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Countable sets — 1

In what follows, we set X := [N| (pronounced aleph nought).

Definition

A set E is countable if either E is finite or |E| = .
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Countable sets — 2

Proposition

O IN\ {0} =R,

O |{nreN : n=0 mod2}| =Y,
Proof.

© The function f : N — N\ {0} defined by f(rn) = n + 1 is bijective with inverse
f~' 1N\ {0} - Ndefinedby f~'(n)=n-1.

® Thefunction f : N— {neN : n=0 mod 2} defined by f(n) = 2n is bijective.

© Define f : NxN — N by f(a, b) = 23,
Then f is injective by uniqueness of the prime decomposition. Thus [N x N| < X,
Besides {0} x N c Nx N, thus 85 = [{0} x N| < IN X N]|.
Hence [N x N| = X8, by Cantor-Schréder—Bernstein theorem. [ |
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Countable sets — 3

Proposition
If § c Nis infinite then |.S| = R,

Proof. Let’s define the function f : N — .S by induction as follows.

Set f(0) = min S (which is well-defined by the well-ordering principle since S # @ as it is infinite).
And then, assuming that f(n) is already defined, we set f(n+ 1) =min{k € S : k> f(n)}
(which is well-defined by the well-ordering principle: the involved set is non-empty since
otherwise S would be finite).

It is easy to check that f is injective (note that Vn € N, f(n+ 1) > f(n)), therefore X, < |S|.

But since S c N, we also have |S| < N,.

Thus, by Cantor—Schréder—Bernstein theorem, |.S| = . [ |
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Countable sets — 4

Proposition

A set E is countable if and only if |[E| < R, (i.e. there exists an injection f : E — N),
otherwise stated E is countable if and only if there exists a bijection between E and a subset of N.

Proof.
= Assume that E is countable.

e Either E is finite and then there exists n € N and a bijection g : {keN : k<n} - E.
We define 1 : E — N by f(x) = g~ (x) (which is well-defined since {k e N : k < n} c N).
And £ is an injection since g~ is.

* Or |E| =N, i.e. there exists a bijection f : E - N.

< Assume there exists an injection f : E - N.
Assume that E is infinite. Then |E| = | f(E)| = N,.
Thus either E is finite or |E| = RX. In both cases E is countable. |
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Countable sets — 5

A countable union of countable sets is countable,
i.e. if I is countable and if for every i € I, E; is countable then | J,, E; is countable.

Proof.

WLOG we may now assume that I c N.

Leti € I. Since E, is countable, there exists an injection f; : E; - N'.

We define ¢ : |J,c; E; = NXNDby @(x) = (n, f,(x)) where n =min{i € I : x € E;} (which exists
by the well-ordering principle).

It is not difficult to check that ¢ is injective.

Therefore | J,, E; is countable. u

"We use the axiom of countable choice here.
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Countable sets — 6

If E is an infinite set then there exists T C E such that |T| = R, i.e. X is the least infinite cardinal.

Proof.

ForneN,setE, ={S e P(E) : |S|=n}.

Since E is infinite, it contains a subset of cardinal n, therefore E, # @.

So for every n € N, we can pick® S, € E,.

Then T := [, S, is countable as a countable union of countable sets.

Besides,Vn e N, S, c T and |S,| = n.

Therefore T is infinite since for every n € N it contains a subset of cardinal n.

Thus |T| = R, as an infinite countable set. [ |

2We use the axiom of countable choice here.
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Countable sets — 7

|Z] =R, I

Proof 1. Since N C Z, we have |N| < |Z|.
) . _ 2" ifn>0
Define f : Z - Nby f(n) = 31 ifn<0
Then £ is injective by uniqueness of the prime factorization. Therefore |Z| < |N|.
Hence |Z| = |N| by Cantor—Schréder—Bernstein theorem. [ |

Proof 2.

Definef:z-»bef(n)={ 2n ifn>0

—-2n+1) ifn<0

Then f is bijective with inverse f~!(m) = { _kk_ | :; gl; : E Zf ;i e

Therefore |Z| = |N]|. |
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Countable sets — 8

Q| =R, I

Proof 1. Note that N c Q, therefore X, < |Q)|.

Define f : Q—ZxZby f (%) = (a, b) where % is in lowest form.

Then f is injective and thus |Q| < |Z x Z|. Since |Z| = |N|, we get |Z x Z| = IN X N| = N,.

We conclude using Cantor—Schréder—Bernstein theorem. [ |

Proof 2. Note that N c Q, therefore R, < |Q)|.

Moreover f : Zx N\ {0} — Q defined by f(a,b) = % is surjective. Thus |Q| < |Z x N\ {0}].

Since |Z| = IN] and [N\ {0}] = [N|, we get |Zx N\ {0}| = INXN| = N,.

We conclude using Cantor—Schréder—Bernstein theorem. [ |

Proof 3. Note that N c Q, therefore R, < |Q)|.

Since Q = U {5 } Q is countable as a countable union of countable sets. So |Q| < N,
(a,b)eZxN\{0}
We conclude using Cantor—Schréder—Bernstein theorem. [ |
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Cantor’s diagonal argument — 1

Theorem: R is not countable (Cantor 1874, the proof below dates back to 1891)

N, < |R|

Proof. We are going to prove that there is no surjection N - R (and hence no such bijection).
+00

Let f : N — R be a function. Given n € N, we know that f(n) has a unique proper decimal expansion f(n) = Z a,,klo"‘
k=0
where a,, € Zand a,, € {0,1,...,9} fork > 1, i.e.
S(0) = agg - ag; agy a3 apy ags -
F) =ay . ajy app a3 ayy a5 ...
SQ2) = ay . ay ay ax; ay aps ...
S(3) = a3 . a3 azy a3 a3y azs ..
J@) = ayy - ag ag ag3 as ags -
. _J 1 ifay =0
Given k € N, we set b, = { 0 otherwise
+oco
Then b = 2 b, 107 is a real number written with its unique proper decimal expansion.
k=0
Note that for every n € N, b # f(n) since b, # a,, (We use the uniqueness of the proper decimal expansion).
Therefore b ¢ Im(f) and f is not surjective. [ ]
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Cantor’s diagonal argument — 2
Cantor’s theorem
Given aset E, |E| < |P(E)|.

Proof. We are going to use Cantor’s diagonal argument again.
First, note that g : E — P(E) defined by g(x) = {x} is injective, therefore |E| < |P(E)|.

We are going to prove that there is no surjection E — P(E) (and hence no such bijection).
Let f : E - P(F) be afunction. Define S={x€ E : x & f(x)}.
Letx € E.
e lfxe f(x)thenx ¢ S.
e Otherwise, if x € f(x) then x € S.
Therefore f(x) # .S since one contains x but not the other one.
Thus S ¢ Im(f) and f is not surjective. |

There is no greatest cardinal.
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IR| = |P(N)]

We already know that |[N| < |R| and that |N| < |P(N)|. Actually |R| = |P(N)|.

IR| = [P(N)|

Proof.
Define f : P(N) > Rby £(S)= ) 107",
nes
Then f is injective by uniqueness of the proper decimal expansion. Thus |P(N)| < |R].

Defineg : R—>PQbygx)={qgeQ : g<x}.

Then g is injective. Indeed, let x, y € R be such that x < y. Since Q is dense in R, there exists
g € Qsuchthat x < g < y. So q &€ g(x) but g € g(y). Therefore g(x) # g(»).

Hence |R| < |P(Q)| = |P(N)| (prove the last equality using that |Q| = |N]|).

We conclude thanks to Cantor—Schroder—Bernstein theorem. [ ]
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There is no set of all sets
There is no set containing all sets. I

Proof. Assume that such a set V' exists.
Then the powerset P(V) exists too and P(V) C V by definition of V.
Therefore |P(V)| < |V, but |V| < |[P(V)| by Cantor’'s theorem. Hence a contradiction. [ |

We may similarly prove that there is no set containing all finite sets, or even all singletons.

There is no set containing all singletons.

Proof. Assume that the set S of all singletons exists.

Define f : P(S) —» S by f(x) = {x} (which is well-defined).

Since f is one-to-one, we get that |P(S)| < |S].

Which contradicts |.S| < |P(S)| (Cantor’s theorem). |
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