MAT137Y1 – LEC0501 Calculus!

Power series and Taylor series: Applications

April 3rd, 2019

Other operations with Taylor series

Obtain the **terms of degree less than or equal to 4** of the Maclaurin series of these functions:

$$f(x) = e^x \sin x$$

$$g(x) = e^{\sin x}$$

Hint: Treat the power series the same way you would treat a polynomial.

Follow-up questions: Compute $g^{(3)}(0)$ and $g^{(4)}(0)$

Other operations with Taylor series

Obtain the **terms of degree less than or equal to 4** of the Maclaurin series of these functions:

$$f(x) = e^x \sin x$$

$$g(x) = e^{\sin x}$$

Hint: Treat the power series the same way you would treat a polynomial.

Follow-up questions:

Compute $g^{(3)}(0)$ and $g^{(4)}(0)$.

Add these series

Hint: Think of sin

$$2 \sum_{n=0}^{\infty} (4n+1)x^{4n+2}$$

Hint:
$$\frac{d}{dx} [x^{4n+1}] = ???$$

3
$$\sum_{n=0}^{\infty} \frac{2^n}{(2n)!}$$

Hint: Combine e^x and e^{-x}

$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)} x^n$$

With two methods!

Limits

Compute these limits by writing out the first few terms of the Maclaurin series of numerator and denominator:

$$\mathbf{1} \lim_{x \to 0} \frac{\sin x - x}{x^3}$$

$$\mathbf{1} \lim_{x \to 0} \frac{\sin x - x}{x^3} \qquad \mathbf{3} \lim_{x \to 0} \frac{x^2 \sin x^2 - x^4}{e^{x^8} - 1}$$

$$2 \lim_{x \to 0} \frac{6 \sin x - 6x + x^3}{x^5}$$

4 Find a value of $a \in \mathbb{R}$ such that the limit

$$\lim_{x\to 0}\frac{e^{\sin x}-e^x+ax^3}{x^4}$$

exists and is not 0. Then compute the limit.

Integrals

Consider the function

$$F(x) = \int_0^x \frac{\sin t}{t} dt.$$

It is not possible to find an elementary antiderivative.

- Write F(x) as a power series.
- **2** Estimate F(1) with an error smaller than 0.01.

More series

Add these series:

$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}$$

$$\sum_{n=0}^{\infty} \frac{x^n}{(n+2)n!}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

Hint: Take derivatives or antiderivative of series whose value you know.

More power series

For each of the following power series:

- a Determine the radius of convergence, and,
- **b** write them in terms of usual functions when *x* is in the interior of the interval of convergence.

$$3 \sum_{n=0}^{+\infty} (n^2 + 1) 2^{n+1} x^n$$

Parity

• Let f be an odd C^{∞} function. What can you say about its Maclaurin series? What if f is even?

Hint: Think of sin and cos.

Prove it.

Hint: Use the general formula for the Maclaurin series. What can you say about h(0) if h is odd? If h is even?

Consider the function
$$F(x) = \begin{cases} e^{-1/x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

- **1** Prove that, for every $n \in \mathbb{N}$, $\lim_{t \to +\infty} t^n e^{-t} = 0$.
- 2 Prove that, for every $n \in \mathbb{N}$, $\lim_{x \to 0^+} \frac{e^{-1/x}}{x^n} = 0$.
- **3** Compute F'(x) for x > 0.
- **4** Compute F'(x) for x < 0.
- **5** Compute F'(0) from the definition.
- **6** Compute F''(0) from the definition.
- **7** Prove that for every $n \in \mathbb{N}$, $F^{(n)}(0) = 0$.
- 8 Write the Maclaurin series for F at 0.
- \bigcirc Is F analytic? Is $F C^{\infty}$?

A C^{∞} but not analytic function

Consider the function
$$F(x) = \begin{cases} e^{-1/x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

- **1** Prove that, for every $n \in \mathbb{N}$, $\lim_{t \to +\infty} t^n e^{-t} = 0$.
- 2 Prove that, for every $n \in \mathbb{N}$, $\lim_{x \to 0^+} \frac{e^{-1/x}}{x^n} = 0$.
- **3** Compute F'(x) for x > 0.
- **4** Compute F'(x) for x < 0.
- **6** Compute F'(0) from the definition.
- **6** Compute F''(0) from the definition.
- **7** Prove that for every $n \in \mathbb{N}$, $F^{(n)}(0) = 0$.
- Write the Maclaurin series for F at 0.
- \odot Is F analytic? Is $F C^{\infty}$?

An interesting power series¹

Denote by a_n the *n*-th decimal digit of π .

Define the power series $S(x) = \sum_{n=1}^{\infty} a_n x^n$.

Find the radius of convergence and the interval of convergence of S.

Hint:

So
$$a_1 = 1$$
, $a_2 = 4$, $a_3 = 1$, $a_4 = 5$...

¹From the lecture of March 25.