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Modular arithmetic: introduction
• Introduced by Gauss during the beginning of the 19th century.
• Working modulo 𝑛 ∈ ℕ ⧵ {0} means that we identify 𝑎 with its remainder for the Euclidean division by 𝑛.
• If 𝑎 = 𝑛𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑛 then we set 𝑎 ≡ 𝑟 (mod 𝑛): 𝑎 and 𝑟 are equal modulo 𝑛.
• This new layer of abstraction allowed to simplify previous proofs and to prove new theorems.
• Informally, we wind ℤ on itself as below:

−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ℤ

… , −12, −6, 0, 6, 12, …

… , −11, −5, 1, 7, 13, …… , −10, −4, 2, 8, 14, …

… , −9, −3, 3, 9, 15, …

… , −8, −2, 4, 10, 16, … … , −7, −1, 5, 11, 17, …

ℤ modulo 6
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Congruences – 1

Definition: equivalence relation
We say that a binary relation ℛ on a set 𝐸 is an equivalence relation if

1 ∀𝑥 ∈ 𝐸, 𝑥ℛ𝑥 (reflexivity)
2 ∀𝑥, 𝑦 ∈ 𝐸, 𝑥ℛ𝑦 ⟹ 𝑦ℛ𝑥 (symmetry)
3 ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑧) ⟹ 𝑥ℛ𝑧 (transitivity)
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Congruences – 2

Definition: congruence
Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎, 𝑏 ∈ ℤ.
We say that 𝑎 and 𝑏 are congruent modulo 𝑛, denoted by 𝑎 ≡ 𝑏 (mod 𝑛), if 𝑛|𝑎 − 𝑏.

Proposition
Congruence modulo 𝑛 is an equivalence relation on ℤ.

Proof.
• Reflexivity. Let 𝑎 ∈ ℤ then 𝑛|0 = 𝑎 − 𝑎. Hence 𝑎 ≡ 𝑎 (mod 𝑛).
• Symmetry. Let 𝑎, 𝑏 ∈ ℤ be such that 𝑎 ≡ 𝑏 (mod 𝑛).

Then 𝑛|𝑏 − 𝑎 = −(𝑎 − 𝑏) hence 𝑏 ≡ 𝑎 (mod 𝑛).
• Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ ℤ be such that 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑏 ≡ 𝑐 (mod 𝑛).

Then 𝑛|𝑎 − 𝑏 and 𝑛|𝑏 − 𝑐. Hence 𝑛|𝑎 − 𝑐 = (𝑎 − 𝑏) + (𝑏 − 𝑐).
Thus 𝑎 ≡ 𝑐 (mod 𝑛). ■
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Congruences – 3
Proposition
Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎, 𝑏 ∈ ℤ.
Then 𝑎 ≡ 𝑏 (mod 𝑛) if and only if 𝑎 and 𝑏 have same remainder for the Euclidean division by 𝑛.

Proof.
⇒. Assume that 𝑎 ≡ 𝑏 (mod 𝑛), then 𝑏 − 𝑎 = 𝑘𝑛 for some 𝑘 ∈ ℤ.
By Euclidean division, 𝑎 = 𝑛𝑞 + 𝑟 for 𝑞, 𝑟 ∈ ℤ satisfying 0 ≤ 𝑟 < 𝑛.
Hence 𝑏 = 𝑎 + 𝑘𝑛 = 𝑛𝑞 + 𝑟 + 𝑘𝑛 = (𝑞 + 𝑘)𝑛 + 𝑟.
⇐. Assume that 𝑎 and 𝑏 have same remainder for the Euclidean division by 𝑛.
Then 𝑎 = 𝑛𝑞1 + 𝑟 and 𝑏 = 𝑛𝑞2 + 𝑟 where 𝑞1, 𝑞2, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑛.
Hence 𝑎 − 𝑏 = 𝑛𝑞1 + 𝑟 − (𝑛𝑞2 + 𝑟) = 𝑛(𝑞1 − 𝑞2).
Thus 𝑛|𝑎 − 𝑏, i.e. 𝑎 ≡ 𝑏 (mod 𝑛). ■

Corollary
Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎 ∈ ℤ. Then 𝑎 is congruent modulo 𝑛 to exactly one element of {0, 1, … , 𝑛 − 1}.
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Modular arithmetic
Proposition: addition and multiplication are well-defined modulo 𝑛
Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Assume that 𝑎 ≡ 𝑏 (mod 𝑛) and that 𝑐 ≡ 𝑑 (mod 𝑛) then

• 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛)
• 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛)

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Assume that 𝑎 ≡ 𝑏 (mod 𝑛) and that 𝑐 ≡ 𝑑 (mod 𝑛).
Hence 𝑎 − 𝑏 = 𝑛𝑘 and 𝑐 − 𝑑 = 𝑛𝑙 for some 𝑘, 𝑙 ∈ ℤ. Then

• (𝑎 + 𝑐) − (𝑏 + 𝑑) = (𝑎 − 𝑏) + (𝑐 − 𝑑) = 𝑛𝑘 + 𝑛𝑙 = 𝑛(𝑘 + 𝑙), hence 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛).
• 𝑎𝑐 − 𝑏𝑑 = (𝑏 + 𝑛𝑘)(𝑑 + 𝑛𝑙) − 𝑏𝑑 = 𝑏𝑛𝑙 + 𝑑𝑛𝑘 + 𝑛2𝑘𝑙 = 𝑛(𝑏𝑙 + 𝑑𝑘 + 𝑛𝑘𝑙), hence 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛). ■

Corollary
Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Then ∀𝑘 ∈ ℕ, 𝑎 ≡ 𝑏 (mod 𝑛) ⟹ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛).

Proof. We prove the statement by induction on 𝑘.
Base case at 𝑘 = 0: 𝑎0 = 𝑏0 = 1 hence 𝑎0 ≡ 𝑏0 (mod 𝑛).
Induction step: assume that 𝑎 ≡ 𝑏 (mod 𝑛) ⟹ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛) for some 𝑘 ∈ ℕ.
If 𝑎 ≡ 𝑏 (mod 𝑛) then by the IH we also have 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛). Hence 𝑎𝑘𝑎 ≡ 𝑏𝑘𝑏 (mod 𝑛). ■
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Modular multiplicative inverse

Proposition
Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Then 𝑎 has a multiplicative inverse modulo 𝑛 if and only if gcd(𝑎, 𝑛) = 1.
Otherwise stated,

∃𝑏 ∈ ℤ, 𝑎𝑏 ≡ 1 (mod 𝑛) ⇔ gcd(𝑎, 𝑛) = 1

Proof. ∃𝑏 ∈ ℤ, 𝑎𝑏 ≡ 1 (mod 𝑛) ⇔ ∃𝑏, 𝑐 ∈ ℤ, 𝑎𝑏 + 𝑛𝑐 = 1 ⇔ gcd(𝑎, 𝑛) = 1 ■

Remark
When it exists, the multiplicative inverse is unique modulo 𝑛.
Indeed, assume that 𝑎𝑏 ≡ 1 (mod 𝑛) and 𝑎𝑏′ ≡ 1 (mod 𝑛) then 𝑎𝑏 ≡ 𝑎𝑏′ (mod 𝑛) so 𝑛|𝑎(𝑏 − 𝑏′).
Since gcd(𝑎, 𝑛) = 1, by Gauss’ lemma we get 𝑛|𝑏 − 𝑏′.
Therefore 𝑏′ ≡ 𝑏 (mod 𝑛).

Note that gcd(4, 25) = 1 so 4 has a multiplicative inverse modulo 25.
We may find one representative of the inverse from a Bézout’s identity: 4 × (−6) + 25 × 1 = 1.
So 4 × (−6) ≡ 1 (mod 25).
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Application: divisibility criterion for 3
Proposition

3|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 3|

𝑟

∑
𝑘=0

𝑎𝑘

Proof. Note that 10 ≡ 1 (mod 3), hence

𝑎𝑟𝑎𝑟−1 … 𝑎0
10 =

𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡
𝑟

∑
𝑘=0

𝑎𝑘1𝑘 (mod 3) ≡
𝑟

∑
𝑘=0

𝑎𝑘 (mod 3)

Thus, 3|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 3) ⇔
𝑟

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 3) ⇔ 3|
𝑟

∑
𝑘=0

𝑎𝑘
■

Examples
• 91524 is divisible by 3 since 9 + 1 + 5 + 2 + 4 = 21 = 7 × 3 is.
• Let’s study whether 8546921469 is a multiple of 3 or not:

3|8546921469 ⇔ 3|8 + 5 + 4 + 6 + 9 + 2 + 1 + 4 + 6 + 9 = 54 ⇔ 3|5 + 4 = 9.
But 9 = 3 × 3, hence 3|8546921469.
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Application: divisibility criterion for 9

Note that 10 ≡ 1 (mod 9), hence we have a similar result:

Proposition

9|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 9|

𝑟

∑
𝑘=0

𝑎𝑘
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Application: divisibility criterion for 4
Proposition
4|𝑎𝑟𝑎𝑟−1 … 𝑎0

10 if and only if 4|𝑎1𝑎0
10.

Proof. Note that 102 = 4 × 25 hence 10𝑘 ≡ 0 (mod 4) for 𝑘 ≥ 2. Hence
4|𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ≡ 0 (mod 4)

⇔
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡ 0 (mod 4)

⇔ 𝑎1 × 10 + 𝑎0 ≡ 0 (mod 4)
⇔ 𝑎1𝑎0

10 ≡ 0 (mod 4)
⇔ 4|𝑎1𝑎0

10 ■
Example

• 4 ∤ 856987454251100125 since 4 ∤ 25.
• 4|98854558715580 since 4|80 = 4 × 20.
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