance 2kN−1+Cδ.
Also, since our tubes are curved it is more convenient to work with their associated bicharacteristics
instead of using Euclidean geometry in spacetime.

Fix a tube T2 ∈ T2 with ray t 7→ (xt2, ξ
t
2). Then, the tubes T1 ∈ T′1 such that N δT1 ∩N δT2 are

characterized by the property that

|x(T1)t − xt2| . N1+δ for some |t− tq| ' N−2δN2.

We need to count the tubes in T′1 with this property. The bicharacteristics for such tubes emanate
from the region

Σ :={(x, ξ) : dist(ξ, S1) ≤ N−1+Cδ, ξtq ∈ πtk,

|xtq − xq| ≤ N1+δ, |xt − xt2| ≤ N1+δ for some |t− tq| & N−2δN2},

hence it suffices to bound the cardinality of the intersection (NZd ×N−1Zd) ∩ Σ.
Denote by Σt the image of Σ under the time t Hamiltonian flow map (x, ξ) 7→ (xt, ξt). Recall

from (36) that Stj denotes the image of the initial frequency set Sj for initial positions x with

|x| . N2; we saw earlier in (38) that Stj is a small perturbation of Sj .

Fix a basepoint x0 with |x0 − xq| ≤ N1+δ. By Lemma 2.1 and the Hadamard global inverse
function theorem, when t 6= tq we can parametrize the graph of the flow map (xtq , ξtq) 7→ (xt, ξt)
by the variables

(xtq , xt) 7→
(
(xtq , ξtq(xt, xtq)) 7→ (xt, ξt(xtq , xt))

)
.

Let ξ(t, x) := ξtq(x0, x) ∈ T ∗x0
Rd be the initial momentum ξ(t, x) ∈ T ∗x0

Rd such that the bichar-

acteristic with xtq = x0 and ξtq = ξ(t, x) satisfies xt = x.

Lemma 6.12. Suppose at least one T1 ∈ T′1 intersects N δT2. For |t − tq| ' N−2δN2, the curve

t 7→ ζx0(t) := ξ(t, xt2) ∈ T ∗x0
Rd is transverse to the hyperplane containing π(ξ1, ξ

′
2) for all ξ1 ∈ S

tq
1

and ξ′2 ∈ S
tq
2 (see Figure 3). More precisely there exists C(η) > 0 such that

∠(ζ̇x0(t), π(ξ1, ξ
′
2)) > C(η) for all ξ1 ∈ S

tq
1 , ξ

′
2 ∈ S

tq
2 ,

where the angle ∠(v,W ) between a vector v and a subspace W is defined in the usual manner.
Moreover, for each t the image of a N1+δ neighborhood of xt2 under the map x 7→ ξ(t, x) belongs to
a N−1+Cδ neighborhood of ζx0(t).
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2d_figure.eps

Figure 3. ζx0(t) ∈ T ∗x0
Rd is the set of tangent (covectors) for rays passing through

(tq, x0) that intersect the ray (t, xt2) for the tube T2 at times |t− tq| ' N2−2δ.

Proof. By a slight abuse of notation we write
(
xt(y, ζ), ξt(y, ζ)

)
for the bicharacteristic passing

through (y, ζ) at time t = tq instead of t = 0. Both claims are consequences of Lemma 2.1, which
yields

xt2 = xt(x0, ζx0(t)), ξtq(x0, ζx0(t)) = ζx0(t),

ξt2 =
d

dt
xt2 = ξt

(
x0, ζx0(t)

)
+

∂xt

∂ζx0

ζ̇x0(t)

= ξt(x0, ζx0(t)) + (t− tq)
(
I +O(η)

)
ζ̇x0(t),

therefore

ζ̇x0(t) = (t− tq)−1
(
I +O(η)

)(
ξt2 − ξt(x0, ζx0(t))

)
.(50)

We claim that for any C > 1,

dist(ζx0(tq), S
tq
1 ) .C N

−1+Cδ.(51)

Otherwise, as |t − tq| ' N2(1−δ), for any ray (xt1, ξ
t
1) with ξ1 ∈ S1 and |xtq1 − xq| ≤ N1+δ, the

estimates (19) would imply that

|xt1 − xt2| & |t− tq||ξ
tq
1 − ζx0(t)| − |xtq1 − x0|

& N−1+Cδ −N1+δ & N1+Cδ,

so we get the contradiction that every T1 ∈ T′1 misses T2 by at least NCδ.
By the near-constancy (38) of the frequency variable and the definition (29) of Sj , the covector

ξt2 − ξt(x0, ζx0(t)) belongs a small perturbation (say, of magnitude at most c
50) of the difference

set S2 − S1 = −2ce1 + B(0, c50), hence by Lemma 6.8 is transverse to the hyperplane containing
π(ξ1, ξ

′
2). The first claim now follows from (50).

The argument just given also implies the second statement: a ray with xtq = x0 and |xt2 − xt| ≤
N1+δ must satisfy |ξtq − ζx0(t)| . N−1+Cδ. �
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2d_figure_2.eps

Figure 4. The phase space region Σtq .

By the second part of the lemma, the fiber of Σtq in T ∗x0
Rd is contained in a “frequency tube”

Θ(x0) :=
⋃

|t−tq |'N2(1−δ)

B(ζx0(t), N−1+Cδ).

As the basepoint x0 varies in N1+δ neighborhood of xq, the estimate (19) implies that the curve

ζx0(t) shifts by at most O(N−1+3δ). Hence the tubes Θ(x0) are all contained in a dilate of Θ(xq),
which we denote by

Θ̃(xq) :=
⋃
t

B(ζxq(t), N
−1+Cδ)

with a larger C.
Therefore, Σtq is contained in the region

Σ̃tq :=
{

(x, ξ) : |x− xq| ≤ N1+δ, ξ ∈ πtk ∩ Θ̃(xq) ⊂ {ξ ∈ Θ̃(xq) : dist(ξ, π) . 2kN−1+Cδ}
}
,

where for the last containment we recall the estimate (45). The region Σ̃tq is sketched in Figure 4.

Using the previous lemma for the central curve ζxq , the frequency projection (x, ξ) 7→ ξ) of Σ̃tq can

be covered by approximately 2k finitely overlapping cubes
⋃

1≤j.2k Qj of width N−1+Cδ. By (19),
the preimage of each box

B(xq, N
1+δ)×Qj

under the flow map (x, ξ) 7→ (xtq , ξtq) is contained in a (CN1+Cδ)d × (CN−1+Cδ)d box. The union
of these preimages cover Σ and contain at most O(2kNCδ) points in NZd ×N−1Zd. �

7. Remarks on magnetic potentials

We sketch the modifications needed to prove Theorem 1.6. The symbol for H(t) is

a =
1

2
|ξ|2 + 〈A, ξ〉+ V (t, x),

where A = Aj(t, x)dxj and Aj are linear functions in the space variables with bounded time-
dependent coefficients.

• Easy computation shows that the symbol map a 7→ az0 in Lemma 1.1 is

az0 =
1

2
|ξ|2 + 〈Az0(1)(t, x), ξ〉+ 〈Az0(2)(t, x), ξt0〉+ V z0

(2)(t, x),

where Az0(1)(t, x) = A(t, xt0+x)−A(t, xt0) and Az0(2)(t, x) = A(t, xt0+x)−〈x, ∂xA(t, xt0)〉−A(xt0),

and similarly for V . Thus when A is linear, the first order component of the symbol is exactly
“Galilei-invariant”, preserved by the transformation a 7→ az0 in Lemma 1.1.
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• After rescaling, the inequality (15) takes the form

‖UNfUNg‖
L
d+3
d+1 ([−τ0N2,τ0N2]×Rd)

.ε N
ε‖f‖L2‖g‖L2 ,

where UN (t) be the propagator for the rescaled symbol

aN := N−2a(N−2t,N−1x,Nξ) =
1

2
|ξ|2 +N−2〈A(x), ξ〉+N−2V (N−2t,N−1x).

• Exploiting Galilei-invariance, we may reduce to a spatially localized estimate as in Proposi-
tion 6.4. Note that in the region of phase space corresponding to that estimate {(x, ξ) : |x| ≤
N2, |ξ| . 1}, and over a O(N2) time interval, both potential terms have strength O(1)
when integrated over the time interval |t| . N2. However the magnetic term dominates
near x = 0.
• Then, the rest of the previous proof can be mimicked with essentially no change except for

Lemma 6.10. There, one argues essentially as before except the vector field L for integrating
by parts should be replaced by

L := ∂t + 〈aξ(ztj), ∂x〉,

where ztj = (xtj , ξ
t
j) and aξ(z

t
j) = 1

4

∑
k aξ(z

t
k). Then one finds that

−LΨ =
1

2

∑
j

σj |ξtj |2 +
∑
j

σj〈A(xtj), ξ
t
j〉+

∑
j

σj
[
V z(t, xtj) + 〈x− xtj , ∂x(V z)(t, xtj)〉

]
,

and decomposes as before Ψ = Ψ1 + Ψ2, where

−LΨ1 =
1

2

∑
j

σj |ξtj |2 = |ξtq1 − ξ
tq
2 |

2 − |ξtq3 − ξ
tq
4 |

2 +O(N−1+δ)

−LΨ2 =
∑
j

σj〈A(xtj), ξ
t
j〉+

∑
j

σj
[
V z(t, xtj) + 〈x− xtj , ∂x(V z)(t, xtj)〉

]
= O(N−1+δ).

As in the proof of Lemma 6.10 the error terms are computed from the estimates (19),

|t − tq| . N1+δ, and |xtj | . N1+δ. The errors are larger than before due to the magnetic
term axξ = O(N−2) but are still acceptable.
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