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1 Sets

As in many areas of mathematics, we will use sets very often during this course. But we won’t cover anything
about axiomatic set theory. Instead we will only use a naive informal intuitive definition of what is a set
and what is a function/map between two sets (you are already used to that from your linear algebra and
calculus courses).

Definition 1 (Informal). A set is a (well-defined) ”collection” of elements (order doesn’t matter).
Two sets are equal if they contain the same elements, so {1,2,2,3} = {1, 2,3} since they contain 1,2, 3.

Remark 2. We usually define a set either by giving explicitely the elements it contains, e.g.

S = {apple,x,5}
or from an already constructed set by taking only the elements satisfying some property
S={nez . ke Z,n=2k}

Notation 3. Given a set .S, we write a € S to express that a is an element of .S. It is read "a isin S” or "a is
an element of S”.

Example 4.

e apple € {apple, r,5}
e banana ¢ {apple, r,5}

Notation 5. Given two sets .S and T, we write .S C T to express that every element of S is an element of T,
ie.
YVae S, aeT

Itis read "S is a subset of T” or ”.S is included in T”.
Remark 6. Two sets .S and T are equal if and only if they have the same elements, i.e.
S=T&e (ScTandT CS)
Remark 7. There exists a unique set containing no element, it is denoted by @ and called the empty set.

Remark 8. Given a set E, the set of subsets of E is well-defined, it is denoted by P(E) := {S : S C E} and
called the powerset of E.
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2 Cartesian product

Definition 9. An n-tuple is an ordered list of n elements (x, ..., x,,). We say couple for a 2-tuple and triple for
a 3-tuple.

Fundamental property 10. (x,...,X,) = (¥}, ....V,) © X| = V|, X0 = Yy, ..., X, = Y,

Remark 11.

o {1,2,3} ={3,2,1} (sets)
e (1,2,3) #(3,2,1) (tuples)

Remark 12.
e {1,2,2,3} ={1,2,3} (sets)
o (1,2,2,3)# (1,2,3) (tuples)
Theorem 13. Given two sets A and B, the following set is well-defined
AXB:={(a,b) : a€ A, be B}

It is called the cartesian product of A and B.

Example 14. Set A = {z,e} and B = {1, 2,7r} then

AXB= {(n, 1, <n, \/§> (. 1), (e, 1), (e, \/5) , (e,n’)}

Theorem 15. Given sets A, A,, ..., A, the following set is well-defined
Al X A2 X eee X Al’l = {(al,az, ,an) : a; S Al}
Remark 16. We will often identify the following sets although they are not formally equal:
e (AXB)xC > ((a,b),c)
e AX(BXC)>(a,(b,c))
e AXBXC > (a,b,c)
3 Basic logic
Definition 17. A statement is a sentence which is either “true” (T') or “false” (F).

Definition 18. The negation of a statement P is the statement denoted by =P (or no P) defined with the
following truth table:

P[P
V| F
FlV

Definition 19. The disjunction of two statements P and Q is the statement denoted by P v Q (or PorQ)
defined with the following truth table:

PVvQ

BT I e
IR IR
MRS S <

Beware: the disjunction is not exclusive.



MAT?246H1-S — LEC0201/9201 - J.-B. Campesato 3

Definition 20. The conjunction of two statements P and Q is the statement denoted by P A Q (or Pand Q)
defined with the following truth table:

P O|PAQ
ViV V
V| F F
F|V F
F | F F

Definition 21. Given two statements P and Q, we define the statement P = Q with the following truth
table:

P=0

<
BTN LS
SNIN N

It is called the implication (or conditional statement) and it is read as follows ” P imples Q” or "if P (is true)
then Q (is true)”.

Definition 22. The converse of P = Q is defined as QO = P.

Definition 23. Given two statements P and Q, we define the statement P < Q with the following truth
table:

PlO|PseO
VIV |4
VI|F F
F |V F
F|F | 4

It is called the equivalence and it is read ” P is equivalent to Q” or ”P (is true) if and only if Q (is true)”.

Definition 24. A tautology is a statement which is true whatever are the truth values of its components, we
usually use the notation F P.

Definition 25. We say that P and Q are logically equivalent when P < Q is a tautology.
It simply means that P and Q have the same truth table.

Remark 26. The above logical connectives could have been defined in terms of the disjunction and the
negation. Indeed:

e P AQisequivalent to = ((=P) V (=Q)).

PO |~P|~Q|E=P)V(EQ) |~ (=P) V(=) | PAQ
V|V| F|F F 4 |4
V|F|F |V 4 F F
F|V|V | F 4 F F
F|F|V |V 4 F F

e P = Qisequivalent to (=P)V Q.

Plo[-P[=P)vO[P=>0
VIVvIF v v
VIF| F F F
Flv]v v v
F|F|V v v

e P & Qisequivalentto (P = Q)A(Q = P)orto (PAQ)V ((=P)A(—Q)).
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Example 27. Law of excluded middle: = P v (—=P)

P|=P[PV(=P)
V| F v
FlV v

The law of excluded middle simply means that either P is true, or its negation =P is true.

Example 28. The modus ponens: = (P A (P = Q)) = Q

PO |P=>Q|PAP=0Q)|(PA(P=0)=>0
ViV |4 14 Vv
V| F F F vV
Fl|V |4 F Vv
F | F |4 F 14

It is the main inference rule in mathematics: if both P and P = Q are true then so is Q.
Example 29. E (PAQ)= P

Example 30. E P = (PV Q)

Proposition 31. The disjunction is commutative: £ (P Vv Q) < (Q V P)

Proposition 32. The disjunction is associative: = (P V Q) V R) & (P V (Q V R)).
Proposition 33. The conjunction is commutative: = (P A Q) < (O A P)

Proposition 34. The conjunction is associative : E (P A Q) A R) & (P A(Q A R)).

Proposition 35 (Double negation elimination). & (=(=P)) & P

Proof.
P =P | =(=P)
V| F Vv
F |V F

Proposition 36 (Morgan’s laws).
o The negation of PV Q is (= P) A (mQ):

FE(PVO) < (=P)A Q)
o the negation of P A Q is (= P) V (=Q):
F P AQ) < (=P)V(-0Q)
Mnemonic device: the negation changes conjunctions in disjunctions and vice-versa.

Proof. 1 only prove the first one.

d
©©

EPIACEQ) | PVO | A(PVO)

TR
SIRNISTRNTS
NI
<= s|=
<| 1| |
= <SS <
<| | |
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Proposition 37 (Distributivity).
e EF(PA(OVR)S (PAO)V(PAR)
e F(PVIOAR) S (PVOYA(PVR)

Proposition 38 (Proof by contrapositive).
The statement P = Q is logically equivalent to its contrapositive (=Q) = (—P).

Proof.
PlO|P=>0Q |~P |0 | (=0)=>(P)
V. Vv |4 F | F V
VI F F F |V F
F\|\V | 4 V | F |4
F|F | 4 VIV |4

In some cases, it may be easier to prove (-Q) = (=P) rather than P = Q.
Example 39. Let n € Z. Prove that if n* is odd then » is odd.
Proposition 40 (Reductio ad absurdum). (((=P) = Q) A ((=P) = (=Q))) = P is a tautology.

In practice, in order to prove P by contradiction, we assume that =P is true and we look for a contradiction.

4 Quantifiers

Definition 41. A predicate P(x,y, ...) is a statement whose truth value depends on variables x, y, ... occuring
in it.

Definition 42 (Universal quantifier). The statement "Vx € E, P(x)” means that P(x) is true for any x in E.

Itis read “for all x in E, P(x) is true”.

Definition 43 (Existential quantifier). The statement "3x € E, P(x)” means that there exists at least one x
in E such that P(x) is true.
It is read "there exists x in E such that P(x) is true”.

Here x is a bound variable:
e we may replace "Vx € E, P(x)” by "Vy € E, P(»)”
e we may replace "Ix € E, P(x)” by "3y € E, P(»)”.

Definition 44. The statement ”"3!x € E, P(x)” means that P(x) is true for exactly one element x in E.
It is read “there exists a unique x in E such that P(x) is true”.

As we see in the following example, we can’t permute the quantifiers V and 3.
e dneN,VpeN,p<n
e VpeN,dneN,p<n
Nonetheless, we may permute two existential quantifiers or two universal quantifiers.

Remark 45. It is common to write "Vx,y € E” for "Vx € E, Vy € E” (that’s an ellipsis).
The same holds for the existential quantifier 3.

Definition 46. The negation of "Vx € E, P(x)” is "3x € E, ~P(x)".
Definition 47. The negation of “3x € E, P(x)” is "Vx € E, = P(x)".
Mnemonic device: the negation swaps ¥V and 3.

Axiom 48. The statement "3x € @, P(x)” is false for any predicate.
Proposition 49. The statement "Vx € @, P(x)” is true for any predicate.

Proof. Indeed, 3x € @, (=P(x)) is false, so its negation Vx € @, P(x) is true. [ |
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5 Functions

Definition 50 (informal). A function (or map) is the data of two sets A and B together with a “process”
which assigns to each x € A a unique f(x) € B:

. J A - B
f'{fo(x)

Here, f is the name of the function, A is the domain of f, and B is the codomain of f.

Remark 51. The domain and codomain are part of the definition of a function. For instance

f:{IR—>[1,+oo) and g:{R_) R

x = x*+1 x = x*+1

are not the same function (the first one is surjective but not the second one).
A function is not simply a “formula”, you need to specify the domain and the codomain.

Definitions 52. Given a function f : A —» B.
e Theimageof EC Aby fis f(E)={f(x) : x€ E} C B.
The image of f (or range of f) is Range(f) := f(A).
The preimage of F C B by f is fUF)={xeA: f(x)e F).
The graph of f is the setT; == {(x,y) € AX B : y= f(x)}.
We say that f is injective (or one-to-one) if Vx;,x, € A, x| # x, = f(x;) # f(x,)
or equivalently by taking the contrapositive Vxi,x, € 4, f(x)) = f(x,) = x; =x,
We say that f is surjective (or onto) if Vy € B, 3x € A, y = f(x)

Figure 1: Injective

Figure 3: Surjective Figure 4: Not surjective

)

k

Figure 5: Bijective

Vx e A, g(f(x) =x

Proposition 53. f : A — B is bijective if and only if there exists g . B — A such that .
P / / f vy 8 { Vy€e B, f(gy) =y

Then g is unique, it is called the inverse of f and denoted by f -1 B> A
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Figure 6: Bijective function Figure 7: Its inverse

6 Sigma notation

Definition 54. For m,n € Z, we set
n

Zai=am+am+1+---+an

i=m

n
Remark 55. If m > n then 2 a; = 0 by convention.
i=m
7
Example 56. ) i =37 +47+5% + 67 + 7% = 135
i=3

n
Remark 57. If m < n then there are n — m + 1 terms in the sum Z a;.

i=m
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