MAT246H1-S - LEC0201/9201

Concepts in Abstract Mathematics

CARDINALITY: FINITE SETS

March 25th, 2021

Definition: finite set

We say that a set E is finite if there exists $n \in \mathbb{N}$ and a bijection f: $\{k \in \mathbb{N} : k < n\} \to E$. Then we write |E| = n.

Note that $\{k \in \mathbb{N} : k < n\} = \{0, 1, 2, \dots, n-1\}.$

Lemma

Let $n, p \in \mathbb{N}$. If there exists an injective function $f: \{k \in \mathbb{N} : k < n\} \to \{k \in \mathbb{N} : k < p\}$ then $n \le p$.

Proof. We prove the statement by induction on n.

- Base case at n = 0: for any $p \in \mathbb{N}$ we have $n \le p$.
- Induction step. Assume that the statement holds for some n ∈ N.
 Let p ∈ N. Assume that there exists an injective function f: {k ∈ N : k < n + 1} → {k ∈ N : k < p}.

Define
$$g: \{k \in \mathbb{N} : k < n\} \rightarrow \{k \in \mathbb{N} : k < p-1\}$$
 as follows: $g(x) = \begin{cases} f(x) & \text{if } f(x) < f(n) \\ f(x) - 1 & \text{if } f(x) > f(n) \end{cases}$

Note that $f(x) \neq f(n)$ since f is injective.

- * Claim 1: g is well-defined, i.e. $\forall x \in \{k \in \mathbb{N} : k < n\}, \ g(x) \in \{k \in \mathbb{N} : k < p 1\}.$ Let $x \in \{k \in \mathbb{N} : k < n\}.$ So either, f(x) < f(n) and then g(x) = f(x) < f(n) < p, therefore $0 \le g(x) . Or, <math>f(x) > f(n)$ and then $g(x) = f(x) 1 , therefore <math>0 \le g(x) .$
- ★ Claim 2: g is injective.

Let
$$x, y \in \{k \in \mathbb{N} : k < n\}$$
 be such that $g(x) = g(y)$.

First case:
$$f(x)$$
, $f(y) < f(n)$.

Then g(x) = f(x) and g(y) = f(y). So f(x) = f(y) and thus x = y since f is injective.

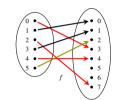
Second case: f(x), f(y) > f(n).

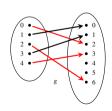
Then g(x) = f(x) - 1 and g(y) = f(y) - 1. So f(x) = f(y) and thus x = y since f is injective.

Third case: f(x) < f(n) and f(y) > f(n).

Then g(x) = f(x) < f(n) and $g(y) = f(y) - 1 > f(n) - 1 \ge f(n)$. Therefore, this case is impossible.

Therefore, by the induction hypothesis, $n \le p - 1$, i.e. $n + 1 \le p$.





Definition: finite set

We say that a set *E* is finite if there exists $n \in \mathbb{N}$ and a bijection $f : \{k \in \mathbb{N} : k < n\} \to E$.

Then we write |E| = n.

Corollary

Let *E* be a finite set. If |E| = n and |E| = m, then m = n.

Then we say that |E| is the *cardinal* of E, which is uniquely defined.

Proof. Assume there exists a bijection $f_1: \{k \in \mathbb{N} : k < n\} \to E$ and a bijection $f_2: \{k \in \mathbb{N} : k < m\} \to E$.

Then $f_2^{-1} \circ f_1 : \{k \in \mathbb{N} : k < n\} \to \{k \in \mathbb{N} : k < m\}$ is a bijection, so by the above lemma, $n \le m$.

Similarly, $f_1^{-1} \circ f_2 : \{k \in \mathbb{N} : k < m\} \to \{k \in \mathbb{N} : k < n\}$ is a bijection and thus $m \le n$.

Therefore n = m.

Remark: the empty set

 $|E| = 0 \Leftrightarrow E = \emptyset$

Indeed, if $E=\emptyset$ then $f:\{k\in\mathbb{N}:k<0\}\to E$ is always bijective: injectiveness and surjectiveness are vacuously true. So |E|=0.

Otherwise, if $E \neq \emptyset$ then $f: \{k \in \mathbb{N} : k < 0\} \rightarrow E$ is never surjective (thus never bijective), so $|E| \neq 0$.

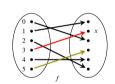
Proposition

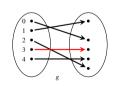
If $E \subset F$ and F is finite then E is finite too, besides, |E| < |F|.

Proof. Let's prove by induction on n = |F| that if $E \subset F$ then E is finite and $|E| \le n$.

- Base case at n=0: then $F=\emptyset$, so the only possible subset is $E=\emptyset$ and then |E|=0.
- *Induction step.* Assume that the statement holds for some $n \in \mathbb{N}$. Let F be a set such that |F| = n + 1.
 - First case: E = F. Then the statement is obvious.
 - Second case: $E \neq F$. Then there exists $x \in F \setminus E$. There exists a bijection $f: \{k \in \mathbb{N} : k < n+1\} \to F$. Since f is bijective, there exists a unique m < n + 1 such that f(m) = x. Define $g : \{k \in \mathbb{N} : k < n\} \to F \setminus \{x\}$ by g(k) = f(k) for $k \neq m$. and, if $m \neq n$, g(m) = f(n). Then g is a bijection, so $F \setminus \{x\}$ is finite and $|F \setminus \{x\}| = n$.

 - Since $E \subset F \setminus \{x\}$, by the induction hypothesis, E is finite and $|E| \le n < n + 1$.





Proposition

Let $E \subset F$ with F finite. Then $|F| = |E| + |F \setminus E|$.

Proof. Since $F \setminus E \subset F$ and $E \subset F$, we know that E and $F \setminus E$ are finite.

Denote r = |E| and $s = |F \setminus E|$.

There exist bijections $f: \{k \in \mathbb{N} : k < r\} \to E \text{ and } g: \{k \in \mathbb{N} : k < s\} \to F \setminus E$.

Define
$$h: \{k \in \mathbb{N} : k < r + s\} \to F$$
 by $h(k) = \begin{cases} f(k) & \text{if } k < r \\ g(k - r) & \text{if } k \ge r \end{cases}$.

- h is well-defined:
 - Indeed, if $0 \le k < r$ then f(k) is well-defined and $f(k) \in E \subset F$.

If $r \le k < r + s$ then $0 \le k - r < s$ so that g(k - r) is well-defined and $g(k - r) \in F \setminus E \subset F$.

- h is a bijection:
 - h is injective: let x, y ∈ {0, 1, ..., r + s 1} be such that h(x) = h(y).
 Either h(x) = h(y) ∈ E and then f(x) = h(x) = h(y) = f(y) thus x = y since f is injective.
 Or h(x) = h(y) ∈ F \ E and then g(x r) = h(x) = h(y) = g(y r) thus x r = y r since g is injective, hence x = y.
 - h is surjective: let y ∈ F.
 Either y ∈ E, and then there exists x ∈ {0, 1, ..., r − 1} such that f(x) = y, since f is surjective. Then h(x) = f(x) = y.

Or $y \in F \setminus E$, and then there exists $x \in \{0, 1, \dots, s-1\}$ such that g(x) = y since g is surjective. Then h(x+r) = g(x) = y.

Therefore $|F| = r + s = |E| + |F \setminus E|$.

Proposition

Let E and F be two finite sets. Then

- $|E \times F| = |E| \times |F|$

Proof.

1 Using the previous proposition twice, we get

$$|E \cup F| = |E \sqcup (F \setminus (E \cap F))| = |E| + |F \setminus (E \cap F)| = |E| + |F| - |E \cap F|$$

- 2 We prove this proposition by induction on $n = |F| \in \mathbb{N}$.
 - Base case at n = 0: then $F = \emptyset$ so $E \times F = \emptyset$ too and $|E \times F| = 0 = |E| \times 0 = |E| \times |F|$.
 - Case n = 1: we will use this special case later in the proof.
 Assume that F = {*} and that |E| = n. Then there exists a bijection f: {k ∈ N : k < n} → E.
 Note that g: {k ∈ N : k < n} → E × F defined by g(k) = (f(k), *) is a bijection.
 Therefore |E × F| = n = n × 1 = |E| × |F|.
 - Induction step. Assume that the statement holds for some $n \in \mathbb{N}$. Let F be a set such that |F| = n + 1.

Since |F| > 0, there exists $x \in F$ and $|F \setminus \{x\}| = |F| - |\{x\}| = n + 1 - 1 = n$. Then

$$\begin{split} |E \times F| &= |(E \times (F \setminus \{x\})) \sqcup (E \times \{x\})| = |E \times (F \setminus \{x\})| + |E \times \{x\}| \\ &= |E| \times |F \setminus \{x\}| + |E| \text{ using the induction hypothesis and the case } n = 1 \\ &= |E| \times (|F| - 1) + |E| = |E| \times |F| \end{split}$$

Proposition

Assume that $E \subset F$ with F finite. Then $E = F \Leftrightarrow |E| = |F|$.

Proof.

- \Rightarrow It is obvious.
- \Leftarrow Assume that |E| = |F|. Then $|F \setminus E| = |F| |E| = 0$. Thus $F \setminus E = \emptyset$, i.e. E = F.

Proposition

Let *E* a finite set. Then *F* is finite and |E| = |F| if and only if there exists a bijection $f: E \to F$.

Proof.

- \Rightarrow Assume that *F* is finite and that |E| = |F| = n.
- Then there exist bijections φ : $\{k \in \mathbb{N} : k < n\} \to E$ and ψ : $\{k \in \mathbb{N} : k < n\} \to F$.
- Therefore $f = \psi \circ \varphi^{-1} : E \to F$ is a bijection.
- \Leftarrow Assume that there exists a bijection $f: E \to F$.
- Since *E* is finite there exists a bijection φ : $\{k \in \mathbb{N} : k < |E|\} \to E$.
- Thus $f \circ \varphi : \{k \in \mathbb{N} : k < |E|\} \to F$ is a bijection. Therefore F is finite and |F| = |E|.

Proposition

Let E, F be two finite sets such that |E| = |F|. Let $f: E \to F$. Then TFAE:

- 1 f is injective.
- 2 f is surjective.
- 3 f is bijective.

Proof.

Assume that f is injective.

There exists a bijection $\varphi: \{k \in \mathbb{N} : k < |E|\} \to E$.

Then $f \circ \varphi : \{k \in \mathbb{N} : k < |E|\} \to f(E)$ is a bijection. Thus |f(E)| = |E| = |F|.

Since $f(E) \subset F$ and |f(E)| = |F|, we get f(E) = F, i.e. f is surjective.

Assume that f is surjective.

Then for every $y \in F$, $f^{-1}(y) \subset E$ is finite and non-empty, i.e. $\left| f^{-1}(y) \right| \ge 1$. Assume by contradiction that there exists $y \in F$ such that $|f^{-1}(y)| > 1$.

Thus $|E| = \left| \bigsqcup_{y \in F} f^{-1}(y) \right| = \sum_{y \in F} \left| f^{-1}(y) \right| > |F| = |E|$. Hence a contradiction.

Proposition

Let *E* and *F* be two finite sets. Then $|E| \leq |F|$ if and only if there exists an injection $f: E \to F$.

Proof.

 \Rightarrow Assume that $|E| \leq |F|$.

There exist bijections φ : $\{k \in \mathbb{N} : k < |E|\} \to E$ and ψ : $\{k \in \mathbb{N} : k < |F|\} \to F$.

Since $|E| \le |F|$, $f = \psi \circ \varphi^{-1} : E \to F$ is well-defined and injective.

 \Rightarrow Assume that there exists an injection $f: E \to F$.

Then f induces a bijection $f: E \to f(E)$, so that |E| = |f(E)|.

And since $f(E) \subset F$, we have $|f(E)| \leq |F|$.

Corollary: the pigeonhole principle or Dirichlet's drawer principle

Let *E* and *F* be two finite sets. If |E| > |F| then there is no injective function $E \to F$.

Examples

- There are two non-bald people in Toronto with the exact same number of hairs on their heads.
- During a post-covid party with n > 1 participants, we may always find two people who shook hands to the same number of people.

Remark: trichotomy principle for finite sets

Since the cardinal of a finite set is a natural number, we deduce from the fact that \mathbb{N} is totally ordered, that given two finite sets E and F, exactly one of the followings occurs:

- either |E| < |F| i.e. there is an injection $E \to F$ but no bijection $E \to F$,
- or |E| = |F|i.e. there is a bijection $E \to F$,
- or |E| > |F|i.e. there is an injection $F \to E$ but no bijection $E \to F$.