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Absolute value – 1

Definition: absolute value of an integer

For 𝑛 ∈ ℤ, we define the absolute value of 𝑛 by |𝑛| ≔ {
𝑛 if 𝑛 ∈ ℕ

−𝑛 if 𝑛 ∈ (−ℕ) .
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Absolute value – 2
Proposition

1 ∀𝑛 ∈ ℤ, |𝑛| ∈ ℕ
2 ∀𝑛 ∈ ℤ, 𝑛 ≤ |𝑛|
3 ∀𝑛 ∈ ℤ, |𝑛| = 0 ⇔ 𝑛 = 0
4 ∀𝑎, 𝑏 ∈ ℤ, |𝑎𝑏| = |𝑎||𝑏|
5 ∀𝑎, 𝑏 ∈ ℤ, |𝑎| ≤ 𝑏 ⇔ −𝑏 ≤ 𝑎 ≤ 𝑏

Proof.
1 If 𝑛 ∈ ℕ then |𝑛| = 𝑛 ∈ ℕ.

If 𝑛 ∈ (−ℕ) then 𝑛 = −𝑚 for some 𝑚 ∈ ℕ and |𝑛| = −𝑛 = −(−𝑚) = 𝑚 ∈ ℕ.
2 First case: 𝑛 ∈ ℕ. Then 𝑛 ≤ 𝑛 = |𝑛|.

Second case: 𝑛 ∈ (−ℕ). Then 𝑛 ≤ 0 ≤ |𝑛|.
3 Note that |0| = 0 and that if 𝑛 ≠ 0 then |𝑛| ≠ 0.
4 You have to study separately the four cases depending on the signs of 𝑎 and 𝑏.
5 If 𝑏 < 0 then |𝑎| ≤ 𝑏 and −𝑏 ≤ 𝑎 ≤ 𝑏 are both false. So we may assume that 𝑏 ∈ ℕ. Then

First case: 𝑎 ∈ ℕ. Then |𝑎| ≤ 𝑏 ⇔ 𝑎 ≤ 𝑏 ⇔ −𝑏 ≤ 𝑎 ≤ 𝑏.
Second case: 𝑎 ∈ (−ℕ). Then |𝑎| ≤ 𝑏 ⇔ −𝑎 ≤ 𝑏 ⇔ −𝑏 ≤ 𝑎 ⇔ −𝑏 ≤ 𝑎 ≤ 𝑏. ■
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Euclidean division – 1
Theorem: Euclidean division
Given 𝑎 ∈ ℤ and 𝑏 ∈ ℤ ⧵ {0}, there exists a unique couple (𝑞, 𝑟) ∈ ℤ2 such that

{
𝑎 = 𝑏𝑞 + 𝑟
0 ≤ 𝑟 < |𝑏|

The integers 𝑞 and 𝑟 are respectively the quotient and the remainder of the division of 𝑎 by 𝑏.
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The integers 𝑞 and 𝑟 are respectively the quotient and the remainder of the division of 𝑎 by 𝑏.

Existence: First case: 𝑏 > 0. We set 𝐸 = {𝑝 ∈ ℤ ∶ 𝑏𝑝 ≤ 𝑎}.
• 𝐸 ≠ ∅, indeed if 0 ≤ 𝑎 then 0 ∈ 𝐸, otherwise 𝑎 ∈ 𝐸.
• |𝑎| is an upper bound of 𝐸 (check it).

Thus 𝐸 is a non-empty subset of ℤ which is bounded from above.
Hence it admits a greatest element, i.e. there exists 𝑞 ∈ 𝐸 such that ∀𝑝 ∈ 𝐸, 𝑝 ≤ 𝑞.
We set 𝑟 = 𝑎 − 𝑏𝑞. Since 𝑞 ∈ 𝐸, 𝑟 = 𝑎 − 𝑏𝑞 ≥ 0.
And 𝑞 + 1 ∉ 𝐸 since 𝑞 + 1 > 𝑞 whereas 𝑞 is the greatest element of 𝐸.
Therefore 𝑏(𝑞 + 1) > 𝑎, so 𝑟 = 𝑎 − 𝑏𝑞 < 𝑏 = |𝑏|.
We wrote 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < |𝑏| as expected.
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The integers 𝑞 and 𝑟 are respectively the quotient and the remainder of the division of 𝑎 by 𝑏.

Existence:
Second case: assume that 𝑏 < 0.
Then we apply the first case to 𝑎 and −𝑏 > 0:
there exists (𝑞, 𝑟) ∈ ℤ2 such that 𝑎 = −𝑏𝑞 + 𝑟 = 𝑏(−𝑞) + 𝑟 with 0 ≤ 𝑟 < −𝑏 = |𝑏|.
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The integers 𝑞 and 𝑟 are respectively the quotient and the remainder of the division of 𝑎 by 𝑏.

Uniqueness: Let (𝑞, 𝑟) and (𝑞′, 𝑟′) be two suitable couples.
Then 𝑟′ − 𝑟 = (𝑎 − 𝑏𝑞′) − (𝑎 − 𝑏𝑞) = 𝑏(𝑞 − 𝑞′). Besides

{
0 ≤ 𝑟 < |𝑏|
0 ≤ 𝑟′ < |𝑏| ⟹ {

−|𝑏| < −𝑟 ≤ 0
0 ≤ 𝑟′ < |𝑏| ⟹ −|𝑏| < 𝑟′ − 𝑟 < |𝑏|

Thus −|𝑏| < 𝑏(𝑞 − 𝑞′) < |𝑏|, from which we get |𝑏||𝑞 − 𝑞′| = |𝑏(𝑞 − 𝑞′)| < |𝑏|.
Since |𝑏| > 0, we obtain 0 ≤ |𝑞 − 𝑞′| < 1.
Therefore |𝑞 − 𝑞′| = 0, which implies that 𝑞 − 𝑞′ = 0, i.e. 𝑞 = 𝑞′.
Finally, 𝑟′ = 𝑏 − 𝑎𝑞′ = 𝑏 − 𝑎𝑞 = 𝑟. ■
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Euclidean division – 2
Examples

• Division of 22 by 5:
22 = 5 × 4 + 2

The quotient is 𝑞 = 4 and the remainder is 𝑟 = 2.

• Division of −22 by 5:
−22 = 5 × (−5) + 3

The quotient is 𝑞 = −5 and the remainder is 𝑟 = 3.

• Division of 22 by −5:
22 = (−5) × (−4) + 2

The quotient is 𝑞 = −4 and the remainder is 𝑟 = 2.

• Division of −22 by −5:
−22 = (−5) × 5 + 3

The quotient is 𝑞 = 5 and the remainder is 𝑟 = 3.
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Euclidean division – 3

Proposition: parity of an integer
Given 𝑛 ∈ ℤ, exactly one of the followings occurs:

• either 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ (then we say that 𝑛 is even),
• or 𝑛 = 2𝑘 + 1 for some 𝑘 ∈ ℤ (then we say that 𝑛 is odd).

Proof. Let 𝑛 ∈ ℤ.
By Euclidean division by 2, there exist 𝑘, 𝑟 ∈ ℤ such that 𝑛 = 2𝑘 + 𝑟 and 0 ≤ 𝑟 < 2.
Hence either 𝑟 = 0 or 𝑟 = 1.
And these cases are exclusive by the uniqueness of the Euclidean division. ■
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