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Exercise 1. Let 𝐵 = 𝐵(𝑎, 𝑟) ⊂ ℝ𝑛. Let 𝑓 ∶ 𝐵 → 𝐵 be a contraction mapping
(i.e. a Lipschitz mapping with constant 𝑞 ∈ [0, 1), or equivalently ∃𝑞 ∈ [0, 1), ∀𝑥, 𝑦 ∈ 𝐵, ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝑞‖𝑥 − 𝑦‖).

1. Prove that 𝑓 is continuous.

Let 𝑥 ∈ 𝐵. Let 𝜀 > 0.
Set 𝛿 = {

𝜀
𝑞 if 𝑞 ≠ 0
1 otherwise

.

Let 𝑦 ∈ 𝐵. If ‖𝑥 − 𝑦‖ < 𝛿 then ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝑞‖𝑥 − 𝑦‖ < 𝜀.
Hence 𝑓 is continuous at 𝑥.

We define a sequence inductively by picking 𝑥0 ∈ 𝐵 and then setting 𝑥𝑛+1 = 𝑓(𝑥𝑛).

2. Prove that ∀𝑛 ∈ ℕ≥0, ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝑞𝑛‖𝑥1 − 𝑥0‖.

Let’s prove it by induction on 𝑛.
Base case at 𝑛 = 0: ‖𝑥1 − 𝑥0‖ ≤ 𝑞0‖𝑥1 − 𝑥0‖ = ‖𝑥1 − 𝑥0‖

Induction step: assume that the statement holds for some 𝑛 ∈ ℕ≥0, then

‖𝑥𝑛+2 − 𝑥𝑛+1‖ = ‖𝑓(𝑥𝑛+1) − 𝑓(𝑥𝑛)‖
= 𝑞‖𝑥𝑛+1 − 𝑥𝑛‖
= 𝑞𝑛+1‖𝑥1 − 𝑥0‖ by the induction hypothesis.

3. Prove that ∀𝑚, 𝑛 ∈ ℕ≥0, 𝑚 > 𝑛 ⟹ ‖𝑥𝑚 − 𝑥𝑛‖ ≤ 𝑞𝑛

1−𝑞 ‖𝑥1 − 𝑥0‖.

Let 𝑚, 𝑛 ∈ ℕ≥0. Assume that 𝑚 > 𝑛, then

‖𝑥𝑚 − 𝑥𝑛‖ =
‖
‖
‖‖

𝑚−1

∑
𝑖=𝑛

(𝑥𝑖+1 − 𝑥𝑖)
‖
‖
‖‖

≤
𝑚−1

∑
𝑖=𝑛

‖𝑥𝑖+1 − 𝑥𝑖‖ by the Triangle Inequality

≤
𝑚−1

∑
𝑖=𝑛

𝑞𝑖‖𝑥1 − 𝑥0‖ by Question 2.

= 𝑞𝑛 1 − 𝑞𝑚−𝑛

1 − 𝑞 ‖𝑥1 − 𝑥0‖

≤ 𝑞𝑛

1 − 𝑞 ‖𝑥1 − 𝑥0‖
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4. Prove that (𝑥𝑛)𝑛∈ℕ≥0 is a Cauchy sequence.

Let 𝜀 > 0.
Case 1: if 𝑥1 = 𝑥0 then for any 𝑚, 𝑛 ∈ ℕ≥0 satisfying 𝑚 > 𝑛, ‖𝑥𝑚 − 𝑥𝑛‖ ≤ 𝑞𝑛

1 − 𝑞 ‖𝑥1 − 𝑥0‖ = 0 < 𝜀.

Case 2: otherwise, since lim
𝑛→+∞

𝑞𝑛

1 − 𝑞 = 0 (as |𝑞| < 1),

(1) ∃𝑁 ∈ ℕ, 𝑛 > 𝑁 ⟹ 0 ≤ 𝑞𝑛

1 − 𝑞 ≤ 𝜀
‖𝑥1 − 𝑥0‖

Let 𝑚, 𝑛 ∈ ℕ≥0, if 𝑚 ≥ 𝑛 > 𝑁 then

‖𝑥𝑚 − 𝑥𝑛‖ ≤ 𝑞𝑛

1 − 𝑞 ‖𝑥1 − 𝑥0‖ by Question 3

≤ 𝜀 by (1)

We proved that ∀𝜀 > 0, ∃𝑁 ∈ ℕ≥0, ∀𝑚, 𝑛 ∈ ℕ≥0, 𝑚 ≥ 𝑛 > 𝑁 ⟹ ‖𝑥𝑚 − 𝑥𝑛‖ ≤ 𝜀
i.e. (𝑥𝑛)𝑛∈ℕ≥0 is a Cauchy sequence.

5. Prove that (𝑥𝑛)𝑛∈ℕ≥0 is convergent in 𝐵.

Since (𝑥𝑛)𝑛∈ℕ≥0 is a Cauchy sequence in ℝ𝑛, it admits a limit 𝑥 ∈ ℝ𝑛.
And since ∀𝑛 ∈ ℕ, 𝑥𝑛 ∈ 𝐵 and 𝐵 ⊂ ℝ𝑛 is a closed subset, its limit 𝑥 must lie in 𝐵.

6. Prove that 𝑓 admits a fixed point, i.e. ∃𝑥 ∈ 𝐵, 𝑓(𝑥) = 𝑥.

By the previous question, there exists 𝑥 ∈ 𝐵 such that lim
𝑛→+∞

𝑥𝑛 = 𝑥.
Hence, by continuity of 𝑓 (cf Question 1.), lim

𝑛→+∞
𝑓(𝑥𝑛) = 𝑓(𝑥).

Since ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑥𝑛) = 𝑥𝑛+1, by uniqueness of the limit, we get that 𝑓(𝑥) = 𝑥.

7. Prove that 𝑓 admits only one fixed point (i.e. if 𝑦 ∈ 𝐵 is another fixed of 𝑓 point then 𝑥 = 𝑦).

Assume by contradiction that there exists 𝑦 ∈ 𝐵 another fixed point, i.e. 𝑥 ≠ 𝑦 and 𝑓(𝑦) = 𝑦.
Then ‖𝑥 − 𝑦‖ = ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝑞‖𝑥 − 𝑦‖.
Since ‖𝑥 − 𝑦‖ > 0, we get that 𝑞 ≥ 1, which contradicts the assumption 𝑞 ∈ [0, 1).

You just proved the

Theorem 2 (Banach fixed point theorem). A contraction mapping 𝑓 ∶ 𝐵(𝑎, 𝑟) → 𝐵(𝑎, 𝑟) admits a unique fixed point.
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Exercise 3. Let 𝑈 ⊂ ℝ𝑛 be an open subset containing 0 and 𝑓 ∶ 𝑈 → ℝ𝑛 be a 𝐶1 function satisfying 𝑓(0) = 0 and
𝐷𝑓(0) = 𝐼𝑛,𝑛.

1. Prove that there exists 𝑡 > 0 such that 𝐵(0, 𝑡) ⊂ 𝑈 and ∀𝑥 ∈ 𝐵(0, 𝑡), det(𝐷𝑓(𝑥)) ≠ 0.

Since 𝑓 is 𝐶1, 𝑥 ↦ 𝐷𝑓(𝑥) is continuous (the entries of 𝐷𝑓(𝑥) are the partial derivatives of the components of 𝑓
which are continuous by definition of 𝐶1).
Then 𝜑 ∶ 𝑈 → ℝ defined by 𝜑(𝑥) = det(𝐷𝑓(𝑥)) is continuous too by composition of continuous functions.
Since 𝜑 is continuous at 0, there exists 𝑡1 > 0 such that

‖𝑥 − 0‖ < 𝑡1 ⟹ |𝜑(𝑥) − 𝜑(0)| < 1
2

i.e.
‖𝑥‖ < 𝑡1 ⟹ |𝜑(𝑥) − 1| < 1

2
Since 𝑈 is open, there exists 𝑡2 > 0 such that 𝐵(0, 𝑡2) ⊂ 𝑈 .
Set 𝑡 = min(𝑡1, 𝑡2).

Then 𝐵(0, 𝑡) ⊂ 𝐵(0, 𝑡2) ⊂ 𝑈 .

Now let 𝑥 ∈ 𝐵(0, 𝑡), then, since ‖𝑥‖ < 𝑡 ≤ 𝑡1,

1 = |1 − 𝜑(𝑥) + 𝜑(𝑥)| ≤ |1 − 𝜑(𝑥)| + |𝜑(𝑥)| < 1
2 + |𝜑(𝑥)|

Hence |𝜑(𝑥)| > 1
2 and therefore 𝜑(𝑥) ≠ 0.

We just proved that ∀𝑥 ∈ 𝐵(0, 𝑡), det(𝐷𝑓(𝑥)) ≠ 0.

2. Define 𝐹 ∶ 𝑈 → ℝ𝑛 by 𝐹 (𝑥) = 𝑓(𝑥) − 𝑥.

(a) Compute 𝐷𝐹 (0).

𝐷𝐹 (0) = 𝐷𝑓(0) − 𝐷id(0) = 𝐼𝑛,𝑛 − 𝐼𝑛,𝑛 = 0 ∈ 𝑀𝑛,𝑛(ℝ)
(b) Prove that there exists 𝑟 ∈ (0, 𝑡) such that ∀𝑥 ∈ 𝐵(0, 𝑟), ‖𝐷𝐹 (𝑥)‖ ≤ 1

2 .

Since 𝐹 is 𝐶1, 𝐷𝐹 is continuous, hence there exists 𝑟1 > 0 such that

‖𝑥 − 0‖ < 𝑟1 ⟹ ‖𝐷𝐹 (𝑥) − 𝐷𝐹 (0)‖ < 1
2

i.e.
‖𝑥‖ < 𝑟1 ⟹ ‖𝐷𝐹 (𝑥)‖ < 1

2
Therefore we can take 𝑟 = min(𝑟1, 𝑡

2 ).
(c) Prove that there exists 𝑠 ∈ (0, 𝑟) such that

∀𝑥, 𝑦 ∈ 𝐵(0, 𝑠), ‖𝐹 (𝑥) − 𝐹 (𝑦)‖ ≤
⎛
⎜
⎜
⎝

sup
𝑧∈𝐵(0,𝑠)

‖𝐷𝐹 (𝑧)‖
⎞
⎟
⎟
⎠

‖𝑥 − 𝑦‖

Comment: we use the Frobenius norm for matrices as in PS4 (recall that ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖).

Take 𝑠 = 𝑟
2 and then follow one of the proofs from the document “an MVT-like inequality”.

(d) Prove that ∀𝑥, 𝑦 ∈ 𝐵(0, 𝑠), ‖𝐹 (𝑥) − 𝐹 (𝑦)‖ ≤ 1
2 ‖𝑥 − 𝑦‖.

Let 𝑥, 𝑦 ∈ 𝐵(0, 𝑠), then

‖𝐹 (𝑥) − 𝐹 (𝑦)‖ ≤
⎛
⎜
⎜
⎝

sup
𝑧∈𝐵(0,𝑠)

‖𝐷𝐹 (𝑧)‖
⎞
⎟
⎟
⎠

‖𝑥 − 𝑦‖ by Question 2.(c)

≤ 1
2‖𝑥 − 𝑦‖ by Question 2.(b) since 𝐵(0, 𝑠) ⊂ 𝐵(0, 𝑟)



4 IFT and IFT: sample solutions

3. Let 𝑦 ∈ 𝐵 (0, 𝑠
2 ). Define 𝜃𝑦 ∶ 𝑈 → ℝ𝑛 by 𝜃𝑦(𝑥) = 𝑦 − 𝐹 (𝑥).

(a) Prove that 𝜃𝑦 (𝐵(0, 𝑠)) ⊂ 𝐵(0, 𝑠).

Let 𝑥 ∈ 𝐵(0, 𝑠) then

‖𝜃𝑦(𝑥)‖ = ‖𝑦 − 𝐹 (𝑥)‖
≤ ‖𝑦‖ + ‖𝐹 (𝑥)‖
< 𝑠

2 + ‖𝐹 (𝑥) − 𝐹 (0)‖ since ‖𝑦‖ < 𝑠
2 and 𝐹 (0) = 0

≤ 𝑠
2 + 1

2‖𝑥 − 0‖ by Question 2.(d), since 𝑥 ∈ 𝐵(0, 𝑠)

≤ 𝑠 since 𝑥 ∈ 𝐵(0, 𝑠)

Hence ∀𝑥 ∈ 𝐵(0, 𝑠), ‖𝜃𝑦(𝑥)‖ < 𝑠.
(b) Prove that 𝜃𝑦 ∶ 𝐵(0, 𝑠) → 𝐵(0, 𝑠) is a contraction mapping with constant 1

2 .

We first notice that since 𝜃𝑦 (𝐵(0, 𝑠)) ⊂ 𝐵(0, 𝑠) ⊂ 𝐵(0, 𝑠), the function 𝜃𝑦 ∶ 𝐵(0, 𝑠) → 𝐵(0, 𝑠) is well-defined.

Let 𝑥, 𝑥′ ∈ 𝐵(0, 𝑠), then

‖𝜃𝑦(𝑥) − 𝜃𝑦(𝑥′)‖ = ‖𝑦 − 𝐹 (𝑥) − 𝑦 + 𝐹 (𝑥′)‖
= ‖𝐹 (𝑥) − 𝐹 (𝑥′)‖

≤ 1
2‖𝑥 − 𝑥′‖ by Question 2.(d)

Therefore 𝜃𝑦 is a contraction mapping with constant 1
2 .

(c) We set 𝑉 = 𝐵 (0, 𝑠) ∩ 𝑓 −1
(𝐵 (0, 𝑠

2 )) and 𝑊 = 𝐵 (0, 𝑠
2 ).

Prove that 𝑓 ∶ 𝑉 → 𝑊 is a well-defined bijection between two open subsets of ℝ𝑛 containing 0.

We first notice that 𝑉 and 𝑊 are obviously open subsets.

Then we check that 𝑓 ∶ 𝑉 → 𝑊 is well-defined:
• Since 𝐵(0, 𝑠) ⊂ 𝐵(0, 𝑡) ⊂ 𝑈 , we have well that 𝑉 ⊂ 𝑈 . Hence 𝑓 is well-defined on 𝑉 .
• Moreover 𝑓(𝑉 ) ⊂ 𝑊 by definition of 𝑉 .

Finally, we check that 𝑓 ∶ 𝑉 → 𝑊 is a bijection:
Let 𝑦 ∈ 𝑊 .
We know from Question 3.(b) that 𝜃𝑦 ∶ 𝐵(0, 𝑠) → 𝐵(0, 𝑠) is a contraction mapping, hence, by the Banach fixed
point theorem, there exists a unique 𝑥 ∈ 𝐵(0, 𝑠) such that 𝑥 = 𝜃𝑦(𝑥).
Notice that 𝑥 = 𝜃𝑦(𝑥) ⇔ 𝑥 = 𝑦 − 𝑓(𝑥) + 𝑥 ⇔ 𝑦 = 𝑓(𝑥).
Hence 𝑥 ∈ 𝑓 −1

(𝐵 (0, 𝑠
2 )) since 𝑦 ∈ 𝐵 (0, 𝑠

2 ).
Moreover, by Question 3.(a), 𝑥 = 𝜃𝑦(𝑥) ∈ 𝐵(0, 𝑠). So 𝑥 ∈ 𝑉 .
To summarize, we just proved that

∀𝑦 ∈ 𝑊 , ∃!𝑥 ∈ 𝑉 , 𝑦 = 𝑓(𝑥)
i.e. 𝑓 ∶ 𝑉 → 𝑊 is a bijection.
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4. (a) Prove that 𝑓 −1 ∶ 𝑊 → 𝑉 is Lipschitz with constant 2 and then that it is continuous.

Let 𝑦1, 𝑦2 ∈ 𝑊 .
Set 𝑥1 = 𝑓 −1(𝑦1) and 𝑥2 = 𝑓 −1(𝑦2) which are well-defined by Question 3.(c).
Notice that

‖𝑥1 − 𝑥2‖ = ‖(𝑓(𝑥1) − 𝑓(𝑥2)) − (𝐹 (𝑥1) − 𝐹 (𝑥2))‖
≤ ‖𝑓(𝑥1) − 𝑓(𝑥2)‖ + ‖𝐹 (𝑥1) − 𝐹 (𝑥2)‖ by the Triangle Inequality

So

‖𝑥1 − 𝑥2‖ − ‖𝑓(𝑥1) − 𝑓(𝑥2)‖ ≤ ‖𝐹 (𝑥1) − 𝐹 (𝑥2)‖

≤ 1
2‖𝑥1 − 𝑥2‖ by Question 2.(d)

Hence
‖𝑥1 − 𝑥2‖ ≤ 2‖𝑓(𝑥1) − 𝑓(𝑥2)‖

i.e.
‖𝑓 −1(𝑦1) − 𝑓 −1(𝑦2)‖ ≤ 2‖𝑦1 − 𝑦2‖

We just proved that 𝑓 −1 is Lipschitz with constant 2.
Then 𝑓 −1 is continuous as a Lipschitz function (you can adapt Question 1. of Exercise 1.).

(b) Prove that 𝑓 −1 ∶ 𝑊 → 𝑉 is differentiable.
(Hint: use the very definition of differentiability together with Question 1.)

Let 𝑦0 ∈ 𝑊 and set 𝑥0 = 𝑓 −1(𝑦0).
Since 𝑓 is differentiable at 𝑥0, we have

(2) 𝑓(𝑥) = 𝑓(𝑥0 + 𝑥 − 𝑥0) = 𝑓(𝑥0) + 𝑑𝑥0𝑓(𝑥 − 𝑥0) + 𝐸(𝑥)

where

(3) lim
𝑥→𝑥0

𝐸(𝑥)
‖𝑥 − 𝑥0‖ = 0

Since 𝑉 ⊂ 𝐵(0, 𝑡), 𝑑𝑥0𝑓 is invertible by Question 1.

Hence we may compose (2) with (𝑑𝑥0𝑓)
−1

in order to obtain that

(𝑑𝑥0𝑓)
−1

(𝑓 (𝑥) − 𝑓(𝑥0)) = 𝑥 − 𝑥0 + (𝑑𝑥0𝑓)
−1

(𝐸(𝑥))

which we may rewrite in terms of 𝑦 = 𝑓(𝑥):

(𝑑𝑥0𝑓)
−1

(𝑦 − 𝑦0) = 𝑓 −1(𝑦) − 𝑓 −1(𝑦0) + (𝑑𝑥0𝑓)
−1

(𝐸 (𝑓 −1(𝑦)))

Hence
𝑓 −1(𝑦) = 𝑓 −1(𝑦0) + (𝑑𝑥0𝑓)

−1
(𝑦 − 𝑦0) − (𝑑𝑥0𝑓)

−1
(𝐸 (𝑓 −1(𝑦)))

We already know that (𝑑𝑥0𝑓)
−1

is linear, so, to prove that 𝑓 −1 is differentiable at 𝑦0, it is enough to check that

lim
𝑦→𝑦0

(𝑑𝑥0𝑓)
−1

(𝐸 (𝑓 −1(𝑦)))
‖𝑦 − 𝑦0‖ = 0

We first notice that ‖𝑥 − 𝑥0‖ = ‖𝑓 −1(𝑦) − 𝑓 −1(𝑦0)‖ ≤ 2‖𝑦 − 𝑦0‖ by Question 4.(a) from which we derive that

1
‖𝑦 − 𝑦0‖ ≤ 2

‖𝑥 − 𝑥0‖
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and next that
‖
‖
‖
‖‖

(𝑑𝑥0𝑓)
−1

(𝐸 (𝑓 −1(𝑦)))
‖𝑦 − 𝑦0‖

‖
‖
‖
‖‖

≤ 2 ‖(𝑑𝑥0𝑓)
−1

(
𝐸(𝑥)

‖𝑥 − 𝑥0‖)‖

When 𝑦 → 𝑦0 we have 𝑥 → 𝑥0 by continuity of 𝑓 (Question 4.(a)) and hence that 𝐸(𝑥)
‖𝑥−𝑥0‖ → 0 by (3).

We know that (𝑑𝑥0𝑓)
−1

is continuous (since linear) and that ‖ ⋅ ‖ is continuous too, hence

‖
‖
‖
‖‖

(𝑑𝑥0𝑓)
−1

(𝐸 (𝑓 −1(𝑦)))
‖𝑦 − 𝑦0‖

‖
‖
‖
‖‖

≤ 2 ‖(𝑑𝑥0𝑓)
−1

(
𝐸(𝑥)

‖𝑥 − 𝑥0‖)‖ −−−−→
𝑦→𝑦0

0

Therefore

lim
𝑦→𝑦0

(𝑑𝑥0𝑓)
−1

(𝐸 (𝑓 −1(𝑦)))
‖𝑦 − 𝑦0‖ = 0

and 𝑓 −1 is differentiable at 𝑦0.
(c) Prove that 𝑓 −1 ∶ 𝑊 → 𝑉 is 𝐶1.

(Hint: study 𝐷 (𝑓 −1) using the Chain Rule.)

Since 𝑓 −1 is differentiable, we may apply the chain rule to the LHS of the identity 𝑓 ∘ 𝑓 −1 = id in order to
obtain

𝐷𝑓 (𝑓 −1(𝑦)) 𝐷 (𝑓 −1) (𝑦) = 𝐼𝑛,𝑛

Since 𝐷𝑓 (𝑓 −1(𝑦)) is invertible by Question 1, we deduce that

𝐷 (𝑓 −1) (𝑦) = (𝐷𝑓 (𝑓 −1(𝑦)))
−1

The entries of the RHS matrix are continuous by the formula giving the matrix inverse in terms of the cofactor
matrix, hence the entries of the LHS matrix are continuous too.
But the entries of the LHS are the partial derivatives of the components of 𝑓 −1, so they are continuous.
Therefore 𝑓 −1 is 𝐶1.

You just proved that

Claim 4. Let 𝑈 ⊂ ℝ𝑛 be an open subset containing 0 and 𝑓 ∶ 𝑈 → ℝ𝑛 be of class 𝐶1 such that 𝑓(0) = 0 and 𝐷𝑓(0) = 𝐼𝑛,𝑛.
Then there exist 𝑉 , 𝑊 ⊂ ℝ𝑛 two open subsets such that 0 ∈ 𝑉 ⊂ 𝑈 , 0 ∈ 𝑊 and 𝑓 ∶ 𝑉 → 𝑊 is a 𝐶1-diffeomorphism (i.e.
𝑓 is 𝐶1, bijective and 𝑓 −1 is 𝐶1).
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Exercise 5. Prove the Inverse Function Theorem (the statement is below).
(Hint: reduce to the case considered in the above claim.)

Theorem 6 (The Inverse Function Theorem). Let 𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ𝑛 of class 𝐶1 and 𝑎 ∈ 𝑈 . Assume that
𝐷𝑓(𝑎) is invertible.
Then there exist 𝑉 , 𝑊 ⊂ ℝ𝑛 two open subsets such that 𝑎 ∈ 𝑉 ⊂ 𝑈 , 𝑓(𝑎) ∈ 𝑊 and 𝑓 ∶ 𝑉 → 𝑊 is a 𝐶1-diffeomorphism
(i.e. 𝑓 is 𝐶1, bijective and 𝑓 −1 is 𝐶1).

Notice that ̃𝑓 (𝑥) = (𝑑𝑎𝑓)−1 (𝑓 (𝑎 + 𝑥) − 𝑓(𝑎)) is well-defined in a neighborhood of the origin.
Moreover ̃𝑓 (0) = 0 and 𝐷 ̃𝑓(0) = 𝐼𝑛,𝑛 by the chain rule.
So we may apply the previous claim to ̃𝑓 in order to deduce the statement for 𝑓 .



8 IFT and IFT: sample solutions

Exercise 7. Derive the Implicit Function Theorem from the Inverse Function Theorem (the statement is below).

Theorem 8 (The Implicit Function Theorem).
Let 𝑈 ⊂ ℝ𝑛 and 𝑉 ⊂ ℝ𝑝 be two open subsets. Let (𝑥0, 𝑦0) ∈ 𝑈 × 𝑉 .

Let 𝐹 ∶ 𝑈 × 𝑉 → ℝ𝑝

(𝑥, 𝑦) ↦ 𝐹 (𝑥, 𝑦) be of class 𝐶1.
If 𝐷𝑦𝐹 (𝑥0, 𝑦0) is invertible then there exist 𝑟, 𝑠 > 0 such that 𝐵(𝑥0, 𝑟) ⊂ 𝑈 , 𝐵(𝑦0, 𝑠) ⊂ 𝑉 and
there exists 𝜑 ∶ 𝐵(𝑥0, 𝑟) → 𝐵(𝑦0, 𝑠) of class 𝐶1 such that

∀(𝑥, 𝑦) ∈ 𝐵(𝑥0, 𝑟) × 𝐵(𝑦0, 𝑠), 𝐹 (𝑥, 𝑦) = 𝐹 (𝑥0, 𝑦0) ⇔ 𝑦 = 𝜑(𝑥)

Hint: apply the Inverse Function Theorem to 𝜓(𝑥, 𝑦) = (𝑥, 𝐹 (𝑦)).


